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Bénasséni [Partial additive constant, J. Statist. Comput. Simul. 49 (1994), pp. 179–193] studied the partial
additive constant problem in multidimensional scaling. This problem is quite challenging to solve, and
Bénasséni proposed a numerical procedure for two special cases: the cross-set partial perturbation and
the within-set partial perturbation. This paper casts the problem as a modern quadratic semi-definite
programming (QSDP) problem, which is not only capable of dealing with general cases, but also enjoys a
number of good properties. One of the good properties is that the proposed approach can find the minimal
constant under very weak conditions. Another is that there exists a ready-to-use numerical package such as
the QSDP solver in Toh [An inexact path-following algorithm for convex quadratic SDP, Math. Program.
112 (2008), pp. 221–254], allowing a great deal of flexibility in choosing the index set to which the
partial constant should be added. Our numerical results show a significant improvement over that reported
in Bénasséni (1994).

Keywords: partial additive constant; multidimensional scaling; positive semi-definite programming;
Farkas’ lemma; Lagrange multiplier

AMS Subject Classification: 90C22; 90C25; 90C90

1. Introduction

Suppose we have n objects with pairwise dissimilarities dij between objects i and j (often rep-
resenting the psychological distance between i and j). The main purpose (in the narrow sense)
of multidimensional scaling [1, Section 1] is to map these objects into n points {x1, . . . , xn} in a
low-dimensional metric space such that the metric distance between xi and xj matches the dissim-
ilarity dij as closely as possible. There are a large number of ways to achieve this purpose. For a
complete review on this topic, see Cox and Cox [2] and Borg and Groenen [3].

If the metric space is Euclidean (as assumed in this paper) and the match is exact (i.e.
‖xi − xj‖ = dij for all i �= j), then the dissimilarity matrix D := (dij) is said to have an exact
Euclidean representation. A well-known result [4, pp. 254–259], which can be traced back to
Schoenberg [5] and Young and Householder [6], is that D has an exact Euclidean representation
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2 H. Qi and N. Xiu

if and only if the matrix

B := −1

2
H(D ◦ D)H with H := I − 1

n
eeT (1)

is positive semi-definite, where I is the identity matrix and e is the vector of all ones in �n. ‘:=’
means ‘define’ and A ◦ B is the Hadamard product between two matrices A and B of the same
size (i.e. (A ◦ B)ij = AijBij). The exact match problem has its roots deep in the Euclidean distance
geometry [7].

Due to various reasons such as non-metric measurement in dij, B is often not positive semi-
definite. Fortunately, for this case, a simple adjustment can be made on D so that the resulting B
matrix is positive semi-definite. The idea is to add a positive constant c to every d2

ij (i.e. added to
the squared distance). To put it in detail, define the matrix D(c) by

(D(c))ij :=
√

d2
ij + c(1 − δij), ∀ i, j,

where c ≥ 0 and δij is the Kronecker symbol. Let

B(c) := −1

2
H(D(c) ◦ D(c))H = B + c

2
H. (2)

Then, there exists a positive c such that B(c) is positive semi-definite. The minimal value for such
c is (−2λn(B)), where λn(B) is the smallest eigenvalue of B. This is the famous additive constant
problem first formulated by Guttman [8, p. 78]; [9, p. 477]. A constructive proof of this result can
be found in [10].

Another type of additive constant problem results from the simple adjustment being made on
dij (instead of on d2

ij). Let

(D(α))ij := dij + α(1 − δij), ∀ i, j

and define

B(α) := −1

2
H(D(α) ◦ D(α))H. (3)

The question as to what is the minimal value of α such that B(α) is positive semi-definite
proved quite a challenging problem. Messick and Abelson [11] first formulated this adjustment
and considered the effect of the values of α in Equation (3) on the resulting eigenvalues and
eigenvectors of B(α). Cooper [12] suggested a ‘solution’that allows for an additional ‘discrepancy’
term being added to dij. This question was finally settled by Cailliez [13]. In fact, the minimal
value of α is the largest eigenvalue of a certain matrix. We will not go into any of these details, as
we will only focus on the first adjustment scheme.

Both types of the additive constant problems have been reviewed in [1, Section 2.1.2]; [2,
Section 2.2.8]; [14]. In both B(c) of Equation (2) and B(α) of Equation (3), the constant is added
to every element for (i, j) with i �= j. Bénasséni [15], however, argued that there are cases where
a constant should only be added to a group of pairs (i, j), whose dissimilarities dij are often
over- or under-estimated. Let B denote the set of such indices and define the adjustment matrix
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Journal of Statistical Computation and Simulation 3

� by

�ij :=
⎧⎨
⎩

1 if (i, j) ∈ B,

0 otherwise,
and A := −1

2
H�H. (4)

The resulting B matrix is given by

B(c) := −1

2
H(D ◦ D + c�)H = B + cA. (5)

The structure of � depends on the choice of B. The constant c can be negative if d2
ij is over-

estimated or positive if it is under-estimated for (i, j) ∈ B. The purpose now is to seek the minimal
absolute value of c such that B(c) in Equation (5) is positive semi-definite. This is the partial
additive constant problem studied in [15], and it can be formulated as a problem in the form of
modern semi-definite programming (SDP):

min |c| s.t. B + cA 	 0, (6)

where X 	 0 means X is symmetric and positive semi-definite.
Unlike the additive constant problem, the partial constant problem (6) is no longer analytically

solvable. Bénasséni [15] proposed a numerical method, which, despite under rather restrictive
assumptions (e.g. some are not easy to be verified), only applies to the cross-set and within-set
examples described in Examples 2.2 and 2.3 (this has been pointed out in [2, p. 48]). This method
is based on the belief that the eigenvectors of B are good approximations to that of B(c). Given
the upper semi-continuity of eigenvectors [16, Lemma 3], this belief might be true if |c| is small
and only if one can find a pair of such close eigenvectors, which is equivalent to solving a non-
convex optimization problem. Bénasséni then used the eigenvectors of B to calculate n intervals,
each containing at least one eigenvalue of B(c). Under the assumptions that these intervals are
separate from each other and B has just one negative eigenvalue, one can find conditions on c to
make B(c) positive semi-definite. If B has m negative eigenvalues, then B(c) can be made positive
semi-definite using m successive modifications with different choices of B and a new constant c
at each modification.

The complication of Bénasséni’s method prevents it from being widely used, as commented by
Camiz [17] and Camiz and Le Calvé [18]. It was also noted by them that the partial additive may
be an ideal way to handle problems where only some of the dissimilarity distances are biased.
One of the major reasons for the complication, as already noticed in [15], is that problem (6) may
not be feasible. For instance, if B has more than one negative eigenvalue, then Equation (6) is
infeasible for the case where B is from the cross-set example 2.2 [15, p. 181]. Efficient methods
to deal with the partial additive constant problem remain to be investigated, and this is not an easy
task, because any formulation of the partial additive constant problem should by its own nature
be in the form of SDP.

The main contribution of this paper is the proposed convex quadratic semi-definite programming
(QSDP) model (see Equation (21)) in place of the SDP model (6). We think that our model is more
appropriate than the SDP model (6) to deal with the partial additive constant problem, because the
QSDP model is always feasible and the Slater condition is always satisfied. Moreover, under very
weak conditions such as the existence of Lagrange multipliers for Equation (6), our QSDP model
recovers the optimal solution of Equation (6) (Theorem 4.1(iii)). Moreover, feasibility of Equation
(6) means the existence of Lagrange multipliers when the matrix A in Equation (6) is positive
semi-definite (Corollary 3.5). We also characterize when problem (6) would be infeasible based
on a couple of variants of Farkas’ lemma in SDP (Section 3.1). When A is positive semi-definite,
we are able to give a sufficient condition (easy to verify) for the feasibility (Proposition 3.2). When
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4 H. Qi and N. Xiu

A is indefinite, we give a full characterization of the feasibility (Proposition 3.3). Our numerical
results obtained from the two examples studied in [15] show a significant improvement over that
reported in [15].

Convex QSDP has attracted much attention recently and has proved to be a powerful modelling
framework in many applications (see, e.g. [19]). In particular, QSDP has found an important
application in modelling the nearest correlation matrix from finance, initiated by Higham [20]
(see also [21]). Powerful methods have since been developed in [19,22–26], to just name a few. For
a general theory on nonlinear SDPs, which include convex QSDP as a special case, see [27,28].
In our numerical experiment, we used Toh’s QSDP solver [25].

This paper is organized as follows. In the next section, we collect some background material
for future use. The following section is devoted to problem (6) in order to understand various
issues about it. Specifically, Section 3.1 studies the feasibility of Equation (6), and Section 3.2
investigates when a Lagrange multiplier would exist for Equation (6). Our new QSDP model is
described in Section 4, where its relationships with Equation (6) are studied. This study leads to
an algorithm which enjoys some good properties. Numerical experiments of the new model are
included in Section 5. We conclude the paper in Section 6.

2. Preliminaries

In this section, we study the partial additive constant problem from the viewpoint of QSDP under
the feasibility assumption. We first note that problem (6) is equivalent to the following problem:

min
1

2
c2

s.t. B + cA 	 0.

(7)

The Lagrangian function of Equation (7) is

L(c; Z) := 1

2
c2 − 〈Z , B + cA〉,

where Z ∈ Sn and Sn is the space of n × n symmetric matrices, equipped with the standard trace
inner product. Therefore, the Lagrangian dual problem is

max
Z	0

min
c∈� L(c; Z),

which is equivalent to

max
(c,Z)

− 〈Z , B〉 − 1

2
c2

s.t. 〈Z , A〉 = c, Z 	 0.

(8)

Equating the objective values in Equations (7) and (8), together with their respective constraints,
yields the Karush–Kuhn–Tucker (KKT) condition for Equation (7):

(KKT)

⎧⎨
⎩

〈Z , A〉 = c

B + cA 	 0, Z 	 0, 〈Z , B + cA〉 = 0.
(9)

We would like to study when the KKT condition would be satisfied. A pair (c∗, Z∗) satisfying
the KKT condition (9) is often referred to as a KKT point of Equation (7) and Z∗ is often called
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Journal of Statistical Computation and Simulation 5

the Lagrange multiplier of Equation (7) at c∗. Because problem (7) is convex, the existence of the
Lagrange multiplier Z∗ at c∗ is a sufficient (not a necessary) condition for c∗ being the optimal
solution of problem (7). The study on Lagrange multipliers will justify our approach proposed
later on.

Next, we present three examples which give different structures of A in Equation (4).

Example 2.1 (Additive constant perturbation [8]) In this example,

B = {1, . . . , n} × {1, . . . , n} \ {(i, i) : i = 1, . . . , n},
and hence, � ∈ Sn is given by � = eeT − I . Consequently,

A = −1

2
H�H = −1

2
H(eeT − I)H = 1

2
H.

Example 2.2 (Cross-set perturbation [15]) Let I, J ⊂ {1, 2, . . . , n} be two disjoint sets of
indices. The dissimilarities within I and J are accurately estimated. But the cross-set dis-
similarities are uniformly over- or under-estimated. Hence, B = I × J . In this case, � is
given by

�ij =
⎧⎨
⎩

1 if i ∈ I, j ∈ J ,

0 otherwise,

= eIeT
J + eJ eT

I ,

where eI ∈ �n is defined by

(eI)i =
⎧⎨
⎩

1 if i ∈ I,

0 otherwise,

and eJ is defined similarly. A is given by

A = −1

2
H�H = (|J |eI − |I|eJ )(|J |eI − |I|eJ )T,

where |I| denotes the cardinality of the set I and A is a rank-1 matrix.

Example 2.3 (Within-set perturbation [15]) Let I be a subset of {1, . . . , n}. The within-I
squared dissimilarities have been under-valued or over-valued by some amount. In this case,
� is defined by

� = eIeT
I − I|I|,

where I|I| is the diagonal matrix whose diagonal element at (i, i) is 1 for i ∈ I and 0
otherwise. Hence,

A = −1

2
H(eIeT

I − I|I|)H.

When I = {1, . . . , n}, this example becomes Example 2.1.

We note that in both Examples 2.1 and 2.2, A is positive semi-definite. Before proceeding, we
collect some known results (some have already been referred to in Section 1) for easy reference.
The first result is on the exact Euclidean representation (see [1, Theorem 1; 5, 6] for more
discussions on this result).
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6 H. Qi and N. Xiu

Lemma 2.4 For any given symmetric matrix, D ∈ Sn with

Dii = 0 and Dij = Dji > 0 ∀ i �= j. (10)

Then, there exist n points x1, x2, . . . , xn in �p for some p > 0 such that

‖xi − xj‖ = Dij ∀ i �= j,

if and only if

B := −1

2
H(D ◦ D)H 	 0 and rank(B) = p.

The property defined in Equation (10) is known as the semi-metric property [1]. If B is not
positive semi-definite in Lemma 2.4, then a constant α can be added to all the squared off-
diagonal elements D2

ij so that the resulting B matrix is positive semi-definite. This is the famous
additive constant problem first formulated by Guttman [8, p. 78; 9, p. 78]. We summarize this
result as follows.

Lemma 2.5 Suppose D and B are given as in Lemma 2.4. We assume that B is not positive
semi-definite and we let λn(B) denote the smallest eigenvalue of B. Define the matrix D(α) ∈ Sn by

(D(α))ij :=
√

D2
ij + α(1 − δij), ∀i, j,

where α ≥ 0 and δij is the Kronecker symbol. Define

B(α) := −1

2
H(D(α) ◦ D(α))H = B + c

2
H.

Then,

B(−2λn(B)) 	 0 and rank(B(−2λn(B))) ≤ n − 2.

The implication of this results is that there exist n points {x1, . . . , xn} in �p (p ≤ n − 2) such that

‖xi − xj‖2 = D2
ij − 2λn(B) ∀i �= j.

We will also need the following perturbation result of Weyl for the eigenvalues of symmetric
matrices (cf. [29, p. 63; 30, p. 367]).

Lemma 2.6 Let λ1 ≥ λ2 ≥ · · · λn be the eigenvalues of any X ∈ Sn and μ1 ≥ μ2 · · · ≥ μn be
the eigenvalues of any Y ∈ Sn. Then,

|λi − μi| ≤ ‖X − Y‖ ∀i = 1, . . . , n.

3. Partial additive constant problem

3.1. Feasibility of problem (7)

Due to a variety of choices of the index set B, the feasibility of problem (7) becomes a real issue.
Bénasséni [15] suggested a trial-and-error strategy to ensure that problem (7) is feasible, though
with no guarantee. In this subsection, we would like to characterize when Equation (7) would be
feasible.
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Journal of Statistical Computation and Simulation 7

First of all, we would like to note that when B and A are linearly dependent (unlikely in real
applications), then Equation (7) is always feasible. Therefore, we assume that B and A are linearly
independent throughout. Applying Farkas’ lemma of Ramana [31, Theorem 19] to Equation (7),
we immediately have the following.

Proposition 3.1 The set

� := {c ∈ �|B + cA 	 0}
is feasible if and only if the following semi-definite inequalities in (U, U1, W1) ∈ Sn × Sn × �n×n

have no solution:
〈U + W1, B〉 = −1

〈U + W1, A〉 = 0,

〈U1, B〉 = 0,

〈U1, A〉 = 0,

U 	 0,[
I WT

1
W1 U1

]
	 0.

(11)

The above characterization does not rely on the linear independence between B and A. We now
consider two cases: the positive semi-definite case (i.e. A 	 0) and the indefinite case (i.e. neither
A nor (−A) is positive semi-definite). For the former case, we can provide a sufficient condition,
which is easy to check, for � �= ∅ and a simpler characterization of � �= ∅ for the latter.

Let Sn+ denote the cone of all positive semi-definite matrices in Sn. We further let B+ denote the
orthogonal projection of B to Sn+ and B− := B − B+. Null(X) denotes the null space of matrix X.

Proposition 3.2 Suppose A 	 0 and

Null(A) ⊆ Null(B−). (12)

Then, � �= ∅.

Proof We only need to prove that Equation (11) is infeasible. Assume, on the contrary, that there
exists (U, U1, W)Sn × Sn × �n×n satisfying Equation (11). We will eventually prove that each
column of U and that of W1 belong to Null(B), implying 〈U + W1, B〉 = 0. This contradicts the
first condition in Equation (11) and hence completes the proof.

We note that the last constraint in Equation (11) is equivalent to the Schur complement being
positive semi-definite:

U1 	 W1WT
1 .

Because A 	 0, we have from the fourth condition in Equation (11) that

0 = 〈A, U1〉 ≥ 〈A, W1WT
1 〉 = ‖√AW1‖2 ≥ 0,

which implies
√

AW1 = 0, or equivalently, AW1 = 0. Hence, each column of W1 belongs to
Null(A) and consequently belongs to Null(B−). This yields

〈W1, B−〉 = trace(B−W1) = 0. (13)

We also note that

〈A, U1〉 = 0, U1 	 0, and A 	 0.

This is the complementarity condition in SDP. It means each column of U1 belongs to Null(A)

and hence to Null(B−), implying 〈U1, B−〉 = 0.
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8 H. Qi and N. Xiu

The third condition in Equation (11) implies

0 = 〈U1, B〉 = 〈U1, B+ + B−〉
= 〈U1, B+〉
≥ 〈W1WT

1 , B+〉
= trace((

√
B+W1)

T(
√

B+W1)) ≥ 0,

yielding
√

B+W1 = 0 and hence B+W1 = 0. This leads to

〈W1, B+〉 = trace(B+W1) = 0. (14)

The combination of Equation (13) and Equation (14) gives us

〈W1, B〉 = 0. (15)

We already proved that AW1 = 0. The second condition in Equation (11) becomes 〈U, A〉 = 0.
Note also that U 	 0 and A 	 0. By following a similar argument along the lines considered
above, we can prove

〈U, B〉 = 0,

which together with Equation (15) implies 〈U + W1, B〉 = 0, contradicting the first condition in
Equation (11). The proof is completed. �

It is worth noting that for the additive constant Example 2.1, we always have

Null(A) = Null(H) = span{e} ⊂ Null(B) ⊆ Null(B−).

That is, the additive constant problem is always feasible. If A is indefinite, system (11) becomes
much more simplified in the sense that we can choose W1 = U1 = 0, but U has to be positive
definite (i.e. U � 0).

Proposition 3.3 Suppose that A is indefinite. Then, the set� is feasible if and only if the following
system of semi-definite inequalities in U ∈ Sn is infeasible:

〈U, B〉 = −1,

〈U, A〉 = 0,

U � 0.

(16)

Proof Consider the following system in y = [y0, y1]T ∈ �2:

y0B + y1A 	 0,

y0B + y1A �= 0,

bTy ≥ 0,

(17)

where b = [1, 0]T ∈ �2.
We claim that � �= ∅ if and only if system (17) is feasible. For the necessary part, suppose

c ∈ �. Then, (y0 = 1, y1 = c) satisfies system (17) due to the linear independence of B and A.
For the sufficiency part, let (y0, y1) be a feasible point of system (17). Then, we must have y0 > 0.
Otherwise, y0 = 0 would imply y1A 	 0. If y1 �= 0 and y1A 	 0 contradicts the indefiniteness of
A. If y1 = 0, we would have y0B + y1A = 0, contradicting the second condition in system (17).
It is easy to see that y1/y0 ∈ �.

Now the result follows from Farkas’ lemma [32, Theorem 8], which says that system (17) is
feasible if and only if system (16) is infeasible. �
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3.2. Existence of Lagrange multipliers for problem (7)

The following result extends Lemma 2.5 from the additive constant problem to any partial additive
constant problem. It also characterizes when there exists a Lagrange multiplier.

Theorem 3.4 We assume that problem (7) is feasible and B is not positive semi-definite. Let c∗
be its optimal solution. Define

N∗ := {x ∈ �n|c∗xTAx ≤ 0} and M∗ := Null(B + c∗A).

Then, the following statements hold:

(i) rank(B + c∗A) ≤ n − 2.
(ii) There exists a Lagrange multiplier Z∗ for problem (7) at c∗ if and only if

M∗ \ N∗ �= ∅.

Proof We first note that c∗ �= 0 due to the assumption that B is not positive semi-definite.
Let λ1 ≥ λ2 ≥ · · · ≥ λn ≥ 0 be the eigenvalues of (B + c∗A) in a non-increasing order, and let
{v1, . . . , vn} be the corresponding orthonormal eigenvectors (‖vi‖ = 1 and vT

i vj = 0 for any i �= j).
We also note that 0 is an eigenvalue of B + cA for any c ∈ �n and e/

√
n is the associated normalized

eigenvector. Without loss of generality, we assume

λr = λr+1 = · · · = λn = 0,

for some 1 ≤ r ≤ n.

(i) It suffices to prove p ≤ n − 1 so that (B + c∗A) has repeated zero eigenvalues. Assume, on
the contrary, that r = n. Hence, λn = 0, vn = e/

√
n and λn−1 > 0. Let λ1(c) ≥ λ2(c) ≥ · · · ≥

λn(c) denote the eigenvalues of B + cA for any c ∈ �n. Then, it follows from Lemma 2.6 that

|λi(c) − λi| ≤ |c − c∗|‖A‖ ∀i = 1, . . . , n.

Let

δ∗ := 1

2

λn−1

‖A‖ .

It follows that δ∗ > 0, because λn−1 > 0. Then, for any c = c∗ + δ and |δ| < δ∗, we have

λi(c) ≥ λi − |c − c∗|‖A‖ ≥ λi − δ‖A‖ > λi − δ∗‖A‖ = λi − 1

2
λn−1 > 0,

i = 1, . . . , n − 1.

We also note that 0 is always an eigenvalue of B + cA. We must have λn(c) = 0. This means
that the points of the type c = c∗ + δ with |δ| ≤ δ∗ are all feasible to problem (7), contradicting
the optimality of c∗. This contradiction implies rank(B + c∗A) ≤ n − 2.
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10 H. Qi and N. Xiu

(ii) (Sufficiency) Since (B + c∗A) is positive semi-definite, we must have that the null space of
it is spanned by {vr , vr+1, . . . , vn}. That is

M∗ = span{vp, vp+1, . . . , vn}.
Because M∗ \ N∗ �= ∅, there exists y ∈ �n such that

0 �= y =
n∑

j=r

βjvj �∈ N∗ βj ∈ �, i = r, . . . , n.

The definition of N∗ implies

c∗yTAy > 0. (18)

Moreover, we have

0 = yT(B + c∗A)y = yTBy + c∗yTAy,

which, by Equation (18), implies

yTBy < 0.

Let

β := − c2∗
yTBy

> 0 and Z∗ := βyyT 	 0.

We only need to verify that Z∗ satisfies the KKT condition (9). First, it is obvious that

Z∗ 	 0, B + c∗A 	 0 and 〈B + c∗A, Z∗〉 = βyT(B + c∗A)y = 0. (19)

Secondly, it follows from Equation (19) that

〈A, Z∗〉 = −〈B, Z∗〉/c∗ = −βyTBy/c∗ = c∗.

Therefore, Z∗ is a Lagrange multiplier associated with c∗.
(ii) (Necessity) Suppose problem (7) has a Lagrange multiplier Z∗. We will prove M∗ \

N∗ �= ∅. Assume, on the contrary, that the set is empty. We must have M∗ ⊆ N∗. By the
complementarity condition (the second condition in Equation (9)), Z∗ and (B + c∗A) share
the same set of eigenvectors. Z∗ must take the following form:

Z∗ =
n∑

j=r

βjvjv
T
j , βj ≥ 0, j ≥ r.

We also note that vi ∈ Null(B + c∗A) ⊆ N∗ for i = r, . . . , n. Therefore,

〈Z∗, c∗A〉 =
n∑

j=r

c∗βjv
T
j Avj ≤ 0.

However, it is obvious from the first condition of Equation (9) that

c∗〈A, Z∗〉 = c2
∗ > 0.

This contradiction means that M∗ �⊆ N∗ or equivalently M∗ \ N∗ �= ∅.

�
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If A assumes a further property of positive semi-definiteness, as in the cases of the additive
constant problem and the cross-set example 2.2, then it always holds M∗ \ N∗ �= ∅.

Corollary 3.5 In the case that A 	 0 in Theorem 3.4, we always have M∗ \ N∗ �= ∅. That is,
there always exists a Lagrange multiplier for problem (7).

Proof Let us continue the use of notation in Theorem 3.4. Since A 	 0, the optimal solution
c∗ > 0 and N∗ = Null(A), the null space of A.

We assume that the claim M∗ \ N∗ �= ∅ is not true. Then, M∗ ⊆ N∗. One consequence of this
assumption is vi ∈ N∗ for all i = r, . . . , n. Hence,

0 = (B + c∗A)vi = Bvi ∀i = r, . . . , n.

Furthermore, for any c ∈ �, we have

(B + cA)vi = Bvi = 0 ∀i = r, . . . , n. (20)

This is equivalent to say that {vr , vr+1, . . . , vn} are also eigenvectors of B + cA associated with the
eigenvalue zero. Similar to the proof of (i) in Theorem 3.4, define

δ∗ := 1

2

λr−1

‖A‖ .

Note that δ∗ > 0, as λi > 0 for i = 1, . . . , r − 1. Let λ1(c) ≥ λ2(c) ≥ · · · ≥ λn(c) be the
eigenvalues of B + cA. It follows from Lemma 2.6 that

|λi(c) − λi| ≤ |c − c∗|‖A‖ ∀i = 1, . . . , n.

Then, for any c = c∗ + δ with |δ| < δ∗, we have

λi(c) ≥ λi − |δ|‖A‖ > λi − δ∗‖A‖ = λi − 1

2
λr−1 > 0 ∀i = 1, . . . , r − 1.

The remaining (n − r) eigenvalues are all zero according to Equation (20). This implies that
B + cA is positive semi-definite for all c = c∗ + δ with |δ| ≤ δ∗. For instance, B + (c∗ −
1
2 min{c∗, δ∗})A is positive semi-definite. This contradicts the optimality of c∗ and hence estab-
lishes the fact M∗ \ N∗ �= ∅. The existence of a Lagrange multiplier is the consequence of
Theorem 3.4(ii). �

4. QSDP formulation

The main purpose of this section is to propose a new mathematical optimization model that has the
following ideal properties. First, it is always feasible and easy to solve. Secondly, it can reproduce
the optimal solution if the original problem (7) is feasible. Lastly, when the original problem is
not feasible, it allows easy computations on other choices of B. These properties may sound too
demanding. Interestingly, such a model takes the following form of QSDP, which has recently
attracted interest from practitioners in both optimization and finance (see Section 1):

min
c∈�,W∈Sn

f (c, W) := 1

2
c2 + 1

2
‖W − (B + cA) + ρeeT‖2

s.t. W ≥ B + cA

W 	 0,

(21)

where W ≥ B + cA is in the sense of componentwise and ρ > 0 is a penalty parameter.
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12 H. Qi and N. Xiu

We have the following comments on the model:

(i) The model is based on the idea of least squares. In order to tackle the possible infeasibility of
problem (7), we try to approximate B + cA by a positive semi-definite matrix W in the hope
that B + cA will be close to W . We would like our W to approximate B + cA from above
(i.e. W ≥ B + cA). We can view the constant matrix ρeeT as a penalty term, which penalizes
any deviation of W from (B + cA). ρ is supposed to be large enough.

(ii) The objective function is strongly quadratic in both variables. Let ∇2
c,W f (c, W) denote the

Hessian matrix of f (c, W). Then, it is easy to calculate that

(δc, δW )∇2
c,W f (c, W)

(
δc

δW

)
= ‖δW − δcA‖2 + ‖δc‖2 > 0, ∀(δc, δW ) �= (0, 0),

where (δc, δW ) ∈ � × Sn.
(iii) The model (21) is always feasible and the Slater condition holds (i.e. there exists a positive

definite matrix W and c ∈ � such that W is strictly bigger than B + cA.) Therefore, the fact
in (ii) implies that Equation (21) has a unique optimal solution and that Lagrange multipliers
exist [33, Theorem 5.83]. Moreover, the KKT condition holds at the optimal solution. Similar
to the derivation of the KKT condition for Equation (7), we can write the KKT condition for
Equation (21) as follows:

(KKT)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

c − 〈A, W − (B + cA) + ρeeT〉 + 〈A, U〉 = 0,

W − (B + cA) + ρeeT − U − Z = 0,

W ≥ B + cA, U ≥ 0, 〈W − (B + cA), U〉 = 0,

W 	 0, Z 	 0, 〈W , Z〉 = 0,

(22)

where U ∈ �n×n and Z ∈ Sn are known as the Lagrange multipliers.
(iv) One may wonder whether the following simpler quadratic SDP is also a suitable formulation:

min
c,W

1

2
c2 + 1

2
‖W − (B + cA)‖2

s.t. W 	 0.
(23)

We note that the objective is also strongly convex in both c and W . However, it is never going
to yield the optimal solution on c∗ of Equation (7), no matter what the conditions are. Assume
that it yields c∗. The corresponding W solution for Equation (23) must be W∗ := B + c∗A,
because any other choice of W would yield a higher objective value for Equation (23). One
of the KKT conditions for Equation (23) is

c∗ − 〈A, W∗ − (B + c∗A)〉 = 0,

which leads to c∗ = 0, contradicting c2∗ > 0.

Theorem 4.1 The following statements about the relationship between (7) and (21) hold:

(i) Let (c̄, W) be the optimal solution of Equation (21) and c∗ be the optimal solution of Equation
(7). Then, we have

c̄2 ≤ c2
∗. (24)

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

ity
 o

f 
So

ut
ha

m
pt

on
 H

ig
hf

ie
ld

] 
at

 0
7:

25
 1

2 
D

ec
em

be
r 

20
11

 



Journal of Statistical Computation and Simulation 13

(ii) Let (c̄, W) be the optimal solution of Equation (21) with the property B + c̄A 	 0. Then,
c̄2 = c2∗. That is, c̄ solves problem (7).

(iii) Suppose problem (7) is feasible and c∗ is its optimal solution. If we further assume that there
exists a Lagrange multiplier Z∗ for Equation (7) at c∗, then (c∗, B + c∗A) solves problem
(21) for all ρ ≥ max1≤i≤j≤n |Z∗

ij |.

Proof (i) Since (c∗, W∗ := B + c∗A) is a feasible point of Equation (21), we must have

f (c̄, W) ≤ f (c∗, W∗).

Expansion of both sides leads to

c̄2 ≤ c2
∗ + (‖ρeeT‖2 − ‖W − (B + c̄A) + ρeeT‖2) ≤ c2

∗,

because the term within the brackets is non-positive due to the constraint W ≥ B + c̄A.

(ii) Since B + c̄A 	 0, c̄ is feasible to Equation (7). Therefore,

c̄2 ≥ c2
∗.

By the result in (i), we have c̄2 = c2∗.
(iii) We simply verify that

(c := c∗, W := B + c∗A, U := ρeeT − Z∗, Z := Z∗)

satisfies the KKT condition (22). Note that the conditions in Equation (9) hold at (c∗, Z∗).
The first condition in Equation (22) follows from Ae = 0 and

〈A, U〉 = −〈A, Z∗〉 = −c∗.

The second condition is obvious due to the definition of U. The third condition is also obvious
as W − (B + c∗A) = 0 and Uij = ρ − Z∗

ij ≥ 0 by the condition on ρ. The last condition
is simply the restatement of the third condition in Equation (9) with W = B + c∗A and
c = c∗. Because problem (21) is convex, the satisfaction of the KKT condition means that
(c∗, B + c∗A) solves Equation (21). �

The result in (i) states that the solution of problem (21) provides a lower bound for problem (7).
The result in (ii) further states that if the solution is also feasible to Equation (7), then this lower
bound becomes exact.The reverse relationship is studied by (iii). If problem (7) has a Lagrange
multiplier, then problems (7) and (21) produce the same solution on c for reasonably large ρ. In
fact, ρ can be made a bit smaller. Let M denote the set of all Lagrange multipliers of Equation
(7) at c∗. Then, ρ can be chosen to satisfy

ρ ≥ min
Z∗∈M

max
1≤i≤j≤n

|Z∗
ij |.

When A is positive semi-definite, problem (7) has Lagrange multipliers provided that it is
feasible (see Corollary 3.5). We, therefore, have the following corollary from Theorem 4.1(iii).

Corollary 4.2 If problem (7) is feasible and A 	 0, then both problems (7) and (21) yield the
same optimal solution on c.
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14 H. Qi and N. Xiu

Theorem 4.1 immediately suggests the following computational scheme.

Algorithm 4.3

Step 0. Input: dissimilarity matrix D, perturbed index set B and penalty parameter ρ > 0. Output:
Wc̄ (a positive semi-definite matrix of rank no greater than (n − 2)).

Step 1. Form matrix B by Equation (1) and A by Equation (4). Solve the quadratic SDP (21) for
(c̄, W).

Step 2. Let nrun = 1 and

Wc̄ := B + c̄A.

If Wc̄ 	 0, we are done. Otherwise, go to Step 3.
Step 3. While λn(Wc̄) < 0 do

Let B := Wc̄.
Choose a new B and form new matrix A by Equation (4)
Solve QSDP (21) for (c̄, W)

Let Wc̄ := B + c̄A
nrun := nrun + 1.

For a given perturbed index set B, Algorithm 4.3 first solves problem (21). If the resulting
matrix Wc̄ is not positive semi-definite, we choose a new B and resolve problem (21) (i.e. do the
while-loop). We continue this process until the resulting matrix Wc̄ is positive semi-definite. We
use nrun to denote the number of times that problem (21) has been solved in the process. We can
always terminate the while-loop by choosing B to be the classical additive constant perturbation
(in this case, c̄ = −2λn(B)). Furthermore, we have the following result for the matrix Wc̄.

Theorem 4.4 Let Wc̄ be the output matrix inAlgorithm 4.3.Then, the following statements hold:

(i) rank(Wc̄) ≤ n − 2.
(ii) Suppose Algorithm 4.3 terminates with nrun = k(k ≥ 1). Let the index sets used be

{B1, . . . , Bk}. The corresponding � matrix and A matrix defined in Equation (4) are denoted
by {�1, . . . , �k} and (A1, . . . , Ak), respectively. The c part of the optimal solution of problem
(21) at each run is denoted by c	, 	 = 1, . . . , k. Let

Wc̄ = XXT =
⎡
⎢⎣

xT
1
...

xT
n

⎤
⎥⎦ [

x1, . . . , xn
]

.

We must have

‖xi − xj‖2 = d2
ij +

k∑
	=1

c	�
	
ij i �= j.

Proof We prove (i) and (ii) together. If Algorithm 4.3 stops at Step 2, then by Theorem 4.1(ii),
c̄ also solves problem (7). The result

rank(Wc̄) = rank(B + c̄A) ≤ n − 2

follows from Theorem 3.4(i). In this case, λn = 0 and

B + c̄A = −1

2
H(D ◦ D + c̄�)H 	 0.
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It follows from Lemma 2.4 that

‖xi − xj‖2 = d2
ij + c̄�ij ∀i �= j.

Now, we assume that Algorithm 4.3 stops at Step 3 (i.e. nrun = k, k ≥ 2). We only consider
the last run. The B matrix in the last run is given by

B = −1

2
H(D ◦ D + c1�

1 + · · · + ck−1�
k−1)H =: −1

2
HD̃H.

The QSDP problem solved in the last run is given by Equation (21) with the above-defined B and
A being replaced by Ak . Because Algorithm 4.3 terminates at nrun=k, ck must solve problem (7)
with the same B and Ak by Theorem 4.1(ii). The above-defined B does not lose any key properties
used in Theorem 3.4. Therefore, the proof of Theorem 3.4 still goes through for our new B and
Ak . Therefore, rank(Wc̄) ≤ (n − 2). It also follows from Lemma 2.4 that

‖xi − xj‖2 = D̃ij + ck�
k
ij

= d2
ij + c1�

1
ij + · · · + ck−1�

k−1
ij + ck�

k
ij ∀i �= j.

�

5. Numerical examples

In this section, we first report some numerical results on two small examples that have been
investigated by Bénasséni [15] to demonstrate the advantage and the potential of our approach. We
then apply our algorithm to the example of five socio-economic variables reported by Harman [34]
to construct a true distance matrix when some of the raw data are missing.

5.1. Comparison

We now list the two examples reported in [15].

Example 5.1 The dissimilarity matrix D is given by

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 10 14 10 12 9
10 0 12 13 6 13
14 12 0 12 7 14
10 13 12 0 11 9
12 6 7 11 0 14
9 13 14 9 14 0

⎤
⎥⎥⎥⎥⎥⎥⎦

.

The initial B matrix, B = − 1
2 H(D ◦ D)H, has one significant negative eigenvalue −2.031.
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16 H. Qi and N. Xiu

Example 5.2 The dissimilarity matrix D is given by

D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 30 35 40 40 30 30 60
30 0 10 30 40 30 20 50
35 10 0 40 40 40 30 50
40 30 40 0 50 35 10 50
40 40 40 50 0 40 50 60
30 30 40 35 40 0 10 50
30 20 30 10 50 10 0 50
60 50 50 50 60 60 50 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The initial B matrix, B = − 1
2 H(D ◦ D)H, has two significant negative eigenvalues (−4.290,

−253.681).

We run Algorithm 4.3 against each problem for both the cross-set and within-set perturbations
illustrated in Examples 2.2 and 2.3, respectively. In our implementation, we set ρ = 1000 and
use all the default parameter settings for the QSDP solver of [25], except that the tolerance level
is set at 10−7.

We let the resulting dissimilarity matrix be D̃, whose B matrix is positive semi-definite. We
measure the total distance, denoted by V(c), which has been modified [15, Equation (14)]:

V(c) :=
n∑

i=1

n∑
j=i+1

|d2
ij − d̃2

ij|.

In all the tables, we have listed the results obtained from [15] for comparison whenever they are
available. If they are not available, we have indicated it by ‘–’. There are two cases to consider.
One is the case when there exists a constant c such that B + cA 	 0 for the chosen index set B.
We call it the feasible case. The other is, of course, the infeasible case.

The Feasible Case. Since B in Example 5.1 has just one negative eigenvalue, it is possible that
B + cA 	 0 is feasible when B is from the cross-set perturbation defined in Example 2.2. Table 1
reports various choices of B. It can be seen that the solution of problem (21) yields the optimal
c∗, which, of course, is in agreement with that reported in [15]. We also found two more feasible
cases where I = {3, 5, 6} or {2, 5, 6}, which are given in the last two rows in Table 1. Similar
observations can be made on the results given in Table 2, where the within-set perturbation was
used for Example 5.1. Again, for the choices of B, we can find the optimal c∗. The last two rows
report the two choices of B that have negative c∗. Note that for I = {2, 3, 4}, Bénasséni [15] only
found a feasible value c = −26.647 with V(c) = 79.941. In contrast, we found c∗ = −5.9285
with V(c∗) = 17.9475, which is much smaller than V(c) and smaller than V = 60.9386 obtained
by the usual additive constant perturbation.

The matrix B in Example 5.2 has two negative eigenvalues. Therefore, B + cA 	 0 is never
going to be feasible for the cross-set perturbation. However, it is still possible for it to be feasible

Table 1. Results for Example 5.1 on cross-set perturbation with J = {1, . . . , n} \ I .

I c [15] V(c) c∗ V(c∗)

{5} 13.647 68.235 3.7722 18.8611
{5, 6} 8.014 64.112 2.3794 19.0353
{1, 5, 6} 4.752 42.768 1.8760 16.8837
{3, 5, 6} – – 5.4161 48.7449
{2, 5, 6} – – 18.1093 162.9837
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Table 2. Results for Example 5.1 on within-set perturbation with J = {1, . . . , n} \ I .

I c [15] V(c) c∗ V(c∗)

{2, 5} 15.424 15.424 5.5120 5.5120
{1, 2, 3, 5} 6.908 41.448 4.5563 27.3380
{3, 4, 5, 6} – – 7.3514 44.1083
{2, 3, 4, 5, 6} 5.171 51.710 4.1645 41.6454
{1, 2, 3, 4, 5} – – 4.4515 44.5147
{1, 2, 3, 4, 5, 6} 4.063 60.939 4.0626 60.9386
{2, 3, 4} −26.647 79.941 −5.9825 17.9475
{1, 2, 3, 4} – – −12.4267 74.5602

Table 3. Results for Example 5.2 on within-set perturbation with J = {1, . . . , n} \ I .

I c [15] V(c) c∗ V(c∗)

One run of Algorithm 4.3
{2, 3, 4, 5, 6, 7, 8} – – 510.4736 10720
{1, 2, 3, 4, 5, 6, 7} – – 508.9157 10687
{2, 3, 4, 6, 7, 8} – – 596.3404 89451
{2, 3, 4, 5, 6, 7} – – 518.5548 7778.3

Two runs of Algorithm 4.3
{4, 6, 7} 880.065 640.7971
{2, 3} 251.187 2891.383 135.6957 2058.0868

for the within-set perturbation. We found such choices of B in Table 3 given under the column
heading ‘One run of Algorithm 4.3’. No such B was reported in [15]. We also note that all values
of V(c∗) for these choices are much less than V = 14206 obtained by the usual additive constant
perturbation.

The infeasible case. Once B is chosen, it may happen that B + cA is not feasible at all. A trial-
and-error scheme, suggested in [15] to tackle this infeasibility, is to try a few different choices of
B. When applied to our approach, this scheme becomes the while-loop of Algorithm 4.3. It
usually works with a careful choice of B. For example, the bottom part of Table 3 reports on two
choices of I for the within-set perturbation. It can be seen that after the first run of Algorithm 4.3
with I = {4, 6, 7}, we got c∗ = 640.7971, which is much less than the value c = 880.065 obtained
in [15]. After the second run with I = {2, 3}, we got c∗ = 135.6957, which is again much less
than the corresponding c = 251.187 obtained in [15]. Consequently, our total variation of the
squared dissimilarities is equal to V(c∗) = 2058.0868, significantly less than V = 2891.383 [15],
which is, in turn, much less than the value V = 14206 obtained by the usual additive constant
perturbation. The matrix of the modified dissimilarities that we obtained is

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 30 35 40 40 30 30 60
30 0 15.3524 30 40 30 20 50
35 15.3524 0 40 40 40 30 50
40 30 40 0 50 43.1949 27.2176 50
40 40 40 50 0 40 50 60
30 30 40 43.1949 40 0 27.2176 50
30 20 30 27.2176 50 27.2176 0 50
60 50 50 50 60 60 50 0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

whose corresponding eigenvalues of the B matrix are as follows:

2406.1994, 1502.0622, 811.7504, 726.1760, 448.5209, 56.3023, 0, 0.
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We note that there are two zero eigenvalues, and this is in agreement with Theorem 4.4(i). We
also note that the modified dissimilarities in [15] have corresponding eigenvalues with only one
zero eigenvalue.

Because of the ready-to-use optimization package for QSDP (21), our approach allows us to
play as many times as we like with the arbitrary choice of B including the cross-set perturbation,
within-set perturbation, combination of the two or any other type of perturbation. For example,
it was easy to test the cross-set perturbation on Example 5.2, first with I = {7} and then with
I = {2}. The resulting total variation of the squared dissimilarities is 5322.2633, which is more
than 50% smaller than V = 11539 obtained in [15] under the same perturbation scheme.

5.2. Example of Harman’s five socio-economic variables

We use this example to demonstrate how to construct a distance matrix when the data set is not
complete. We refer to [34, p. 14, Table 2.1] for the raw data on five fundamental socio-economic
variables. The correlations among the five variables are as follows:

C =

⎡
⎢⎢⎢⎢⎣

1 0.00975 0.97245 0.43887 0.02241
− 1 0.15428 0.69141 0.86307
− − 1 0.51472 0.12193
− − − 1 0.77765
− − − − 1

⎤
⎥⎥⎥⎥⎦ .

We note that C 	 0 and C ≥ 0. It is because of these two properties that the distance matrix
associated with C can be constructed by (see [2, Section 1.3.5])

D := √
1 − C, (25)

where the square root is taken componentwise. This distance matrix can be used to conduct
multidimensional scaling analysis as described in the books of Cox and Cox [2] and Borg and
Groenen [3].

Now, we assume that the last five observations of the first two variables (i.e. total population and
median school years in Table 2.1 of [34]) were missing. We can calculate the pairwise correlations
from the available data, and the new matrix of correlations is

Cnew =

⎡
⎢⎢⎢⎢⎣

1 − 0.26422 0.97245 0.43887 0.02241
− 1 0.01466 0.40508 0.75796
− − 1 0.51472 0.12193
− − − 1 0.77765
− − − − 1

⎤
⎥⎥⎥⎥⎦ .

We note that there is a negative correlation between the first two variables (i.e. Cnew(1, 2) =
−0.26422) and that the corresponding matrix Dnew = √

1 − Cnew is not a true distance matrix
anymore. We now apply our Algorithm 4.3 to Dnew in order to make it a true distance matrix.
Because the first two variables have missing data, we must have

Cnew(i, j) = C(i, j) for i, j = 3, 4, 5.

That is, what have been changed are correlations in C(i, j), i, j = 1, 2. We hence consider a two-
step correction of the type of the cross-set perturbation: I1 = {1} and I2 = {2}. The obtained
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distance matrix is

Dnew =

⎡
⎢⎢⎢⎢⎣

0 1.12438 0.21026 0.76012 0.99712
− 0 0.99264 0.77131 0.49198
− − 0 0.69662 0.93706
− − − 0 0.47154
− − − − 0

⎤
⎥⎥⎥⎥⎦ .

The total distance altered by Dnew from D in Equation (25) is

V =
∑

i,j

(Dnew(i, j) − D(i, j))

2
= 0.6037.

We note that this small amount of distance alternation is a price that one has to pay as we are
dealing with missing data for some variables.

6. Conclusion

The classical additive constant problem has an analytical solution and remains one of the most
often used multidimensional scaling methods in practice. Contrary to this, the partial additive
constant problem initially studied by Bénasséni [15] is no longer analytically solvable and is
indeed numerically challenging. The main difficulty is with the possible infeasibility issue of
mathematical formulations of the problem.

In this paper, we cast the problem as a modern QSDP problem. We studied this new formulation
from the viewpoint of optimization and reported some of its favourable properties. Our formulation
is always feasible and can find the minimal additive constant provided that a Lagrange multiplier
exists. The condition is automatically satisfied if the matrix A is positive semi-definite. Due to the
recent advancement in optimization, our QSDP formulation can be easily solved, allowing a great
deal of flexibilities while playing with various sets of indices to which a constant can be added.
Consequently, one can choose one that has a small total variation of the squared dissimilarities.
Numerical results show a significant improvement over that reported in [15].
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