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Abstract—The classical Multi-Dimensional Scaling (MDS) is
an important method for data dimension reduction. Nonlinear
variants have been developed to improve its performance. One of
them is the MDS with Radial Basis Functions (RBF). A key issue
that has not been well addressed in MDS-RBF is the effective
selection of its centers. This paper treats this selection problem
as a multi-task learning problem, which leads us to employ
the (2,1)-norm to regularize the original MDS-RBF objective
function. We then study its two reformulations: Diagonal and
spectral reformulations. Both can be effectively solved through
an iterative block-majorization method. Numerical experiments
show that the regularized models can improve the original model
significantly.
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Iterative Majorization, Regularization.

I. INTRODUCTION

HE classical Multi-Dimensional Scaling (cMDS) and its

nonlinear variants have found many applications in both
social and engineering sciences and are well documented in
the books by Cox and Cox [7], Borg and Groenen [4], and
Pekalaska and Duin [16]. In this paper, we are interested in
one of the important nonlinear variants involving Radial Basis
Functions (RBF) that was first proposed by Webb [26], [27]
in the context of MDS. The key issue in employing RBFs in
MBDS is to decide their centers. This includes the number of the
centers to be used and then what they are. This issue has not
been well addressed in existing literature. For example, Webb
[26] suggests to randomly choose the centers and then uses
an expensive cross-validation procedure to decide what they
are. Here, we take a completely different route and regard the
selection of the centers as a multi-task learning problem that
has been widely studied in machine learning, see Argriou et
al. [1], [2]. This will lead us to an optimization model that can
be solved efficiently. Before we detail our method, we give a
brief literature review and discuss how they have led to the
current research.

The use of cMDS as a data dimension-reduction method (or
data visualization method when the embedding dimension is
2 or 3) can be traced to the seminar work of Schoenberg [21]
and the independent work of Young and Householder [28].
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The method was made popular by Torgerson [24] and later by
Gower [12] (see [14, Chapter 14] for details). cMDS performs
well if the distance matrix, which consists of the pairwise
distance among the data points, is close to a true Euclidean
distance matrix with a low-embedding dimension. Otherwise,
certain corrections have to be made on the distance matrix.
Early methods include adding a same positive constant to
every pairwise distance, which results in the additive constant
or the partial additive constant problems (see [15], [6], [5S],
[3], [18]). More advanced corrections are obtained through
optimizing certain loss functions. The STRESS function first
proposed by Kruskal [13] is one of the most often used loss
functions (for other STRESS type functions, see [4, Chapter
3]). The resulting optimization problems based on STRESS
functions can be efficiently solved by the majorization method
introduced by de Leeuw [8] (see [4, Chapter 8] for a detailed
description of the method). We will also use a majorization
procedure in our algorithm. Another class of corrections can
be obtained through computing the nearest Euclidean distance
matrix from the known distance matrix (see [10], [11], [17],
[19], [20]). All of these methods can be regarded as nonlinear
variants of cMDS because they make nonlinear corrections on
the pairwise distances.

The nonlinear variant introduced by Webb [25] differs from
those mentioned above in the following way. It regards the
space where the original data lies the input space (also see
[26]). The first stage of Webb’s method is to map the data
from the input space to a feature space through nonlinear
functions such as RBFs. The dimension of the feature space
is determined by the number of RBFs used and is equal to the
number of centers used in RBFs. Assuming the first stage task
is settled, the second stage is to find the best linear function that
maps the feature space data to a low-dimensional embedding
space (2 or 3 if the purpose is to visualize the data). Webb’s
method actually focuses on the second stage and suggests using
a (potentially very expensive) cross-validation procedure to
furnish the task in the first stage.

The purpose of this paper is to propose a computational
model that deals with the two stages simultaneously. The key
viewpoint here is to regard the selection of the centers for
RBFs as a kind of multi-task learning problem, which has been
widely studied in machine learning (see [1], [2]). We would
like to emphasize that there are major differences between
our learning problem and that in [2]. Roughly speaking, we
have a non-convex optimization model while [2] has a convex
one. But the principal idea of choosing the common tasks
via minimizing the (2,1)-norm of the learning matrix in [2]
is carried over to our model. This (2,1)-norm works as a
regularizer to control the selection of centers for RBFs. We



will develop an iterative block-majorization method for the
resulting model.

The paper is organized as follows. In Section II, we will
review the RBF-MDS model introduced by Webb [26] and
single out the problem how to choose centers for the RBFs
used. We will then introduce the (2,1)-norm as a regularizer
to the model. On the way, we will also highlight the major
differences as well as relationships between our model and the
multi-task learning model in [2]. In Section III, we will study
two reformulation models: diagonal and spectral. We will then
develop an iterative block-majorization method for our model.
Numerical results on three commonly used data sets are re-
ported and explained in Section IV, where we demonstrate that
the regularized models can significantly improve the original
model of Webb [26]. We conclude the paper in Section V.

II. THE PROBLEM OF LEARNING CENTERS

In this section, we first introduce the RBF-MDS model of
Webb [26]. We then treat the center selection problem in the
model as a multi-task learning problem.

A. RBF-MDS Model

Suppose we have N data points {x;}}¥, in the input space
R™ and their associated Euclidean distances d;; is defined to
be d;; = ||x; — x,||, where || - || is the Euclidean norm in
R™. Due to practical reasons, the original data contains noises
and they can be represented in a lower-dimensional space ™
(m < n). For example, when it is for visualization, m is often
chosen to be 2 or 3. The representation is often done through
nonlinear dimension reduction methodologies.

Webb [26] proposed the following methodology. Firstly, the
data set is mapped to another space called feature space R’
through nonlinear function ® : " + R’. For example, ¢ can

be radial basis functions. Let ®(z) = (¢1(x),...,de(x)) €
RE, with
QSi(JJ):eXp{—HX—Ci||2/h2}, 7’:177£

where h is the bandwidth and c; is the center of ¢;. Secondly,
the form of data representation in R, denoted as f, is assumed
to be a linear function of the feature vector ®. In terms of the
original input space data, f is a nonlinear function from ™ to
R™ and takes the following form:

f(z) =WTd(z), VzeR" (1)
where W € RE*™_ In other words, f is a composite of a linear
function (represented by the matrix W) and the radial basis
function ®. Finally, the method seeks the best linear function
that minimizes the raw STRESS (i.e., loss function):

N
2
a?(W) = Z aij(qi; (W) — diz)™, (2)
i,j=1
where for 4,5 =1,..., N, a;; > 0 are known weights and

qi;(W) = [If(x:) — £(x)) || = [WT(@(x:) = 2(x;))lI. 3)

Hence, the optimization problem of Webb’s model is

min  o?(W). “4)
We%@xm,
A majorization method is then used to solve (4). Let v/ =
®(x;) — ©(x;). We assume that the data set is rich enough
such that the vectors

{vij i<y =2,.. .,N} span the feature space RE(5)

It is obvious that one of the key components of Webb’s
model is computing the feature vector ®(z), which depends
on its centers c¢;, ¢ = 1, ..., ¢. There are two natural questions
to be asked here. How many centers should be used (i.e.,
how to decide ¢)? What are the best choices of those centers?
Webb [26] suggests to randomly choose the centers and to
use a cross-validation scheme to pick the best one. However,
the cross-validation scheme is often very expensive to run. In
the following, we try to answer those questions from a fresh
viewpoint of multi-task learning.

B. As a Multi-Task Learning Problem

A general setting up for multi-task learning problems is
described in [2, Sect. 2]. In this section, we will relate the
center choosing problem to a multi-task learning problem.
Suppose there are ¢ factors represented by ¢;(z), i = 1,...,¢
and there are m tasks. Each task in our problem can be
represented as a linear regression of the ¢ factors:

J4
fi(w) = (W, ®(2)) = Y Widj(@),  i=1,....,m (6)
j=1

where W,; (Matlab type of notation) is the ith column of W
and (-,-) is the standard inner product in R¢. The purpose is
to learn the common factors (out of the ¢ factors) among all
m tasks, which is explained below.

Suppose ¢1(x) is not a common factor, then the correspond-
ing coefficients Wy;, ¢ = 1,...,m should be all zero. In
other words, the factor ¢ (z) can be removed from the linear
regression model (6). This corresponds to the 1st row of W
being zero. Now, the problem of learning common factors is
equivalent to finding the zero rows of W. This can be well
achieved by minimizing the (2, 1)-norm of W together with
the original objective function o2(W):

Willz,e = Wl + ... + [Well,

where W,. is the ¢th row of W. For more properties of the
(2,1)-norm and why it is capable of selecting common factors,
please see [2, Sect. 2.2].
Therefore, the optimization model that we are trying to solve
becomes
. 2 2
min POV) = W)+ WIE )
where v > 0 is the regularization parameter and |[W{|2,; is
the regularization term in the model. Through (7), we can
get rid of the centers that are less important in terms of
their contributions to |1V ||2 1, leading to effective selections of



important centers. We should point out that in [2], the number
of tasks (m) is larger than the number of factors (¢). Here,
we have the opposite (m < £). Furthermore, the objective
function corresponding to the raw stress (W) in [2] is
convex with respect to W. Here, o?(W) is nonconvex. We
shall see that we can nicely combine the majorization strategy
and the techniques in handling the (2,1)-norm developed in
[2] to solve problem (7).

III. ITERATIVE BLOCK-MAJORIZATION METHODS

This section is devoted to numerical methods for solving
problem (7). The (2, 1)-norm is nonsmooth (not differentiable)
and the stress function o?(W) is not convex. Hence,
problem (7) is difficult to solve. We will relate problem (7)
to that of [2] in order to spare us from giving very involved
technical proofs. This led us to two reformulations that are
conducible to developing majorization methods later on.

A. Diagonal and Spectral Reformulations

Let S denote the space of £ x ¢ symmetric matrices with
the standard inner product (-,-). Let Sfr denote the cone of
positive semidefinite matrices in S* and Sﬁ . denote the set of
all positive definite matrices in S*. Let Of denote the set of
all £ x ¢ orthonormal matrices. That is, U € O if and only if
UTU = 1. For C € S, we let CT denote the pseudo-inverse
of C. For a constant a € R, af = 1/a if a # 0 and at =0
otherwise. We let Tr(C') denote the trace of C.

Suppose C' € Si has the following spectral decomposition

C = UDiag(\1,...,A\)UT,

where A\1 > ... > Ay > 0 are the eigenvalues of C' in
nonincreasing order, Diag(A1, ..., \¢) is the diagonal matrix
with \; being on its diagonal, and U € O°. The pseudo-inverse
of C is then given by

Ct = UDiag(\l, ..., AHUT.
Define the function
QW,C) = *(W) +(WWT,C). @®)
By following the proof of [2, Thm. 1 and Cor. 2], we can
obtain the following result.
Theorem IIL.1. Problem (7) is equivalent to the problem
min  Q(W, Diag(A)
st A=A, ) >0, Y <1 9)
Ai # 0 whenever Wi, #0, i =1,...,¢L.
Moreover, if (W, X) is the optimal solution of (9), it holds

W
5 Wl
W21

Because of this theorem, we call (9) the diagonal refor-
mulation of (7). We now present what we call the spectral

reformulation, which has better numerical performance than
the diagonal reformulation. We start from a simple observation.

i=1,...,0 (10)

W e R>*™ if and only if W =UA (11)

for some U € Of and A € R*™. The stress function
o2(W) can then be written as

a?(W) = o*(UA)

Oéij(Qij(UA) - dij)2

I
M=

i,j=1

2

Il
.MZ

a; (|ATUT (D(x;) — (x;)]| — dij)

1

<.

)

We consider the following problem:

. e ,
aegeltin, o, BAU) =" UA) +9145,-  (2)

We note that problem (12) is not equivalent to problem (7)
under the transformation in (11). But they have a common term
of the stress function. This time, ||A||2,1 is the regularizer
instead of ||W||2,1. The benefit in using ||A||2,1 is that problem
(12) has a nice characterization, which allows us to develop
a majorization method. Problem (12) is similar in structure to
[2, Problem (4)] and is equivalent to the following problem
contained in the next result.

Theorem IIL.2. Problem (12) is equivalent to the problem
inf {Q(W,D): W e R”™ DeS{, Tr(D)<1}. (13)

In particular, any minimizing sequence of problem (13) is
bounded and converges to a minimizer of problem (12). More-
over, if (W, D) is any limit of a minimizing sequence, then any
(A,U) such that the colu@ns of g forrﬁs an orthogonormal

basis of eigenvectors of D and A = UTW, is an optimal
solution of problem (12).

Proof. Let v, denote the infimum of (13). Suppose
{W¥ D*} is a minimizing sequence. Then

ve = lim Q(W* D¥) > lim o?(Wk)>0, (14
k—o0 k—o0

because the regularization term in (8) is always nonnegative.
Due to the constraint Tr(D) < 1 in (13), {D*} is bounded.
Suppose that the sequence {WW*} is unbounded. Without loss
of generality, we assume that

k

W _
W%W#O. (15)

Dividing both sides of (14) by ||[W*||? and taking limits, we
obtain
N
0= W'Y,
i,j=1
which implies

—T

W vii=0 Vi<j=2...,N.



Assumption (5) forces W = 0, which contradicts (15). Hence,
the sequence {IW*} is bounded. This proves that any minimiz-
ing sequence is bounded. The remaining proof can be similarly
constructed as in [2, Thm. 1 and Cor. 1]. O

It is because that U is a normalized eigenvector matrix of D
and it can be obtained through a spectral decomposition of D,
we refer to problem (13) as the spectral reformulation model.
The next result shows that the spectral reformulation model
(13) is a generalization of the diagonal reformulation model

©9).

Proposition IIL3. Let vy be the optimal objective value of
problem (9) and v be the infimum of problem (13). Then we
have

Vg > Vs.

Moreover, if D is restricted to be diagonal in (13), the equality
holds.

Proof. Suppose (W, ) is an optimal solution of problem
(9). Let Z denote the indices of positive \;:

T={i|X\>0i=1,....0} and T={1,... 0}\T.
Let ¢y = |Z|, the cardinality of Z. Define
Amin = min A;.
=
Obviously A\yin > 0. Define the sequence \* € R¢, k= 1,2...
by
ifiel
ifZ#0andicZ.

1
)\k _ { )\z - ﬂAmin
i Lo\ .
2k(L—£p) ~'min

It is easy to verify that A\¥ > 0 for all k = 1,2, ..

4 4
dAF=Y <t
=1 =1

Let D* = Diag(\¥). Then, the sequence (W, D¥) satisfies the
constraints in (13).

Now we compute the respective objective function values.
We first note that

Q(W,Diag())) =
4
= W)+ (IWel?A])

= (W) +WZ (IWel? /) -

i€l

., and

(W) +y(WWT, (Diag()))")

It also follows from the constraints in (9) that
Ai € Z whenever W,;. # 0.
This property yields
QUV,DY) = o*(W) +(WWT,(D)T)
= W)+ D (IWal?/A))

Wi.#0

a2 (W) + 72 (Wl /A5) -

i€l

IN

Taking limits on both sides, we have
2 . 12 /27K
P (W) 4+ lim 3 ([[Wa]|?/AF)
ieT
W)+ (IWell?/ )
ieT
= Q(W,Diag(\)) = va.

liminf Q(W, D) <
k—o0

As stated before, (W, D¥) is a feasible sequence of problem
(13). It is obvious that being the infimum of (13)

vs < lim Q(W,D").
k—oo

This proves v, < vg.

The above proof actually shows that if D is restricted to
be diagonal, we must have vy < v4. Now suppose that D
is restricted to be diagonal. Let {W* D¥} be a minimizing
sequence of (13). That is

v, = lim Q(WP*, D"). (16)
k— o0
Denote D* by D* = Diag(\¥) and \F > 0 for k = 1,2, .. ..
By Thm. II1.2, the sequence {W*, D*} is bounded. Without
loss of any generality, we assume that

WkESW  and Ao

Obviously, A > 0 and Zle A; < 1. The sequence
{(WFWHT (D¥)1)} is also bounded because {W*, D*} is
a minimizing sequence of (13) and o(W*) > 0 for all k.
Assume that W;. # 0 for some i. Then W} # 0 for sufficiently

large k. We further have

oo > lim <Wk(Wk)T’ (Dk)T> > hm”WﬁH%Af)T
k—o0 T :
_ [ IWEPODT i A >0
B e if A\ = 0.

This can only happen when A\; > 0. Thus we have proved that
A; # 0 whenever W, # 0. In other words, (W, \) is feasible
with respect to the constraints in (9) and

lim (WHW*HT (DM = (WwT,CTy,

k—o0
where C' = Diag()). By continuity of o2(-), (16) implies
vy =2(W) +y(WWE CT) > v,

Combining the first part, we have vy = vy. d

Although problem (9) is not exactly a special case of
problem (13), Prop. III.3 allows us to treat it as if it was
obtained through restricting D to be positive diagonal matrices
in (13). Comparing to (9), the matrix D has more freedom to
move in (13), hence leading to the lower objective function
value vs. This is likely to contribute to a lower objective
function of o(W). This possibility has been confirmed by
our extensive numerical experiments.



B. [Iterative Block-Majorization Method

In this section, we develop an algorithm for the spectral
model problem (13). It can be straightforwardly applied to the
diagonal model (9) with simple modifications.

As we mentioned before, problem (13) is not attainable ,
but the infimum is finite. Argyrion et. al [2] proved that such
kind of problem is equivalent to the following problem, which
is attainable:

W e RExm
DeSt Tr(D)<1
Range(WW) C Range(D)

min < Q(W, D) : 17

The optimal objective value of (17) equals the infimum of
(13). An interesting result about (17) is that when W is fixed,
minimizing Q(W, D) over D in the feasible set of (17) has a
closed-form solution:

wwT

e o

Here, the square root /D of a matrix D € Si is defined to
be the unique matrix C' € Sfr such that D = C?2. The result
(18) is stated below [2, Eq. (23)]. This is the key result that
we are going to use in our block majorization method.

Formula (18) immediately suggests alternatively minimizing
Q(W, D) with respect to W and D. However, it is well known
that the stress function, which is part of Q(W, D), is a very
complicated function (nonsmooth, nonconvex) to minimize.
A widely adopted method is to approximate it by a simpler
function, which is less expensive to minimize. One of such
functions is the majorization function used by Webb [26] (see
also [4)).

For a given V € R*™ and i,j = 1,..., N define

N | aigdi/qi; (V) if qi (V) >0
cij(V) = { 0 otherwise,

and
N
BV) = 37 e (V)(@(x) ~ 0(,))(@x:) ~ () € 8.

Let

Finally, let

N
ol (W, V) = Te(WTCW) —2Te(VIB(V)W) + Y ayd3;.
ij=1
Then, o2, (W, V) satisfies the following properties:
(W) <on(W,V) YW,V

and
(W) = o2 (W, W).

Because of those properties, o2, (W, V) is called a majorization

function of o at W. We note that o2, (W, V) is quadratic in
w.
Now, define

Qum(W,V,D) = a2, (W,V) +v(WWT, DT).

Then @, is a majorization function of Q(W, D) in the sense
that

Qm(W,V,D) 2 QW,D), VW, V,D

and
Qm(W,W,D) = Q(W, D).
‘We note that

Qu(W.V,D) = (WW?'.C+~D%) —2(VIB(V),W)

N
+ Z Oéijd,?j.

ij=1
We are ready to present our block-majorization algorithm.

Algorithm IIL.4. Iterative Block-Majorization Method

(S.0) Initialization: Choose W° € R>*™ and D° € Sﬁ_. Let
k=0.

(S.1) Set V. =WP¥ and update W* by

Wr —arg min Q. (W,V,DF). (19
WG:‘RZX”l
(S.2) Update DF by
DM = arg min Q(W**! D). (20)

£
Des’,

The following remarks are useful in understanding this
algorithm.
(i) We note that the update DF*1 in (20) also satisfies

DM = arg min (WL WRHT D)
Des¥

= arg min Q,,(W*™, W* D).
Dest
This view puts Algorithm III.4 in the general framework
of the block majorization method studied by de Leeuw
[9] when specialized to (17). This justifies why we call
the algorithm the iterative block-majorization method.
General convergence properties of Alg. III.4 can be
similarly stated as in [9], to which we refer the interested
reader for detailed analysis.
(i) D**! can be computed through formula (18) with
W = Wkt The computation of W*+1 is equivalent
to solving the following equation:

(C+y(D"YW = BWHW* 1)

with the positive semidefinite coefficient matrix (C' +
k

Y(DF)D). _ . .

In our implementation, we terminated the algorithm

whenever there was no significant change in W or in

P(W). That is, whenever

||Wk+1 _ Wk”
— <e

(iii)



or

PAVEY) — POV _
IEUG

for a small tolerance € > 0, we stop the algorithm.
(iv) Alg. II.4 can be straightforwardly applied to (9) by
replacing D by Diag(\) and updating A by formula (10).

IV. NUMERICAL EXPERIMENTS

In this section, we first present a practical two-stage al-
gorithm that utilizes Alg. II1.4. We then test the algorithm
against three well-known benchmarking dataset iris data set,
cancer data set and seed data set, all from UCI machine
learning repository'. We will demonstrate the effectiveness of
our algorithm against Webb’s approach [25].

A. A Two-Stage Algorithm

The strong motivation in using the (2,1)-norm ||W]|2,; in
problem (7) is that the more important a center c; is, the farther
away of the ith row of W should be from origin. In other
words, if the center c¢; is more important than the center c;,
it is then expected from the (2, 1)-norm regularization that

Wil > W]

This immediately suggests the following heuristic procedure
for selecting the most important centers.

Suppose W € RE*™ is the final iterate of Alg. II1.4. We
compute the length of each row of W: {||Wy.|,..., [|[We|}.
We sort the sequence in decreasing order and denote the
resulting sequence by

L
{t1, ta,....t;} and T= t;,
j=1

where T is the total length of the sequence. Without loss of
generality, we denote the corresponding sequence of centers by
ci,...,Cy. The interpretation is that the centers are arranged
in the order of decreasing importance. We then compute the
cumulated percentage of the total length by the leading centers
in the sequence:

23:1 tj

T )
Obviously, {p;} is increasing and py = 1. Let p be a pre-set
high percentage (e.g., p = 95%) and Choose

pPi = Z:L,é

lo=min{i: p;>p, i=1,...,n}. (22)

We may think that the first ¢y centers {ci,...,cg} account
at least p percentage of the total effectiveness contributed by
the ¢ centers. We expect that ¢y would be much less than /.

Having selected the ¢, effective centers by (22), we proceed
to solve the following optimization problem:

min  o?(W). (23)
WE§R£0 Xm

Uhttp://archive.ics.uci.edu/ml/

We note that problem (23) is of the type of Webb’s problem
(4), but in a reduced dimension because £y < ¢. We summarize
this two-stage algorithm as follows.

Algorithm IV.1. Two-Stage Algorithm

S.1 Apply Alg. Ill.4 to get its final iterative matrix W &
R Use (22) to select the most important (o centers.

S.2  Apply the iterative block majorization algorithm of Webb
[25] to solve problem (23).

B. Parameter Setting and Performance Indicators

In the numerical experiment, the weight matrix W was
initialized with random values, where W;; are distributed
uniformly over the range [0, 1]. The tolerance ¢ = 10~ is
chosen for terminating the both stages of Alg. IV.1 by the
rules in Remark (iii) on Alg. II1.4. The bandwidth parameter
h? = 10.0 is taken from [25]. oy were taken to be unity.
The penalty parameter v is 1. Singular Value Decomposition
is used to calculate the pseudoinverse of the matrices. We set
p = 95% in (22). For each of the data sets, a random of
20% of the data was initially selected as centers. In order to
speed up our algorithm, the maximum number of iterations
for the first stage in Alg. IV.1 is set at |0.2N |, where N is
the number of data samples in the data set and |0.2N] is
the largest integer not greater than 0.2N. Throughout, we set
m = 2, which means that the original data was scaled to a
data set in 2 dimensions.

Two versions of Alg. IV.]1 were compared with Webb’s
majorization algorithm [25], which is denoted by MDS-M for
ease of comparison. One version refers to the case when the
diagonal model (9) is used in (S.1) of Alg. IV.1. We denote this
version by RMDS-D. The other version refers to the case when
the spectral model (13) is used and is denoted by RMDS-S. We
applied the three algorithms to each of the data sets. The results
presented below were the average results on 100 runs, each of
which had independent random initialization of the parameters
(i.e., W and centers) involved. Four quantities were calculated:
It (number of iterations), o2 (the final stress), o2 (the final
normalized stress), and cpu (time used). The normalized stress
is widely used and its definition can be found in [4, p.42,
Eq. (3.10)] (see the comments therein for justification of this
quantity in explaining data):

N 2
0.2 (W) _ Zi,j:l aij(Qij (W) — dl])
n = N .
Zi7j=1 dt2J

C. Numerical Performance

In this subsection, we will demonstrate the good perfor-
mance of Alg. IV.1 on the selected datasets, each of which
will be projected to a 2-dimensional dataset (i.e., m = 2). We
are going to use a number of graphs to show its behavior
in CPU time, normalized stress as well as stress values.
We will also take a further step to apply existing support
vector machine (SVM) algorithms in [23] to the obtained 2-
dimensional datasets to show the significant improvement over
Webb’s model. In order to shorten the paper, we will omit
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(a) 2-dimensional projection of Iris data using RMDS-S

Fig. 1.

(b) SVM on Iris data projected by RMDS-S

2 9

Fig. 1(a) is the projected 2-dimensional Iris data, consisting of 3 classes. One class represented by ~0” is completely separated from the other two,

represented by ”+” and “¢o”. Fig. 1(b) shows the separation of the nonseparable two classes by a support vector machine algorithm. Over 100 runs, our model
(e.g., RMSD-S) yielded about 10 to 14 misclassified points, while the corresponding number for Webb’s model is 16 to 20.
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(b) Comparison of stress values of Iris data against selected
centers

Fig. 2(a) is the comparison of the average normalized stress values for the three models RMSD-D, RMSD~-S and MDS-M over 100 random runs with

30 selected centers. Fig. 2(b) is the comparison of stress values when the number of centers (¢) varies.

the SVM graphs for the Seeds data, where the one-against-
all SVM algorithm (because the Seeds data has 3 classes)
would need 3 graphs to demonstrates all the cases. But we
will include some comments on those omitted graphs. All tests
were carried out using the 64-bit version of MATLAB R2013a
on a Windows 7 desktop with 64-bit operating system having
Intel(R) Core(TM) 2 Duo CPU of 3.16GHz and 4.0GB of
RAM.

(a) Iris Data. It is a very known data set used in pattern
recognition literature. This data set consists of data from three
classes, each has 50 samples. Each data item consists of four
different real values and each value represents an attribute of
each instance such as length and width of sepal or petal. One
class is known to be linearly separable from the other two,
which are not linearly separable from each other. Our purpose

is to represent this 4-dimensional dataset as a 2-dimensional
dataset.

For this purpose, we started with randomly selected 30
initial centers. At the first stage, our methods RMDS-D and
RMDS-S select an average of 20-24 centers. 2-dimensional
projection of Iris data is shown in Fig. 1(a), which clearly
shows that one class is totally separable from other two classes.
SVM algorithm [22, Sect. 18, Chap. 4] is applied to the
two non-separable classes. Our models yielded an average
of 10 to 14 of misclassified points, while for the original
model this number is between 16 and 20. Fig. 1(b) illustrates
SVM classification of Iris data obtained by RMDS~-S. General
performance information on 100 random run on the dataset
can be found in Table I.
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(a) 2-dimensional projection of Cancer data by RMSD-S
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(b) SVM on Cancer data projected by RMDS-S

Fig. 4. Fig. 4(a) shows the Cancer data set projected in two dimensional space by RMDS-S. Fig. 4(b) shows the SVM separation on the projected Cancer data.

TABLE 1. AVERAGE PERFORMANCE OF 100 RUNS FOR IRIS DATA
Method CPU Time (sec) Iteration Stress Normalized stress
RMDS-D 3.28 71.50 487.67 0.0024
RMDS-S 4.03 92.30 432.52 0.0021
MDS-M 4.02 112.10 617.15 0.0030

In Fig. 2(a), The mapping quality of the constructed con-
figurations of Iris data by RMDS-D, RMDS~-S and MDS-M is
compared in terms of the average normalized stress values
among 100 random runs each selecting 30 centers out of
60 random data points. Numerically, RMDS-D and RMDS-S
improve mapping quality by 20% and 30% over MDS-M
respectively in terms of the average stress value, which can
be verified from Table 1.

Fig. 2(b) illustrates that the proposed methods outperformed
MDS-M in terms of stress value when the same number (¢) of
centers were selected from 100 random data points. The stress
value decreases as the number of center increases for each of

the three methods. CPU times taken by the three algorithms
were plotted in Fig. 3.

(b) Cancer Data. The cancer data set is another well-known
data set used by many researchers. It has two classes (benign
and malignant). Each data item consists of 11 columns and the
first and the last column respectively represents ID number and
class information of the item. The remaining 9 columns are
attribute values described in integer from 1 to 10. It contains
699 data items and 16 of them have some missing values. So
we used 683 data items which have every attribute values. For
this data set, the proposed algorithm selects an average of 51-
53 effective centers from 60 randomly selected centers. The
two dimensional projection of the 9 dimensional dataset using
RMDS-S is given in Fig. 4.

The number of misclassified vectors for this dataset pro-
jected by proposed methods is 53-55 whereas for the original

model this number is 62-65. This shows that our methods
improves the projection of the data and can separate the points
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(b) Comparison of stress values of Cancer data when the number
of centers changes

Fig. 5(a) is the comparison of the average normalized stress values for the three models RMSD-D, RMSD-S and MDS-M over 100 random runs with

60 selected centers. Fig. 5(b) is the comparison of stress values when the number of centers (¢) varies.
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(b) Average normalized stress over 100 runs on Seeds data

Fig. 6. Fig. 6(a) is 2-D projection of Seeds data. Fig. 6(b) shows comparison of the average normalized stress values for the three models RMSD-D, RMSD—-S

and MDS-M over 100 random runs with 40 selected centers.

of different classes better than the original model would do.
Table II compares the average performance of 100 runs of
the three methods for the cancer data using 60 centers out
of 100 randomly selected points. It can be seen that though
the proposed methods take a little more time than the original
method, both the stress and the normalized stress values (Fig.
5) by RMDS-D and RMDS~-S are lower than that by the original
method.

TABLE II. AVERAGE PERFORMANCE OF 100 RUNS FOR CANCER DATA
Method CPU Time (sec) Tteration Stress Normalized stress
RMDS-D 264.5786 105.4 1.5862 €76 0.0240
RMDS-S 231.1361 89.3 1.6636 %6 0.0251
MDS-M 217.8957 103.0 1.7446 %6 0.0264

(c) Seeds Data The seed data set is composed of 210 entities
and each entity is represented by 7 real-valued attributes
in addition to the class level contained in the last column.
There are three classes, 70 points in each, representing three

different varieties of wheat: Kama, Rosa and Canadian. We
have selected 40 centers initially and the number of effective
centers selected by our algorithm is 32-35.

As there are three classes, we applied one-against-all sup-
port vector machine algorithm to determine the misclassified
data. The numbers of misclassified points by our algorithm are
respectively 33 to 38, 16 to 17, 20 to 21. The corresponding
numbers for the original model are 39-44, 19-21, 23-24. The
normalized stress value comparison is illustrated in Fig. 6(b).
The bar graph illustrates the average normalized stress value of
100 runs with 40 selected centers from 80 random initial points
obtained by RMDS-D, RMDS-S and MDS-M. Our methods
improve about 54-60% over the original model, which can
also be verified from Table III. We note that for each of the
tested datasets, as the number of center increases, our methods
with a high percentage of selections (e.g., 95%) are less time
consuming than MDS-M. This is demonstrated in Fig. 3 and 7.

We conclude this section by noting that the spectral model
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Fig. 7. Total CPU time taken by the three algorithms starting with different
number of initial centers of Seeds data.

RMDS-S, when compared to the diagonal model RMDS-D, is
less sensitive to the choice of the regularization parameter +.
For example, when «y = 10, there appeared a significant level
of failure in RMDS-D in all three data sets, while RMDS-S
worked almost same as we reported in this paper.

TABLE III. AVERAGE PERFORMANCE OF 100 RUNS FOR SEEDS DATA
Method CPU Time (sec) Iteration Stress Normalized stress
RMDS-D 11.54 62.00 843.7 0.0007
RMDS-S 12.35 68.00 732.7 0.0006
MDS-M 8.72 59.20 1727.1 0.0015

V. CONCLUSION

In this paper, we have addressed a key problem in selecting
the effective centers for a multidimensional scaling method,
which involves radial basis functions. We took a novel ap-
proach that casts the problem as a multi-task learning problem.
This approach has led to introducing the (2,1)-norm as a
regularization term to the stress function used by Webb [25].
We then developed two reformulations, namely the diagonal
and the spectral, that aim to ease the difficulties in solving
the (2, 1)-norm minimization problem. The two reformulation
models were compared to the original model in [25] on three
well-known data sets. Numerical results illustrate significant
improvement. We would like to emphasize that the spectral
model is more robust than the diagonal model, but with higher
computational complexity.

However, the current algorithmic implementation of Alg.
II.4 has its limitations on large data sets as the singular
value decompositions were used to solve the linear equations
encountered. It is therefore necessary to explore alternative
algorithms that can handle larger data sets. We also note
that the models do not take any advantages of some priori
information concerning the data sets. For example, some
data points may be known beforehand to belong to certain
class. Hence, it would be interesting to include a discriminate
analysis in our models as has already been done by Webb [25]
and others. We leave those topics to our future research.
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