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Abstract. Based on the well-known result that the sum of the largest eigenvalues of a symmetric
matrix can be represented as a semidefinite programming problem (SDP), we formulate the nearest
low-rank correlation matrix problem as a nonconvex SDP and propose a numerical method that
solves a sequence of least-square problems. Each of the least-square problems can be solved by a
specifically designed semismooth Newton method, which is shown to be quadratically convergent.
The sequential method is guaranteed to produce a stationary point of the nonconvex SDP. Our
numerical results demonstrate the high efficiency of the proposed method on large scale problems.
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1. Introduction. In this paper, we introduce a fast algorithm for the problem
of computing the nearest correlation matrix under an arbitrary rank constraint:

min
X∈Sn

1
2‖X − C‖2

s.t. diag(X) = e, X � 0,

rank(X) ≤ r,

(1)

where C ∈ Sn is given; Sn is the space of n×n symmetric matrices endowed with the
standard trace inner product; ‖ · ‖ is the induced norm (i.e., the Frobenius norm); Sn

+

denotes the cone of all positive semidefinite matrices in Sn; X � 0 means X ∈ Sn
+;

diag(X) is the vector formed by the diagonal elements of X ; e is the vector of all ones
in R

n; rank(X) is the rank of X ; and r ≤ n is a given integer.
The first constraint in (1) defines the set of all correlation matrices in Sn

+, and
the second constraint stipulates that only those correlation matrices that have rank
less than r are feasible. On top of those conditions, we seek the nearest candidate to
a given matrix C. Unless r = n (so that the last constraint becomes superfluous),
problem (1) is a nonconvex problem.

Problem (1) has important applications in finance, where the input matrix C is
often a known correlation matrix but with rank larger than r. Interested readers may
refer to Brigo and Mercurio [6, sect. 6.9], Rebonato [31, sect. 9] and [32], Grubǐsić
and Pietersz [12], Pietersz and Groenen [25], Wu [38], and Zhang and Wu [39] (to just
name a few) for concrete examples and a few proposed numerical algorithms, some
of which will be briefly discussed shortly. In fact, the literature review section [12,
sect. 2] refers to 17 papers and books addressing the problem.

∗Received by the editors September 16, 2009; accepted for publication (in revised form) September
23, 2011; published electronically December 15, 2011.

http://www.siam.org/journals/siopt/21-4/77118.html
†College of Mathematics and Econometrics, Hunan University, Changsha, Hunan, China. Current

address: Institute of Computational Mathematics and Scientific/Engineering Computing, Chinese
Academy of Sciences, Beijing 100190, China (liqingna@yahoo.com.cn). This author was supported
by a grant from the Ministry of Education of China (309023).

‡School of Mathematics, University of Southampton, Highfield, Southampton SO17 1BJ, UK
(hdqi@soton.ac.uk).

1641



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

1642 QINGNA LI AND HOU-DUO QI

A widely adopted approach is to tackle the rank constraint rank(X) ≤ r and the
positive semidefinite constraint X � 0 together by using the Gramian representation:

X = RRT ,(2)

where R ∈ R
n×r. This results in (1) being a standard nonconvex programming

problem with quadratic constraints (i.e., diag(RRT ) = e). Geometric optimization
methods (including Newton and gradient types) in [12] as well as the majorization
method [25] are designed to solve this nonconvex programming problem. Each of them
leads to a computational package: LRCMmin package from the geometric approach and
Major from the majorization approach. Both packages are in MATLAB and are
publicly available. An important feature of the two packages is that there exists a
sufficient condition to verify whether a local minimum (of the nonconvex programming
problem) is a global minimum; see [39, Thms. 4.4 and 4.5] and [12, Thm. 6.2]. For
a detailed comparison between the Lagrangian method of Zhang and Wu [39] and
Major, see [12]. Recently, the majorization method was extended by Simon and Abell
in [33] to solve problem (1) with more equality constraints.

The trigonometric parameterization method (TPM) takes a further step to param-
eterize R in (2) satisfying diag(X) = e by trigonometric functions through spherical
coordinates. See Rebonato [30], Brigo [5], and Rapisarda, Brigo, and Mercurio [29]
for more on this method. We once again refer the reader to [12, sects. 2 and 7] for a
comprehensive survey on methods available for solving the low-rank problem (1). It
is noted that all numerical results in the existing literature are only for problems of
size up to n = 80. However, one may be faced with some practical problems in higher
dimensions (n ≥ 500); see [11] for such examples. Our method is capable of dealing
with problems of n being very large (i.e., n ≥ 1000).

The method proposed here is strongly motivated by the semismooth Newton
method of Qi and Sun [26] for the nearest correlation matrix problem [15]:

min
X∈Sn

1
2‖X − C‖2

s.t. diag(X) = e, X � 0.
(3)

Further development of the method can be found in Borsdorf and Higham [3], which
leads to Numerical Algorithms Group (NAG) Fortran implementation. We also refer
the reader to Malick [21], Boyd and Xiao [4], Toh [36], and Henrion and Malick [13]
for other efficient methods for (3). In particular, [21, 4] are excellent references on
the Lagrangian dual approach used in section 4.

It is obvious that numerical methods for (3) cannot be used for (1) because of the
rank constraint: rank(X) ≤ r. However, the idea of the semismooth Newton method
plays a very important role in our approach because each subproblem is going to be
solved by it. Our approach is based on the following result, whose proof is postponed
to section 2.

Theorem 1.1. X ∈ Sn solves the nearest low-rank correlation matrix problem
(1) if and only if there exists a matrix U ∈ Sn such that (X,U) solves the following
nonlinear semidefinite programming problem, denoted by NSDPr:

(NSDPr)

min
(X,U)∈Sn×Sn

1
2‖X − C‖2

s.t. diag(X) = e, X � 0,
〈X,U〉 = n,

〈I, U〉 = r,

0 	 U 	 I.

(4)

Moreover, the optimal objective values of (1) and (4) are equal.
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NSDPr (4) is a continuous optimization reformulation of the low-rank problem
(1) over symmetric matrices. Due to the bilinear term 〈X,U〉 = n, it is a nonconvex
problem. The main purpose of this paper is to design an efficient algorithm that
finds a stationary point of NSDPr (4). We first note the complexity of (4). It has two
variablesX and U , and each is of the dimension n(n+1)/2. Moreover, it involves three
positive semidefinite cones of the same size: X � 0, U � 0, and Z � 0 with Z := I−U .
In addition to these parameters, it has the nonconvex constraint 〈X,U〉 = n. It seems
unwise to solve this problem directly. In fact, our initial attempt to use a semismooth
Newton method based on the augmented Lagrangian to solve (4) proved unsuccessful.1

Our main idea to avoid dealing with those three positive semidefinite cones si-
multaneously is as follows. Let X ∈ Sn have the following eigenvalue decomposition:

X = PDiag(λ1, . . . , λn)P
T ,(5)

where PPT = I and λ1 ≥ · · · ≥ λn in nonincreasing order are eigenvalues of X . We
solve (4) in an alternating way, i.e., by an X-minimization step and a U -minimization
step. At iteration k, the X-step is to fix Uk and attempt to solve the following
problem, which is obtained from (4) by removing the last two constraints:

min
X∈Sn

1
2‖X − C‖2

s.t. diag(X) = e, X � 0,

〈X,Uk〉 = n.

(6)

We then update Xk by the optimal solution of (6).
The problem of U -minimization is quite hard (see more comments on this in (R4),

section 3). We hence propose a simple updating rule, that is, to solve the problem
(given X := Xk+1)

max
U∈Sn

〈X,U〉
s.t. 〈I, U〉 = r,

0 	 U 	 I,

(7)

and a solution (see fact (iii) in section 2.2) is

U = P1P
T
1 ,(8)

where P1 is the submatrix of P consisting of the first r columns of P . Uk is then
updated by (8), where P comes from the eigenvalue decomposition of X := Xk+1.
The rule is right in the sense that if (U,X) is a local minimum of (4), then U should
take the form of (8). If X is not a feasible low-rank solution, the matrix U given by (8)
satisfies all constraints in (4) except 〈X,U〉 = n. We will force this constraint to be
eventually satisfied in the X-minimization part. As rightly pointed out by one of the
referees, such U is not optimal for the problem of U -minimization. Despite its non-
optimality of the formula, its simplicity gets paid off in speeding up the computation.
This simple rule also ensures that any limiting point by the algorithm is a stationary
point of (4). Our numerical results also demonstrate quite a good performance (e.g.,
3 to 10 iterations of our algorithm over a range of test problems).

1Roughly speaking, the main reason for the failure was that the augmented Lagrangian function
involves projections of three different matrices onto Sn

+, and it took too much time to evaluate the
generalized Jacobians involving the three projections.
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Compared to (4), problem (6) is a standard quadratic semidefinite programming
extensively studied by Toh [36], and it involves only one positive semidefinite cone
X � 0. However, a potential problem for (6) is that it may have no feasible solutions.
That is, the first constraint may contradict the second constraint in (6) due to the
way in which Uk is defined. To show this, take

Uk :=

⎡
⎣ 1 0 0

0 1 0
0 0 0

⎤
⎦ .

Then it is easy to see that for any correlation matrix X , 〈X,Uk〉 = 2 < 3 = n , which
implies that (6) is infeasible. To avoid the infeasibility issue, we propose to solve its
augmented Lagrangian problem, which selectively handles the constraint 〈X,Uk〉 = n
while keeping other constraints unchanged:

min
X∈Sn

1
2‖X − C‖2 − μ

(
〈X,Uk〉 − n

)
+ c

2

(
〈X,Uk〉 − n

)2
s.t. diag(X) = e, X � 0,

(9)

where μ ∈ R is the Lagrange multiplier corresponding to the constraint 〈X,Uk〉 = n
and c > 0 is the penalty parameter.

The augmented Lagrangian problem is always feasible and always has a unique
optimal solution because it is strongly convex in X . We update Xk by the optimal
solution of (9) and update Uk accordingly. The Lagrange multiplier μ and the penalty
parameter c are updated according to some rules. The main task of our algorithm is
to solve the subproblem (9) efficiently per iteration. We will develop a semismooth
Newton method, which is motivated by the method in [26], to solve (9). Consequently,
our algorithm makes use of the semismooth Newton method iteratively. We hence
name it sequential semismooth Newton method.

There are two major contributions in this paper. First, the low-rank problem
is reformulated as a differentiable nonlinear semidefinite programming problem (4),
defined over the space of symmetric matrices. To the best of our knowledge, it was
the first time that this reformulation has been studied, and it has a deep root in eigen-
value optimization. Second, we designed an algorithm that mimics the decomposition
method for (4), first on the variable X (i.e., X-minimization) and then on the variable
U (i.e., U -minimization).

The paper is organized as follows. In section 2, we characterize stationary points
of the nonconvex problem (4) and include a formal proof of Theorem 1.1. We describe
our algorithm in section 3 and show that every accumulation point is stationary (see
Theorem 3.2). Section 4 details our semismooth Newton method. A key property that
ensures the quadratic convergence (Theorem 4.3) is constraint nondegeneracy of the
least-square reformulation of problem (9) (see Proposition 4.1). We conduct extensive
numerical tests and comparisons with TPM and Major on a large set of problems in
section 5, where we also deal with some practical issues in our implementation. The
performance of the proposed method on problem (1) with more equality constraints
is also included. We conclude the paper in section 6.

Notation: We use ◦ to denote the Hadamard product of matrices; i.e., for any
B,C ∈ Sn, B ◦ C = [BijCij ]

n
i,j=1. We let E denote the matrix of all ones in Sn. For

subsets α, β of {1, 2, . . . , n}, we denote Bαβ as the submatrix of B indexed by α and
β, and Bα as the submatrix of B consisting of the columns in B indexed by α. We
also denote by |α| the cardinality of the set α. Let e denote the vector of all ones. We
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sometimes use 0n to denote the zero vector in R
n. For a matrix X ∈ Sn, diag(X) is

the vector in R
n formed by the diagonal elements of X , while Diag(y) is the diagonal

matrix formed by the vector y ∈ R
n. “:=” means “define.”

2. Preliminaries. This section includes two parts. The first is to study the
characterization of stationary points of NSDPr (4). It also includes a result about
constraint nondegeneracy, which will play an important role in the quadratic con-
vergence analysis of the semismooth Newton method in section 4. The second part
contains a formal proof of Theorem 1.1.

2.1. Stationary points of (4). We copy (4) below with the corresponding
Lagrange multipliers to the constraints:

(NSDPr)

min
(X,U)∈Sn×Sn

1
2‖X − C‖2

s.t. diag(X) = e (y),

〈X,U〉 = n (μ),

〈I, U〉 = r (ν),

I − U � 0 (R),

X � 0, U � 0,

(10)

where y ∈ R
n, μ, ν ∈ R, and R ∈ Sn are the Lagrange multipliers of the corresponding

constraints. After certain elementary linear algebra, the KKT condition of NSDPr

can be stated as follows:

(KKT)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2‖X − C‖2 + 1

2 (‖X‖2 − ‖C‖2)− eT y − μn = 0,

diag(X) = e,

〈X,U〉 = n,

〈I, U〉 = r,

U � 0, −μX − νI +R � 0, 〈U,R〉 = μn+ νr,

I − U � 0, R � 0, 〈I − U,R〉 = 0,

X � 0, X − (C +Diag(y)
)− μU � 0.

(11)

A point (X,U) ∈ Sn × Sn is said to be a stationary point of NSDPr (4) if there
exists Lagrange multiplier (ȳ, μ̄, ν̄, R) such that (X,U ; ȳ, μ̄, ν̄, R) satisfies the KKT
condition (11). We have the following result.

Proposition 2.1. Suppose (X,U ; ȳ, μ̄, ν̄, R) satisfies the KKT condition (11)
and r < n. We must have

μ̄ ≥ 0 and ν̄ ≤ 0.

Proof. We note from (11) that

−μ̄X − ν̄I +R � 0 and I − U � 0.

The product of the above two matrices gives

0 ≤ 〈I − U,−μ̄X − ν̄I +R〉
= −μ̄(〈I,X〉 − 〈U,X〉)− ν̄〈I − U, I〉+ 〈I − U,R〉
= −ν̄〈I − Ū , I〉 = −ν̄(n− r).(12)
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Since r < n, we must have from (12) that ν̄ ≤ 0. It also follows from the KKT
condition (11) that

0 ≤ 〈U,R〉 = μ̄n+ ν̄r,

which implies μ̄ ≥ 0 because we just proved ν̄ ≤ 0.
We end this subsection with a result on constraint nondegeneracy, which is the

main topic of [1] (see also [2, eq. 4.172]). The result in [37, Prop. 4.2] is proved for
some special points and is extended to any correlation matrix in [27, Prop. 2.1]. To
facilitate the statement, let TSn

+
(X) be the tangent cone of Sn

+ at X ∈ Sn
+, and let

lin(TSn
+
(X)) be the largest linear space contained in TSn

+
(X).

Lemma 2.2. Any point X satisfying the correlation constraints

{diag(X) = e, X ∈ Sn
+}(13)

is constraint nondegenerate. That is, the implication

〈Diag(y), Z〉 = 0 ∀ Z ∈ lin(TSn
+
(X)) =⇒ y = 0(14)

always holds at any correlation matrix X.
The lemma will be used in section 4, where we will deal with a slightly more

complicated set than the correlation matrix set (13). We now finish this section with
a formal proof of Theorem 1.1.

2.2. Proof of Theorem 1.1. Theorem 1.1 is based on the following three fun-
damental facts:

(i) For any correlation matrix X ∈ Sn,

trace(X) = n.(15)

(ii) For anyX ∈ Sn
+ admitting the eigenvalue decomposition as in (5), there holds

rank(X) ≤ r ⇐⇒
r∑

i=1

λi = trace(X).(16)

We note that
∑r

i=1 λi is the sum of the first r largest eigenvalues of X . This brings
out the third fact that

∑r
i=1 λi can be represented as a semidefinite programming

problem (SDP) (see Overton and Womersley [23, 24] and Hiriart-Urruty and Ye [16]).
(iii) The sum of the first r largest eigenvalues of X can be calculated as

r∑
i=1

λi = maxU∈Sn 〈X,U〉
s.t. 〈I, U〉 = r,

0 	 U 	 I,

(17)

and a solution is given by (8).
Combination of (15), (16), and (17) yields the following proof of Theorem 1.1.
Proof. Let F1 denote the feasible region of (1) and F2 theX-component projection

of the feasible region of (4):

F2 :=

⎧⎪⎨
⎪⎩X ∈ Sn | there exists U ∈ Sn s.t.

diag(X) = e, X � 0

〈X,U〉 = n, 〈I, U〉 = r

0 	 U 	 I

⎫⎪⎬
⎪⎭ .

We prove F1 = F2.



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

COMPUTING THE NEAREST LOW-RANK CORRELATION MATRIX 1647

Suppose X ∈ F1 and X := X has the eigenvalue decomposition (5). Because
rank(X) ≤ r, we have λi = 0 for i ≥ r + 1. Then U = P1P

T
1 solves (17) by (8), and

by (15)–(17) we have

〈X,U〉 =
r∑

i=1

λi = trace(X) = n.

Therefore, (X,U) is a feasible point of (4), implying X ∈ F2.
Conversely, let us assume X ∈ F2. Then there exists a matrix U ∈ Sn such

that (X,U) is a feasible point of (4). Once again, let X := X have the eigenvalue
decomposition (5). Then the optimal value of (17) is not bigger than the trace of X,
i.e.,

r∑
i=1

λi ≤ trace(X) = n,(18)

where the inequality holds because X � 0. We also note that 〈X,U〉 achieves its
maximal value n:

r∑
i=1

λi ≥ 〈X,U〉 = n.(19)

The fact X � 0, together with (18) and (19), implies λi = 0 for i ≥ r + 1. That
is, rank(X) ≤ r, implying X ∈ F1. The claim of the theorem follows easily from
F1 = F2.

3. The algorithm and its convergence. As mentioned in the introduction,
the main computational burden of our algorithm is on the quadratic semidefinite
programming subproblem (9), which we regard as the inner problem of our overall
algorithm. In this section, we describe our algorithm, mainly focusing on the outer
iterations, and analyze its convergence to a stationary point. The inner problem will
be solved by our semismooth Newton method in section 4 to the accuracy specified
by the algorithm.

3.1. Description of the algorithm. For given U ∈ Sn and μ, c ∈ R, define

L(U,μ,c)(X) :=
1

2
‖X − C‖2 − μ

(
〈X,U〉 − n

)
+

c

2

(
〈X,U〉 − n

)2
.

The subproblem that our algorithm aims to solve in each iteration takes the following
form:

min
X∈Sn

L(U,μ,c)(X)

s.t. diag(X) = e (y),

X � 0, (S),

(20)

where y ∈ R
n and S ∈ Sn in brackets are the Lagrange multipliers of the correspond-

ing constraints.
The KKT condition of (20) is⎧⎪⎨

⎪⎩
Rp := diag(X)− e = 0,

Rd := X −
(
C +Diag(y) + μU

)
+ c
(
〈X,U〉 − n

)
U − S = 0,

X � 0, S � 0, 〈X,S〉 = 0.

(21)
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It is well known (see [8]) that the complementarity condition (i.e., the last condition)
in (21) is equivalent to

Rc := X − [X − S]+ = 0,

where [X ]+ denotes the orthogonal projection of X ∈ Sn onto Sn
+. An approximate

solution to the subproblem (20) is often measured by

‖Rp‖+ ‖Rd‖+ ‖Rc‖ ≤ ε

for some small tolerance ε ≥ 0.
Algorithm 3.1.

(S.0) Let {εk} ↓ 0. Choose initial point X0 ∈ Sn; Lagrange multiplier μ0; penalty
parameters c0 > 0, ρ > 1, and τ > 0. Conduct the eigenvalue decomposition
(5) on X := X0. Let P 0 := P , and let P 0

1 denote the submatrix consisting of
the first r columns of matrix P 0. Let k := 0.

(S.1) Let

Uk := P k
1 (P

k
1 )

T .

(S.2) Find a triple (Xk+1, yk+1, Sk+1) of the following subproblem:

minX∈Sn L(Uk,μk,ck)(X)
s.t. diag(X) = e,

X � 0,
(22)

such that ‖Rp‖+ ‖Rd‖+ ‖Rc‖ ≤ εk.
(S.3) Conduct the eigenvalue decomposition (5) with X := Xk+1. Let P k+1 := P ,

and let P k+1
1 denote the submatrix consisting of the first r columns of matrix

P k+1.
(S.4) Update the Lagrange multiplier by

μk+1 := max
{
0, μk −

(
〈Xk+1, Uk〉 − n

)
ck

}
.

Update the penalty parameter ck by

ck+1 := max
{
ρck, |μk+1|1+τ

}
.

(S.5) Set k := k + 1 and go to (S.1).
We have a few comments on Algorithm 3.1.

(R1) We did not include any stopping criterion in Algorithm 3.1 because of the
following two reasons. First, according to the KKT condition (11) of (4),
we need the availability of the Lagrange multiplier (ȳ, μ̄, ν̄, R) in order to
verify whether (X,U) is a stationary point. Some (not all) of the multipliers
may come from solving the subproblem (22) depending on which method is
being used. Therefore, it would be difficult at this stage to give a meaningful
stopping criterion. Second, the situation will become clear and simple when
it comes to our implementation. A simple criterion is proposed in (53) and
studied in Proposition 5.1.

(R2) In the standard augmented Lagrangian method (see, e.g., [22]), the Lagrange
multiplier μ should be updated by the formula μk+1 := μk − (〈Xk+1, Uk〉 −
n)ck, rather than taking its nonnegative part as adopted in (S.4). It is because
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we have proved in Proposition 2.1 that the correct μ must be nonnegative.
As a matter of fact, if subproblem (22) is solved to high accuracy, we al-
ways have 〈Xk+1, Uk〉 − n ≤ 0 because Xk+1 is always a correlation matrix.
Therefore, {μk} is nondecreasing. If μ0 = 0, the formula for (S.4) reduces
to μk+1 := μk − (〈Xk+1, Uk〉 − n)ck. That the penalty parameter in the up-
dating formula in (S.4) always grows faster than the Lagrange multiplier was
recently introduced by Lu and Zhang [20] to deal with the feasibility issue at
the limit in their augmented Lagrangian method.

(R3) We allow freedom to use any suitable algorithm to solve the subproblem (22)
as long as the algorithm is able to produce a triple (Xk+1, yk+1, Sk+1) that
satisfies the required accuracy. (yk+1, Sk+1) may not be required to be in
an explicit form. In fact, Algorithm 3.1 needs only the availability of Xk+1.
However, the information about (yk+1, Sk+1) is important to our convergence
analysis below.

(R4) The updating rule on U (see (S.1) in Algorithm 3.1) makes use of the infor-
mation of eigenvalue decomposition that is already available due to solving
subproblem (22) from the last iteration. There may be other ways to update
U . For example, the minimization problem (4) in (X,U) can be cast into the
framework of a nested minimization,2 i.e., an outer minimization in U and
an inner minimization in X :

min
0�U�I

〈I,U〉=r

min
X�0, diag(X)=e

〈X,U〉=n

1

2
‖X − C‖2.

However, the inner problem may not be feasible for a given U . This prompted
us to consider the augmented Lagrange problem in replace of the inner prob-
lem:

φ(U) := min
X�0,diag(X)=e

1

2
‖X − C‖2 − μ(〈X,U〉 − n) +

c

2
(〈X,U〉 − n)2.

The nested minimization now becomes

min
0�U�I

〈I,U〉=r

φ(U).(23)

The optimal solution of (23) can then be used to update U instead of our
update rule (8). We tried various numerical schemes for (23); none of them
gained a better performance than (8). However, this suggestion is very inter-
esting and is more natural than (8), and hence it is worth further investigation.

3.2. Convergence to stationary point. First, note that ‖Uk‖ = r for all
k = 0, . . . . In other words, {Uk} is uniformly bounded. Moreover, the sequence {Xk}
is also bounded due to the boundedness of the feasible region of (22). If εk = 0,
then {(yk+1, Sk+1)} is a unique Lagrange multiplier of (22) due to the constraint
nondegeneracy in Lemma 2.2 and [2, Thm. 5.85]. Moreover, the practical stopping
criterion (53) used in our implementation measures only some quantities on the se-
quence {(Xk, Uk)}. From this point of view, the assumption that there exists a
converging subsequence in the following result is not very restrictive.

2We thank the referee for bringing this framework to our attention.
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Theorem 3.2. Let {Xk} be the sequence generated by Algorithm 3.1. Suppose
that a subsequence {(Xk+1, yk+1, Sk+1)}k∈K converges to (X, ȳ, S) and {Uk}k∈K con-
verges to U . Then, the following statements hold:

(i) 〈X,U〉 = n.
(ii) {μk+1}k∈K is bounded.

(iii) (X,U) is a stationary point of (4).
Proof. (i) By (S.3) in Algorithm 3.1, {(Xk+1, yk+1, Sk+1)} satisfies the following

conditions:∥∥∥Xk+1 −
(
C +Diag(yk+1) + μkU

k
)
+ ck

(
〈Xk+1, Uk〉 − n

)
Uk − Sk+1

∥∥∥ ≤ εk,(24)

‖diag(Xk+1)− e‖ ≤ εk,(25)

‖Xk+1 − [Xk+1 − Sk+1]+‖ ≤ εk.(26)

Since {εk} ↓ 0, we follow from (25) and (26) that

diag(X) = e and X − [X − S]+ = 0.(27)

By the formula for ck in (S.4) of Algorithm 3.1, we have ck → ∞. Dividing (24) by
ck and taking limits on both sides yield

|〈X,U〉 − n| = 0,(28)

where we used the fact that ck outgrows μk by at least a factor |μk|τ .
(ii) To prove the boundedness of {μk+1}k∈K , we may assume, without loss of

generality, that

μk+1 = μk − ck(〈Xk+1, Uk〉 − n) ≥ 0 ∀ k ∈ K.

Otherwise, μk+1 ≡ 0 for any k ∈ K, and hence {μk+1}k∈K is bounded. It again
follows from (24) that∥∥Xk+1 − (C +Diag(yk+1)

)− μk+1U
k − Sk+1

∥∥ ≤ εk.(29)

Assume that {μk+1}k∈K is unbounded. Dividing both sides of (29) by μk+1 and
taking limits yield

‖U‖ = 0,

contradicting ‖U‖ = r. This establishes (ii).
(iii) Since {μk+1}k∈K is bounded, we may assume without loss of generality that

{μk+1}k∈K → μ̄. Note that μ̄ ≥ 0. Taking limits on both sides of (29) gives

X − (C +Diag(ȳ) + μ̄U)− S = 0.(30)

Recall that P k+1 is the matrix from the eigenvalue decomposition (5) with X :=
Xk+1 and P k+1

1 is the submatrix consisting of the first r columns of P k+1. Subse-
quencing if necessary, we may assume {P k+1}k∈K → P . Let P 1 be the submatrix
consisting of the first r columns of P .

We must have

lim
k∈K, k→∞

Xk+1 = X = PDiag(λ̄1, . . . , λ̄n)P
T

and U = P 1P
T

1 ,
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where λ̄i, i = 1, . . . , n are eigenvalues of X. Due to the continuity of eigenvalues, we
must have λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄n. If follows from (27) and (28) that X is a correlation
matrix, rank(X) = r, and

S � 0 and 〈X,S〉 = 0.(31)

Hence,

λ̄i = 0, i = r + 1, . . . , n.

Define the scalars

ν̄ := 0, τi := μ̄λ̄i, i = 1, . . . , r,

and form the matrix

R := PDiag(τ1, . . . , τr, 0, . . . , 0)P
T
.

It is a matter of elementary linear algebra to check that R � 0 (because μ̄ ≥ 0) and

〈I − U,R〉 = 0, −μ̄X − ν̄I +R � 0, 〈U,R〉 = μ̄n+ ν̄r.(32)

Moreover, it follows from (30) and (31) that 〈X,S〉 = 0 implies

1

2
‖X − C‖2 + 1

2
(‖X‖ − ‖C‖2)− eT ȳ − μ̄n = 0.(33)

Putting the relationships (27), (28), and (30)–(33) together is sufficient to claim that
(X,U), with (ȳ, μ̄, ν̄, R), satisfies the KKT condition (11). Hence, (X,U) is a station-
ary point.

4. Solving the subproblem by semismooth Newton method. The effi-
ciency of Algorithm 3.1 depends on whether subproblem (22) can be efficiently solved.
Being a standard quadratic semidefinite programming problem (QSDP), (22) could
be solved by any QSDP solver such as the one proposed by Toh [36]. However, our
numerical results showed that using a general QSDP solver may result in a quite slow
Algorithm 3.1 due to the complicated objective function in (22). In this section, we
develop a more efficient method called the semismooth Newton method to solve (22).
It all starts from reformulating it as a least-square problem.

The idea is as follows. First, (9) is reformulated as a least-square problem. We
then consider the Lagrangian dual of this least-square problem. The dual problem is
unconstrained and convex. However, the objective function is only once continuously
differentiable. Therefore, it is not possible to develop a classical Newton method
for the dual problem. Nevertheless, we are able to develop a semismooth version of
Newton’s method, which is also quadratically convergent. Moreover, we can recover
the solution of (9) from the solution of the dual problem.

4.1. Least-square reformulation and its dual problem. We introduce a
new variable z of one dimension by z := 〈X,U〉 − n. The subproblem (20) can be
equivalently stated as the least-square problem

min
(X,z)∈Sn×R

1
2‖X − C‖2 − μz + c

2z
2

s.t. diag(X) = e (y),

〈X,U〉 − z = n (s),

X � 0,

(34)
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where y ∈ R
n and s ∈ R in the brackets denote the Lagrange multipliers of the

corresponding constraints.
Following the steps of calculations on the Lagrangian dual approach in [21] and

[4], we can derive the Lagrangian dual problem of (34):

min
(y,s)∈Rn×R

θ(y, s) =
1

2
‖[C +A∗(y, s)]+‖2 + 1

2c
(μ− s)2 − bT (yT , s)T ,(35)

where the linear operator A : Sn �→ R
n+1 and its adjoint operator A∗ : Rn+1 �→ Sn

are given by

A(X) :=

[
diag(X)
〈U,X〉

]
∀ X ∈ Sn;

A∗(y, s) := Diag(y) + sU ∀ (y, s) ∈ R
n × R; and b :=

[
e
n

]
.

θ(·, ·) is convex and continuously differentiable everywhere with

∇θ(y, s) = A
(
[C +A∗(y, s)]+

)
− 1

c

[
0n

μ− s

]
− b.

Moreover, if (ȳ, s̄) ∈ R
n × R is an optimal solution of (35), then (X, z̄) given by

X := [C +A∗(ȳ, s̄)]+ and z̄ :=
1

c
(μ− s̄)(36)

is the optimal solution of (34). We have the following two remarks.
(R5) The function θ is coercive (i.e., θ → +∞ as ‖(y, s)‖ → +∞) because the

Slater condition holds for (34) and the linear constraints in (34) are linearly
independent (since U �= I).

(R6) The dual approach outlined above is classical and has been successfully ap-
plied to the nearest correlation matrix problem (3) (i.e., without the rank
constraint) in [21, 4, 26, 3]. The minimization problem (35) is often regarded
as the dual problem of (34). Instead of solving the subproblem (22) at itera-
tion Xk of Algorithm 3.1 (S.2), we try to solve its dual problem,

min
(y,s)∈Rn×R

θk(y, s),(37)

where

θk(y, s) :=
1

2
‖[C +A∗

k(y, s)]+‖2 +
1

2ck
(μk − s)2 − bT (yT , s)T(38)

and A∗
k(y, s) := Diag(y) + sUk. Suppose (ȳ, s̄) is an approximate solution

of (37); the next iterate Xk+1 is taken to be X in (36). We can also con-
struct (yk+1, Sk+1) from Xk+1 to meet the required accuracy in (S.2) of
Algorithm 3.1 (see section 5.1 for a detailed argument). Below we are going
to develop a fast algorithm to solve (37).

4.2. Semismooth Newton method. To continue from the above, we need to
find a solution of (35) in order to calculate X . Since θ is convex and coercive, it is
equivalent to solve the optimality equation

∇θ(y, s) = 0.(39)
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The equation is obviously nondifferentiable because of the projection operator [·]+.
Therefore, the classical Newton method is not applicable.

However, it is a strongly semismooth equation [19, 28]. To see the strong semi-
smoothness of ∇θ(·, ·), let us indicate the dependence of the operator [X ]+ on the
positive semidefinite cone Sn

+ by denoting ΠSn
+
(X) := [X ]+ for any X ∈ Sn. It is

known that ΠSn
+
(·) is strongly semismooth due to [34]. ∇θ(·, ·) is just a composite

function of linear operators and ΠSn
+
(·); it is therefore strongly semismooth.

The equation is very similar to that encountered in the nearest correlation matrix
problem [21, 26]. The semismooth Newton method developed in [26] works extremely
well with this kind of equation. We hence develop a semismooth Newton method for
(39) in the form of

xk+1 = xk − V −1
k ∇θ(xk), Vk ∈ ∂2θ(xk),(40)

where x := (y, s) ∈ R
n×R, xk := (yk, sk) ∈ R

n×R is the current iterate, and ∂2θ(xk)
is the generalized Jacobian of θ at xk in the sense of Clarke [7].

For the method (40) to be quadratically convergent, we need to ensure that every
element in ∂2θ(x̄) is positive definite, where x̄ := (ȳ, s̄). This positive definiteness
property actually holds because of the following constraint nondegeneracy at (ȳ, s̄).

Proposition 4.1. Let (X, z̄) denote the optimal solution of (34). Then constraint
nondegeneracy holds at (X, z̄); i.e.,

A
(
lin(TSn

+
(X))× R

)
= R

n+1,(41)

where

A(X, z) := A(X)−
[

0n
z

]
∀ (X, z) ∈ Sn × R.

Proof. First we note that the definition of constraint nondegeneracy ([1] and [2,
eq. 4.172]) when applied to the constraints in (34), is equivalent to (41). We prove
that (41) must hold.

It is easy to see that (41) holds if and only if

{
A
(
lin(TSn

+
(X))× R

)}⊥
= {0n+1} ,(42)

where the left-hand side of (42) denotes the subspace that is orthogonal to the sub-
space A(lin(TSn

+
(X)) × R). Then, (42) holds if and only if the following implication

holds:

〈(yT , s)T ,A(Z, t)〉 = 0 ∀ (Z, t) ∈ lin(TSn
+
(X))× R =⇒ y = 0, s = 0.(43)

The left-hand side of (43) has the following expression:

0 = 〈A∗
(y, s), (Z, t)〉

= 〈Diag(y) + sU, Z〉 − st,(44)

where we used the relation

A∗
(y, s) =

[ A∗(y, s)
−s

]
.
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Let Z = 0 ∈ lin(TSn
+
(X)) in (43); we see from (44) that st = 0 for all t ∈ R. This

implies s = 0. Then, the left-hand side of (43) reduces to

〈Diag(y), Z〉 = 0 ∀ Z ∈ linTSn
+
(X).(45)

Since X is a correlation matrix, it follows from Lemma 2.2 that X is constraint
nondegenerate. Putting (45) and (14) together, we get y = 0. This proves y = 0,
s = 0. That is, the implication (43) is satisfied, and hence (X, z̄) is constraint
nondegenerate.

Proposition 4.1 may be regarded as a natural extension of Lemma 2.2. It basically
says that if we add one more trace constraint to the correlation matrix set (13) with
a new (one-dimensional) variable, any feasible point of this new set is still constraint
nondegenerate. With this key property in hand, we are able to prove the positive
definiteness of ∂2θ(ȳ, x̄) by following a proof similar to that of [26, Prop. 3.6]. One
also needs to characterize the structure of ∂2θ(ȳ, x̄), which can also be done as in [26,
Lem. 3.5]. We omit the details.

Now we are ready to state the semismooth Newton method for (39). This method
has also been used in [26, 40] for similar semismooth equations.

Algorithm 4.2 (semismooth Newton Method).
(S.0) Given x0 ∈ R

n+1, η ∈ (0, 1), σ ∈ (0, 1), κ1 ∈ (0, 1), κ2 ∈ (1,∞), κ3 ∈ (1,∞),
and δ ∈ (0, 1), let j := 0.

(S.1) Select an element Vj ∈ ∂2θ(xj), compute tj := min{κ1, κ2‖∇θ(xj)‖}, and
apply the CG method [14] starting with the zero vector as the initial search
direction to

(Vj + tjI)Δx = −∇θ(Xj)(46)

to find a search direction Δxj such that

‖∇θ(xj) + (Vj + tjI)Δxj‖ ≤ ηj‖∇θ(xj)‖ ,(47)

where ηj := min{η, κ3‖∇θ(xj)‖}.
(S.2) Let lj be the smallest nonnegative integer l such that

θ(xj + δlΔxj)− θ(xj) ≤ σ δl
〈∇θ(xj),Δxj

〉
.

Set τj := δlj and xj+1 := xj + τjΔxj .
(S.3) Replace j by j + 1 and go to (S.1).

The convergence analysis of this algorithm can be conducted in a way similar to
that in [26, Thm. 5.3] or [40, Thm. 3.5], using the coerciveness of θ and the positive
definiteness of V ∈ ∂2θ(x̄). We state the convergence result in the next theorem
without giving a detailed proof.

Theorem 4.3. Suppose that in Algorithm 4.2, ∇θ(xj) �= 0 for all j ≥ 0. Then
Algorithm 4.2 is well defined, and the generated iteration sequence {xj} converges
quadratically to the unique solution x̄ of problem (35).

5. Numerical results. We may regard Algorithm 3.1 as our outer algorithm
and Algorithm 4.2 as the inner algorithm. We have to address whether the inner algo-
rithm is able to provide a good enough approximate (Xk+1, yk+1, Sk+1), as requested
in (S.2) of Algorthim 3.1. This is related to the stopping criteria used in both the
outer and inner algorithms.
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5.1. Stopping criteria. Since θ is convex and the optimization problem (35) is
unconstrained, an obvious stopping criterion in the inner problem is (recall x̄ := (ȳ, s̄))

‖∇θ(x̄)‖ ≤ tolin,(48)

where tolin > 0 is a given tolerance and x̄ is the final iterate produced by Algo-
rithm 4.2. For brevity, we omit the superscript k of the iteration used by the outer
algorithm.

For the convergence property (Theorem 3.2) of Algorithm 3.1 to be valid, we have
to verify that we can find an approximate (X, y, S) from (X, z̄) as requested in (S.2)
of Algorithm 3.1. Denote ε := tolin. Then, (48) is equivalent to

‖diag(X)− e‖ ≤ ε and |〈U,X〉 − n− (μ− s̄)/c| ≤ ε.(49)

Let

S := X − (C + Diag(ȳ) + s̄U).(50)

From the definition of X in (36), we must have

S � 0 and 〈X,S〉 = 0.(51)

It also follows from (50) that

‖X − (C +Diag(ȳ) + μU) + c(〈U,X〉 − n)U − S‖
= ‖X − (C +Diag(ȳ) + s̄U) + c(〈U,X〉 − n+ ((s̄− μ)/c)U)− S‖
= c|〈U,X〉 − n+ (s̄− μ)/c|‖U‖ ≤ crε.(52)

The inequality used (49) and ‖U‖ = r.
Putting (49), (51), and (52) together, we get that (X, ȳ, S) is an approximate

solution of (20) satisfying ‖Rp‖ + ‖Rd‖ + ‖Rc‖ = O(ε). Therefore, at each itera-
tion, Algorithm 4.2 provides an approximate solution to (22) as requested in (S.2) of
Algorithm 3.1.

Now we address the outer stopping criterion, which is to test whether the current
iterate (Xk, Uk) satisfies∣∣∣∣∣

r∑
i=1

λk
i − n

∣∣∣∣∣ ≤ tolrank and |〈Xk, Uk − Uk−1〉| ≤ toleig,(53)

where λk
i , i = 1, . . . , r, are the first r largest eigenvalues of Xk, tolrank > 0 is a

given tolerance that controls the first r leading eigenvalues, and toleig > 0 is a given
tolerance that somewhat measures the closeness between Uk and Uk−1.

Given starting point X0, set U−1 := U0 (recall k in Uk is the iteration index). Ac-
cording to Theorem 3.2(i), |∑r

i=1 λ
k
i −n| → 0 at least on a subsequence of {Xk}k∈K .

Moreover, we have the following property.
Proposition 5.1. Suppose tolin = tolrank = toleig = 0. If (Xk, Uk) satisfies

(53), then (Xk, Uk) is a stationary point of (4).
Proof. If k = 0, the stopping criterion (53) means rank(X0) = r as X0 is the

nearest correlation matrix. Therefore, X0 is the global solution of the low rank
problem (1), and (X0, U0) is a global solution of (4). It must be a stationary point.
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Now suppose k ≥ 1 and suppose x̄ := (ȳ, s̄) is the final iterate produced by the
semismooth Newton method applied to the dual problem (35) of the subproblem (34)
at iteration (k − 1) (i.e., U := Uk−1, μ := μk−1, and c := ck−1). Then,

Xk = X = [C +Diag(ȳ) + s̄Uk−1]+,

and Uk is formed as in (S.1) of Algorithm 3.1. Consequently,

〈Xk, Uk〉 =
r∑

i=1

λk
i .

Since tolin = 0, we have ∇θ(x̄) = 0. Let S be defined as in (50). We then must
have ⎧⎪⎨

⎪⎩
diag(X)− e = 0,

〈Uk−1, X〉 − n− (μk−1 − s̄)/c = 0,

X � 0, S � 0, 〈X,S〉 = 0.

(54)

System (54) together with the fact that
∑r

i=1 λ
k
i = n means that X is a correlation

matrix. Therefore, we have 〈X,Uk〉 = n. With toleig = 0, there is

〈X,Uk−1〉 = n.(55)

It follows from the second equation in (54) that μk−1 = s̄. Denote μ̄ := μk−1 and
U := Uk. It follows from the definition of S in (50) that

X − (C +Diag(ȳ) + μ̄U) + c(〈X,U〉 − n)U − S

= X − (C +Diag(ȳ) + μ̄U)− S

= 0.(56)

Putting together (54), (55), and (56) and repeating the proof of Theorem 3.2(iii), it
is easy to see that (X,U) = (Xk, Uk) is a stationary point.

5.2. Modified principal component analysis as final output. We address
the output solution Cr by our method. Suppose that Xf is the final iterate upon
satisfying the stopping criterion (53), which means that the sum of the r leading
eigenvalues of Xf is very close to n and the remaining (n− r) eigenvalues of Xf are
very small. However, they are not zero. Hence, Xf is not a true low-rank matrix in
the mathematical sense. We apply the modified principal component analysis (PCA)
to Xf to output Cr. Let Xf have the eigenvalue decomposition (5) with X := Xf .
Let Λr := Diag(λ1, . . . , λr). Define

{Xpca}i· := zi
‖zi‖ with zi := {P1Λ

1/2
r }i·, i = 1, . . . , n,(57)

where {Y }i· denotes the ith row of a matrix Y . Then, the output Cr is given by

Cr := (Xpca)(Xpca)
T .(58)

The modified PCA (57)–(58) is due to Flury [9], and a description of it in finance-
related articles can be found in [17, 25]. Cr is guaranteed to be a rank r correlation
matrix. If λr = 0, we consider only eigenvalues up to λr−1. Then, the output would
be Cr−1.
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The PCA modification may increase the distance from C. The next result, in the
spirit of [3, Lem. 3.2], provides a bound on the increase.

Proposition 5.2. Let Xf be the final iterate satisfying the outer stopping crite-
rion (53). Then,

‖Cr − C‖ ≤ ‖Xf − C‖+ n

(
tol+

tol

1− tol

)
,

where tol := tolin + tolrank.
Proof. Let Xf have the eigenvalue decomposition (5) with X := Xf . We note

that

Xf = ΠSn
+
(C +A∗(x̄)) and

n∑
�=r+1

λ� ≤ tolrank,(59)

for some x̄ satisfying ‖∇θ(x̄)‖ ≤ tolin. By using the formulation of ∇θ(·), we have

diag(Xf ) = {∇θ(x̄)}1:n + e,

where {∇θ(x̄)}1:n is the vector of the first n components of ∇θ(x̄). Therefore, the
diagonal elements of Xf have the following bound:

1− tolin ≤ (Xf )ii ≤ 1 + tolin, i = 1, . . . , n.(60)

Through the eigenvalue decomposition (5), we have

Xf
ii =

n∑
�=1

λ�P
2
i�, i = 1, . . . , n.

Let

z̄i := {PΛ1/2}i·, i = 1, . . . , n.

Then,

Xf
ii = ‖z̄i‖2 = ‖zi‖2 +

n∑
�=r+1

λ�P
2
i� ≤ ‖zi‖2 +

n∑
�=r+1

λ�,

which implies by (60) and (59) that

‖zi‖2 ≥ 1− (tolin + tolrank) = 1− tol.(61)

Furthermore,

Xf
ij − (Cr)ij =

n∑
�=1

λ�Pi�Pj� − 1

‖zi‖‖zj‖
r∑

�=1

λ�Pi�Pj�

=

n∑
�=r+1

λ�Pi�Pj� +

(
r∑

�=1

λ�Pi�Pj�

)(
1− 1

‖zi‖‖zj‖
)
.(62)

By the Cauchy–Schwarz inequality, there is∣∣∣∣∣
r∑

�=1

λ�Pi�Pj�

∣∣∣∣∣ ≤
(

r∑
�=1

λ�P
2
i�

)1/2( r∑
�=1

λ�P
2
j�

)1/2

≤ (1 + tolin)
1/2(1 + tolin)

1/2 = 1 + tolin,
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Table 1

Statistics of γi, i = 1, . . . , 4.

γ1 γ2 γ3 γ4
Estimate 0.000 0.480 1.511 0.186

Standard error - 0.099 0.289 0.127

and ∣∣∣∣∣
n∑

�=r+1

λ�Pi�Pj�

∣∣∣∣∣ ≤
n∑

�=r+1

λ� ≤ tolrank.

It follows from (62) and (61) that

|Xf
ij − (Cr)ij | ≤ tolrank + (1 + tolin)

(
1

‖zi‖‖zj‖ − 1

)

≤ tol

(
1 +

1

1− tol

)
.

We then have

‖Cr − C‖ ≤ ‖Xf − C‖+ ‖Xf − Cr‖ ≤ ‖Xf − C‖ + n

(
tol+

tol

1− tol

)
.

5.3. Test problems. We are going to test the following problems, collected from
various sources:

E1 Cij is the correlation between forward rates i and j and is given by Cij =
0.5 + (1− 0.5) exp(−0.05|i− j|) [5].

E2 C = E + 0.05R, where E and R are generated by d = 10.̂(4*[-1:1/(n-1)

:0]), E = gallery(’randcorr’,n*d/sum(d)), R = 2*rand(n) - 1, R =

triu(R) + triu(R,1)’ [40].
E3 The matrix C is the 387 × 387 one-day correlation matrix (as of Oct. 10,

2008) from the lagged datasets of RiskMetrics (the example can be obtained
from the authors).

E4 Cij is also the correlation between forward rates i and j which has the fol-
lowing form:

Cij = LongCorr + (1− LongCorr) exp(κ|ti − tj |),

where LongCorr = 0.6, κ = −0.1, ti = i [31, sect. 9.3].
E5 The random “interest rate” correlation matrix C is given by

Cij = exp

(
−γ1|ti − tj | − γ2|ti − tj |

max(ti, tj)γ3
− γ4|

√
ti −

√
tj |
)
,

with γi > 0, i = 1, . . . , 4, and ti denoting the expiry time of rate i and ti = i.
C is generated by randomizing the γ parameters, with means and standard
errors given by Table 1 with γ1, γ2, γ4 capped at zero [25] .

E6 n = 100. C is generated by the MATLAB gallery(‘randcorr’,n). If |Cij | ≤
0.01, let Cij = 0. Besides diagonal constraints, we require Xij = 0 if Cij ≤
0.01 [33].
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Table 2

Comparison of different starting points.

t f iter
(a) (b) (c) (a) (b) (c) (a) (b) (c)

E1n100r5 0.4 0.5 0.7 5.47 5.95 13.31 3 4 5
E1n100r10 0.4 0.5 0.6 1.93 2.02 4.70 4 4 5
E2n100r5 0.7 0.5 0.6 32.01 32.11 45.28 4 4 4

E2n100r10 0.7 0.5 0.7 15.51 15.56 26.28 4 4 5
E3n387r5 12.5 15.5 14.1 61.57 62.15 87.68 5 6 7

E3n387r10 11.5 12.1 13.0 24.12 24.44 55.35 5 5 7
E4n100r5 0.4 0.5 0.6 7.67 7.89 15.78 4 4 5

E4n100r10 0.4 0.4 0.6 2.97 3.05 5.89 4 4 5
E5n100r5 0.5 0.4 0.8 4.18 4.28 8.40 4 4 6

E5n100r10 0.4 0.5 0.6 1.51 1.57 3.11 4 4 5

5.4. Numerical tests. In this section, we first describe the general parameter
setting in our numerical test, followed by thorough comparisons with other existing
methods.

(a) General parameter setting. Algorithm 3.1 was coded in MATLAB and was
run on a desktop with Intel Core 2 of 3.40GHz and 3.39GHz CPU and 1.00Gb
of RAM.
The parameters in Algorithm 3.1 were set as follows: c0 = 1, μ0 = 0, ρ =
1.2658, τ = 0. For the starting point X0, we first get the nearest correlation
matrix Xncm of problem (3), which can be solved by the semismooth Newton
method of [26]; then we use modified PCA to Xncm to get X0. As for the
stopping test, we use{

tolrank = atol1 + rtol1 · |
∑r

i=1 λ
1
i − n|,

toleig = atol2 + rtol2 · |〈X1, U1 − U0〉|,
where atol1 = 2×10−4, rtol1 = 5×10−4, atol2 = 0.03, and rtol2 = 10−3.
The stopping criterion above was motivated by [18, sect. 1.5] for solving
nonlinear equations.
The parameters in Algorithm 4.2 were set as follows: κ1 = 10−10, κ2 =
1, κ3 = 104, η = 10−2, δ = 0.5, σ = 10−4, and tolin = atol3‖∇θ(y0)‖ +
10−8 with atol3 ∈ [10−8, 10−0.8].
In our reported results, we denote our method as SemiNewton and the objec-
tive function value by f = ‖Cr −C‖, where Cr is the output solution by our
method. iter denotes the number of iterations in Algorithm 3.1, and t is the
CPU time in seconds. We name our test problems in the following way. For
example, E2n100r20 means E2 with n = 100 and r = 20.

(b) Comparison of different starting points. As for the starting point, we would
like to point out that different starting points may lead to different local
minima. To show the role that starting points play, we compare three choices:
(a) X0 = Xncm, (b) X0 = 0, and (c) X0 = (X+XT )/2 with X = rand(n, n),
and X0 is further modified by PCA. The results in Table 2 show that the
three choices work very well. However, the comparison of function values
implies that the solutions of (a) and (b) seem to be close to the same local
minima, whereas the solution of (c) lies near another local minimum, whose
function value is significantly higher. Therefore, a good starting point is
very important to our algorithm. Here, we use Xncm, which overall performs
better than others.
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Table 3

Comparison between ‖Xf − C‖ and ‖Cr − C‖ on E1.

E1n100 E1n500

r ‖Xf − C‖ ‖Cr − C‖ r ‖Xf − C‖ ‖Cr − C‖
2 19.119040 19.119040 10 38.687960 38.687956
10 1.934012 1.933997 20 15.708086 15.708085
20 0.671405 0.671397 50 4.139404 4.139394
30 0.361528 0.361463 80 2.049923 2.049922

Table 4

Comparison of function values for each iteration between SemiNewton and mSemiNewton.

k 0 1 2 3 4 5
E1n100r5 SemiNewton 8.417 3.913 5.354 5.474

mSemiNewton 8.417 5.647
E2n100r5 SemiNewton 32.557 24.090 32.164 32.198 32.187

mSemiNewton 32.557 32.244 32.201
E3n387r15 SemiNewton 15.440 7.967 11.181 11.726 11.955 11.940

mSemiNewton 15.440 12.616 12.069 11.971
E4n100r5 SemiNewton 12.632 5.606 7.612 7.672 7.669

mSemiNewton 12.632 7.932
E5n100r5 SemiNewton 7.618 4.057 5.528 5.687 5.683

mSemiNewton 7.618 5.807

1 2 3 4 5 6
6

8

10

12

14

16

iter

f

 

 

SemiNewton
mSemiNewton

Fig. 1. E3n387r15: Function values during the iterations.

(c) Comparison with modified PCA. To give an idea of the difference between
‖Cr − C‖ and ‖Xf − C‖ estimated in Proposition 5.2, we report the typical
results on E1 in Table 3, where one can find that the modified PCA (mPCA) in
the final iteration brings little change in the distance from C. Therefore, in
our following results, we report only f = ‖Cr −C‖. For further investigation
of the role that mPCA plays in SemiNewton, we compare SemiNewtonwith itself
with mPCA being applied to each iterate Xk (denoted as mSemiNewton). For
each example, we report the objective function values during the iteration,
and the results are listed in Table 4. Typical results on E3n387r15 are plotted
in Figure 1. One can find that given the same starting points, mSemiNewton
terminates earlier than SemiNewton, indicating that mPCA does accelerate the
speed of the method; however, this is at the price of returning a slightly higher
function value.
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Table 5

Comparison: Major, TPM, and SemiNewton on E1.

t f iter
r Major TPM SemiNewton Major TPM SemiNewton Major TPM SemiNewton

n = 10
2 0.06 0.03 0.03 2.77E-01 2.77E-01 2.77E-01 30 42 3
4 0.14 0.16 0.06 8.33E-02 8.32E-02 8.32E-02 97 163 3
6 0.22 0.79 0.01 4.16E-02 4.15E-02 4.15E-02 142 433 2
8 0.30 1.95 0.01 2.17E-02 2.19E-02 2.16E-02 180 569 2

n = 20
2 0.11 0.04 0.06 1.08E+00 1.08E+00 1.08E+00 20 48 3
4 0.30 0.30 0.03 3.38E-01 3.38E-01 3.38E-01 56 260 3
6 0.53 2.17 0.06 1.75E-01 1.75E-01 1.75E-01 104 985 2
8 0.80 6.56 0.03 1.10E-01 1.10E-01 1.10E-01 158 1507 2

n = 50
2 0.17 0.05 0.16 5.97E+00 5.97E+00 5.97E+00 13 59 3
4 0.34 1.48 0.14 2.05E+00 2.05E+00 2.05E+00 27 680 3
6 0.66 8.89 0.19 1.09E+00 1.09E+00 1.09E+00 51 1647 4
8 1.05 28.40 0.14 6.93E-01 6.92E-01 6.92E-01 79 2154 3

n = 100
2 0.38 0.12 0.44 1.91E+01 1.91E+01 1.91E+01 13 74 4
4 0.42 10.02 0.47 7.60E+00 7.60E+00 7.60E+00 17 1112 4
6 0.78 77.31 0.42 4.19E+00 4.19E+00 4.19E+00 29 3247 4
8 1.19 210.30 0.36 2.72E+00 2.72E+00 2.72E+00 44 4711 3

(d) Comparison with trigonometric parameterization method. One of the popu-
lar methods in practice is the trigonometric parameterization method (TPM).
We choose the version of TPM in [29, sect. 9], where a geometric interpre-
tation is given and the number of variables involved is further reduced to
l := (r−1)(n− r

2 ). The problem is formulated as the following unconstrained
optimization problem:

min
Θ∈Rl

F (Θ) :=
1

2
‖B(Θ)B(Θ)T − C‖2,

where B(Θ) ∈ R
n×r is given by (18) in [29]. We solve it by the built-

in function fminunc in MATLAB. The starting point is chosen as Θ0 =
[0,−1, 2,−3, . . .]
× π

2(l−1) ∈ R
l, which leads to overall better performance than that of other

choices. An analytical gradient is provided. We use a quasi-Newton method
(BFGS Hessian update). Specifically, the parameters in “options” of fminunc
are set as follows:

options = optimset(“LargeScale,”“off,”“GradObj,”“on,”“MaxIter,”10000,

“HessUpdate,”“bfgs”).

We tested many examples, and our observation is consistent. We list just one
of the tested examples (E1) in Table 5, where f := ‖B(Θ)B(Θ)T − C‖. One
can find that when the dimension of the problem is not big (n ≤ 50) and r is
small, TPM is competitive with Major and SemiNewton. However, when n is
larger, even for small r, both Major and SemiNewton significantly outperform
TPM. This is also consistent with the general view on TPM (see, e.g., [25, 12]).
Therefore we do not include any further results on TPM.
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Table 6

Comparison between SemiNewton and Major.

t f iter
r SemiNewton Major SemiNewton Major SemiNewton Major

E2n100
1 1.6 0.2 95.98 95.63 7 3
2 0.5 0.2 63.24 63.12 3 6
5 0.6 0.3 32.09 32.03 4 8
10 0.6 0.3 15.54 15.54 4 6
20 0.7 0.4 5.41 5.41 5 9
30 0.5 0.7 2.52 2.52 3 14
40 0.4 0.9 1.68 1.68 2 20
60 0.4 3.1 1.39 1.39 3 43

E3n387
1 30.3 1.5 311.41 310.64 10 3
2 14.6 1.7 162.98 162.35 6 5
5 12.0 4.4 61.57 61.13 5 28
10 11.1 10.1 24.12 24.02 5 64
20 8.1 19.8 6.09 6.08 4 99
30 5.3 30.8 2.03 2.03 3 118
40 7.2 59.0 0.78 0.78 4 198
60 5.9 186.0 0.16 0.16 3 388

E4n100
1 0.4 0.1 34.29 34.29 4 1
2 0.4 0.6 20.80 20.71 4 22
5 0.4 0.5 7.67 7.67 4 18
10 0.4 1.2 2.97 2.97 4 44
20 0.4 4.1 1.06 1.06 4 122
30 0.3 8.5 0.58 0.58 3 211
40 0.3 13.4 0.37 0.37 3 296
60 0.2 26.1 0.19 0.19 3 405

E5n100
1 0.8 0.1 55.17 55.17 5 1
2 0.5 0.2 24.13 24.11 4 4
5 0.4 0.7 6.93 6.91 3 28
10 0.4 1.2 2.54 2.54 4 42
20 0.3 4.2 0.90 0.90 3 125
30 0.4 8.1 0.47 0.47 4 203
40 0.4 12.9 0.29 0.29 4 288
60 0.2 29.0 0.13 0.13 3 442

E4n500
1 6.0 2.2 194.07 194.05 3 1
2 11.4 6.9 135.18 133.20 4 32
5 11.5 5.2 76.01 75.79 4 19
10 10.1 5.1 44.34 44.33 4 15
20 9.0 12.8 21.67 21.68 4 39
30 8.9 27.1 13.02 13.03 4 68
40 9.1 47.5 8.80 8.81 4 103
60 11.3 133.9 4.94 4.95 5 182
100 7.1 429.0 2.33 2.34 4 360

(e) Comparison with majorization method. We use the following stopping crite-
rion in Major:

(fk)2 ≤ tolm or (fk−1)2/(fk)2 − 1 ≤ tolm,

where tolm = 10−4. This criterion has been suggested by [33] for better per-
formance of Major. The results over different r and n are listed in Tables
6 and 7. One observation is that the number of iterations in SemiNewton

is quite small (less than 10 iterations). This may be justified on two fronts.
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Table 7

Comparison between SemiNewton and Major.

t f iter
r SemiNewton Major SemiNewton Major SemiNewton Major

E5n500
1 33.2 2.2 384.16 384.16 8 1
2 18.0 2.6 205.16 204.76 5 4
5 11.7 4.4 68.98 68.78 4 14
10 11.4 7.5 26.28 26.26 4 27
20 9.7 15.1 9.54 9.54 4 47
30 6.9 33.0 5.22 5.23 3 84
40 10.9 59.0 3.40 3.40 5 129
60 8.8 168.3 1.85 1.86 4 230
100 6.5 934.8 0.45 0.46 4 803

E4n1000
1 32.6 16.4 394.03 394.03 3 1
2 79.6 30.8 278.91 274.72 5 37
5 99.0 26.5 165.77 165.29 6 24
10 78.0 24.1 107.09 107.04 5 16
20 66.3 32.4 62.48 62.50 5 21
30 51.2 61.0 42.11 42.13 4 40
40 50.7 100.9 30.49 30.52 4 63
60 47.5 274.6 18.32 18.35 4 113
100 49.4 1141.8 9.04 9.08 4 229
200 48.6 8996.7 3.28 3.32 4 553

E5n1000
1 153.8 16.8 714.13 714.13 8 1
2 84.4 17.6 356.31 355.96 5 4
5 65.2 22.4 109.13 109.02 4 14
10 54.2 28.8 39.77 39.78 4 25
20 38.9 68.0 14.13 14.13 3 66
30 39.5 151.4 7.70 7.71 3 121
40 39.8 263.7 5.01 5.02 3 184
60 47.5 755.0 2.73 2.74 4 323
100 45.2 3296.2 1.27 1.28 4 613
200 51.1 20141.2 0.44 0.46 4 1241

First, the augmented Lagrangian method for nonlinear semidefinite program-
ming is potentially superlinearly convergent, provided that the constraint
nondegeneracy holds among other conditions. For a general theory on its
convergence rate for nonlinear SDPs, see Sun, Sun, and Zhang [35]. One such
result has been detailed in [27, Thm. 3.4] for convex SDPs. However, for
our case it is difficult to verify whether the augmented Lagrangian is super-
linearly convergent. Second, subproblem (22) can be solved successfully by
the semismooth Newton method, giving a meaningful Xk+1. This leads to a
very effective update of Uk+1, which in turn speeds up the progress of our
algorithm. Moreover, the algorithm begins with a very good starting point.
Compared with Major, the function values given by two methods are more or
less the same; therefore the main concern is focused on the CPUtime. From
Table 6, one can find that for smaller n and r, Major is very fast. However,
as r increases, the CPUtime for Major grows at a dramatic rate. In contrast,
SemiNewton takes about the same amount of time as r becomes bigger. This
trend is more obvious when the size of the problem gets bigger, as shown
in Table 7. For example, in the case of E5n1000 with r = 20, SemiNewton
has better performance in the sense that it takes about 40s for SemiNewton
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Table 8

Comparison between SemiNewton and CMajor: E6n100.

t f iter
r SemiNewton CMajor SemiNewton CMajor SemiNewton CMajor

18 1.0 9.0 19.32 20.27 4 10
25 0.9 22.6 14.35 14.81 4 23
40 0.9 20.6 8.41 8.71 5 18
60 0.5 81.7 4.07 4.23 4 30
80 0.4 113.8 1.21 1.27 4 35

to return a solution of the same function value, compared to 68s by Major.
When r = 30, SemiNewton used about 40s, while Major used about 151s.

(f) Comparison with majorization method in [33] for more equality constraints.
We also note that Algorithm 4.2 is readily extended to include extra equality
constraints, implying that Algorithm 3.1 is capable of dealing with problem
(1) with more equality constraints. Such problems are considered in [33],
where the authors extended majorization method (referred to as CMajor here)
to solve it. We tested CMajor and SemiNewton on E6, which is taken from
[33]. The results in Table 8 show a significant improvement of SemiNewton
over CMajor, especially in CPUtime. It is worth pointing out that CMajor is
restricted to equality constraints of the very special case Xij = 0, whereas
SemiNewton is capable of handling general linear equality constraints. For
the latter case, the corresponding version of subproblem (20) will have to be
solved by other methods (e.g., the smoothing Newton method of [10]) rather
than Algorithm 4.2.

6. Conclusion. In this paper, a novel approach is introduced to solve the nearest
low-rank correlation matrix problem (1). The resulting sequential semismooth Newton
method guarantees to produce a stationary point of the nonlinear semidefinite pro-
gramming problem (4), which is an equivalent reformulation of (1). Our numerical re-
sults show that the method is highly efficient and outperforms the best available meth-
ods for (1). The key to the success of our method is the equivalent reformulation of
problem (1) as well as the simple update of U and the fast semismooth Newton method
used to solve the subproblem at each iteration. The semismooth Newton method de-
pends heavily on the subproblem being reformulated as a least-square problem.

This elicits our first question, How can our method be extended to the nearest
low-rank correlation matrix problem with H-weighting,

min
X∈Sn

1
2‖H ◦ (X − C)‖2

s.t. diag(X) = e, X � 0,

rank(X) ≤ r?

For the nearest correlation matrix problem (3), this has been done in [27]. For the
extension, one has to deal with the H-weighted version of subproblem (20). The
constraints remain the same, but we have the H-weighted objective function, denoted
by

LH
(U,μ,c)(X) :=

1

2
‖H ◦ (X − C)‖2 − μ

(
〈X,U〉 − n

)
+

c

2

(
〈X,U〉 − n

)2
.

The dual (see subsection 4.1) of thisH-weighted subproblem is not unconstrained any-
more due to the fact that the orthogonal projection onto the positive semidefinite cone
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under the H-weighting does not usually have a closed-form formula. Consequently,
the semismooth Newton method developed in sub tion 4.2 is not appropriate for the
weighted subproblem. One has to explore some other options. For example, Gao and
Sun [11] proposed a penalized majorization method for the H-weighted problem.

The second question is how to characterize the local and global minima of the
new reformulation (4). Such characterizations will lead to significant improvement in
moving the obtained stationary point toward a local/global minimum of (4). We feel
this is a difficult question but is worth serious investigation.
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