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Abstract

The reflection shapes of configurations in IRm with k landmarks consist of all the geo-
metric information that is invariant under compositions of similarity and reflection transfor-
mations. By considering the corresponding Schoenberg embedding, we embed the reflection
shape space into the Euclidean space of all (k − 1) by (k − 1) real symmetric matrices. In
this paper, we provide a computable formula of the extrinsic mean of the reflection shape
in arbitrary dimensions. Moreover, the asymptotic analysis of the extrinsic mean of the
reflection shapes is studied. By using the differentiability of spectral operators, we obtain
a central limit theorem of the sample extrinsic mean of the reflection shapes. As a direct
application, the two-example hypothesis test of the reflection shapes is also derived.

1 Introduction

The analysis of shape is one of the very early activities of human beings, which is of great
interest in a wide variety of applications, such as morphometrics, biology, medical diagnosis,
medical imaging, classification and many other fields. More applications of the shape analysis
can be found from [10].

Shape is the geometrical information that remains when location, scale, rotation efforts are
all removed from the object. Statistical shape analysis is based on the work of Kendall [16, 17]
and Bookstein [7]. Following Kendall’s definition [16], a shape space is the equivalent classes or
the orbits of the configurations under the similarity transformation of translation, scaling and
rotation. Since the shape spaces are usually no-Euclidean space, the standard statistical results
on Euclidean spaces can not be applied directly. The basic concepts such as the mean of the
random variables become non-trivial in statistical shape analysis. In fact, by embedding the
shape space into certain metric space, the Fréchet mean can be defined as the minimizers of the
generalized least squares problem, which is the generalization of the mean of the Euclidean space.
However, depending on the different distances, there are many different means in statistical shape
analysis. For instance, the famous Procrustes mean corresponds to the Procrustes distance (cf.
[10, Chapter 5]); the Ziezold mean corresponds to the Ziezold distance (cf. [20]); the intrinsic and
extrinsic means correspond to the intrinsic and extrinsic distances of the manifold, respectively
(cf. e.g., [5]).
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In this paper, we mainly focus on the reflection shape space RΣk
m (see Section 2 for the

definition). Moreover, as pointed out by [6, 3], it is simpler to carry out the extrinsic analysis on
the reflection shape space both theoretically and computationally. The definition of the extrinsic
mean on a non-Euclidean space was introduced independently by Hendricks and Landsman [15]
and Patrangenaru [18]. For the reflection shape space, Dryden et al. [11] and Bhattacharya [3]
presented two computable formulas of the extrinsic mean shape. However, both may not be the
true extrinsic mean shape formula since both used formulas that are not the true formulas of the
projections. Actually, it is well-known that the reflection shape space can be embedded into the
(k−1) by (k−1) real symmetric matrices space Sk−1 by the Schoenberg mapping J (see (2) for
the definition). It follows from [5, Proposition 3.1] that in order to compute the extrinsic means
of the reflection shapes, we must first study the characterization of the projections over the
closed subset J(RΣk

m) defined in the Euclidean space Sk−1, which is provided in Proposition 2
in Section 3. As the consequence, we deduce the correct extrinsic mean reflection shape formula,
which further implies that the resulting extrinsic sample mean shape is a strongly consistent
estimator (cf. [5, Theorem 2.3]).

In the second part of this paper, we conduct an asymptotic analysis of the sample extrinsic
mean reflection shape. More precisely, as the direct application of the differentiability of spectral
operators (see [8, 9]) and the classical convergence result in probability [1] (see Lemma 1), we
derive the asymptotic distribution of the sample extrinsic mean reflection shape. It is worth
to point out that for the general extrinsic mean on manifold, the corresponding asymptotic
distribution of the sample extrinsic mean can be obtained from [6]. By the central limit theorem
obtained in this paper, we are able to apply many standard statistical results to the reflection
shape space. For example, we develop the generalized Hotelling T 2 test to distinguish two
distributions of reflection shapes by comparing their sample extrinsic means in this paper. It
also can be seen from the numerical simulation that the test based on the obtained extrinsic
sample mean of the reflection space performs quite well with respect to the other means such as
the Procrustes mean, the Ziezold mean and intrinsic means, which are usually time-consuming
for applications of a large sample size.

The remaining parts of this paper are organized as follows. In Section 2, we briefly introduce
some basic concepts in shape analysis. We define and present the explicity formula of the extrin-
sic mean of the reflection shapes in Section 3. The asymptotic analysis of the sample extrinsic
mean of the reflection shapes is conducted in Section 4. Finally, we present the generalized
Hotelling T 2 test for the reflection shapes and report the numerical results in the last section.

Notation. Let IRm×n be the Euclidean space of m×n real matrices with the trace inner product
〈X,Y 〉 := trace(XTY ) for X,Y ∈ IRm×n and its induced norm ‖ · ‖. Let Sm ⊆ IRm×m be the
Euclidean space of m × m real symmetric matrices. Let Sm+ be the closed convex cone of all
m×m positive semidefinite matrices. We use Op to denote the set of p×p orthogonal matrices.

• For any X ∈ IRm×n, denote Xij the (i, j)-th entry of X.

• For any X ∈ IRm×n and a given index set J ⊆ {1, . . . , n}, we use XJ to denote the
sub-matrix of X obtained by removing all the columns of X not in J . In particular, we
use xj to represent the j-th column of X, j = 1, . . . , n.

• Let I ⊆ {1, . . . ,m} and J ⊆ {1, . . . , n} be two index sets. For any X ∈ IRm×n, we use
XIJ to denote the |I| × |J | sub-matrix of X obtained by removing all the rows of X not
in I and all the columns of X not in J .

• We use “◦” to denote the Hardamard product between matrices, i.e., for any two matrices
A and B in IRm×n the (i, j)-th entry of X := A ◦B ∈ IRm×n is Xij = AijBij .
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• Let diag(·) : IRm → Sm be a linear mapping defined by for any x ∈ IRm, diag(x) denotes
the diagonal matrix whose i-th diagonal entry is xi, i = 1, . . . ,m.

2 The reflection shape space

We start from introducing some basic concepts in shape analysis and we mainly focus on the
reflection shape, which is briefly introduced below.

Given an object, we are interested in the geometrical information that remains when lo-
cation, scale, rotational and reflection efforts are all removed out from the object. Following
the definition introduced by Kendall [16], this geometrical information is so-called the reflection
shape of an object. Therefore, it is clear that the reflection shape of an object is invariant under
the similarity transformations of translation, scaling, rotation and reflection.

In applications, a finite number of points are located on each object based on some prior
decided criterions. We call these points the landmarks of the object. Each object in IRm can be
represented by the corresponding k landmarks. Without loss of generality, for each object, we
always assume that k > m and not all landmarks being the same. Usually, the configuration of k
landmarks is called k-ad. In statistical shape analysis, the configuration in IRm with k landmarks
or the k-ad is represented by an m × k matrix X, whose j-th column is the coordinates of the
j-th landmark under some chosen coordinate system, i.e.,

X = [x1, . . . , xk] ∈ IRm×k,

where xj ∈ IRm, j = 1, . . . , k are the landmark coordinate vectors.

The reflection shape of a k-ad X ∈ IRm×k is the equivalence class or the orbit under the
similarity transformations of translation, scaling, rotation and reflection. First, we remove the
effect of translation by using the standard Helmert sub-matrix (cf. [10, Definition 2.5]). For
the given positive integer k, the corresponding Helmert sub-matrix Hk ∈ IRk×(k−1) (cf. [10,
Definition 2.5]) is given by

Hk =
[
hk1, . . . , h

k
k−1

]
∈ IRk×(k−1),

where for each j ∈ {1, . . . , k−1}, the column vector hkj ∈ IRk consists of −1/
√
j(j + 1) repeated

j times, followed by j/
√
j(j + 1) and then k − j − 1 zeros, i.e.,

hkj =
(
−1/

√
j(j + 1), . . . , −1/

√
j(j + 1), j/

√
j(j + 1), 0, . . . , 0

)T
∈ IRk.

We note that each column is orthogonal to the vector of e of all ones in IRk and

Hk(Hk)T = Ik −
1

k
eeT and (Hk)THk = Ik−1,

where Ik is the identity matrix of size k. Therefore, the given k-ad X can be centered by right
multiplying Hk, i.e.,

Z = XHk ∈ IRm×(k−1).

To remove the effect of scaling, we consider the normalized centered k-ad X ∈ IRm×(k−1) of X,
i.e.,

X =
Z

‖Z‖
, Z = XHk, (1)
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which is called the preshape of the k-ad X. It is clear that the preshape of any given k-ad lies
on the unit sphere of IRm×(k−1). We call the unit sphere of IRm×(k−1) the preshape sphere and
denoted by

Sk
m :=

{
X ∈ IRm×(k−1) | ‖X‖ = 1

}
.

Finally, the reflection shape of the k-ad X is the orbit (equivalent class) of the preshape X ∈ Sk
m

of X under left multiplication by the m×m orthogonal matrix, i.e.,

[X]RS := {RX | R ∈ Om} .

Therefore, the reflection shape space is defined as

RΣk
m :=

{
[X]RS | X ∈ Sk

m

}
.

Let Sk−1 denote the space of all k − 1 by k − 1 real symmetric matrices. The Schoenberg
mapping J : RΣk

m → Sk−1 is given by

J([X]RS) = XTX, (2)

where X ∈ Sk
m is the preshape of a k-ad X given by (1). Define J(RΣk

m) to be the range of J ,
i.e.,

J(RΣk
m) = Sk−1+ (m) :=

{
Y ∈ Sk−1 | Y ∈ Sk−1+ , trace(Y ) = 1, 1 ≤ rank(Y ) ≤ m

}
.

We know from [11] that the Schoenberg mapping is a homeomorphism from the reflection shape
space to Sk−1+ (m). Moreover, it is well-known that (see e.g., [3, 4]) that the Schoenberg mapping
J is an embedding of the reflection shape space RΣk

m. We would like to point out that among
the possible embedding of the reflection shape space, the Schoenberg mapping is an equivalent
embedding which preserves many geometric features of RΣk

m (see [5, 6] for more details).
The range Sk−1+ (m) of the reflection shape space under J is a closed subset of the Euclidean

space Sk−1 with the norm ‖·‖. Therefore, the embedding J also induces a metric of the reflection
shape space RΣk

m, i.e.,

ρe([X]RS , [X
′]RS) = ‖J([X]RS)− J([X′]RS)‖. (3)

We call the metric ρe the extrinsic distance of RΣk
m. Therefore, the reflection shape space can

be considered as a metric space (RΣk
m, ρ

e).

3 Extrinsic mean of reflection shapes

Since the reflection shape space RΣk
m is a metric space with the metric ρe defined in (3), the

extrinsic mean of reflection shapes can be defined as the Fréchet mean under the extrinsic
distance. We give the details below.

Let (M, ρ) be a metric space where ρ is a metric on M. Denote B the Borel σ-algebra of
(M, ρ). Recall that a M-valued random variable X is a measurable function from an abstract
probability space (Ω,A,P) into (M,B), where “measurable” refers to the corresponding Borel
σ-algebra B.

Let Q be a given probability measure of M, i.e., the probability distribution of a given
M-valued random variable X. The corresponding Fréchet function is defined as

FQ(x) =

∫
M
ρ2(ω, x)Q(dω), x ∈M. (4)
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Then, the general mean of Q on the metric space introduced by Fréchet [12] can be defined as
the minimizers of the Fréchet function FQ. More precisely, if there exists some x ∈ M such
that the Fréchet function value FQ(x) <∞, then we call the set of minimizers of FQ on M the
Fréchet mean set of Q. Moreover, if the Fréchet mean set of the given probability measure Q is
a singleton, then we say the Fréchet mean of Q exists and denote it by µQ.

Let X1, . . . , Xn be independently and identically distributed (i.i.d.) M-valued random vari-
ables with the common distribution Q. Consider their empirical distribution Qn := 1

n

∑n
i=1 δXi ,

where δXi are the Dirac measure of Xi, i = 1, . . . , n. Then, the Fréchet mean set of Qn is called
the sample Fréchet mean set of Q, if there exists some x ∈M such that

FQn(x) =
1

n

n∑
i=1

ρ2(Xi, x) <∞.

Also, if the sample Fréchet mean set of Q is a singleton, then we say that the sample Fréchet
mean of Q exists and denote it by µ̄Q.

In particular, for the given probability measure Q in the reflection shape space (RΣk
m, ρ

e),
we call the corresponding Fréchet mean (set) the extrinsic mean (set) and the sample Fréchet
mean (set) the sample extrinsic mean (set), respectively. Since Sk−1+ (m) is a compact subspace,
we know from [5, Theorem 2.1] that the extrinsic mean set and the sample extrinsic mean set
of the given probability measure Q on (RΣk

m, ρ
e) are nonempty and compact. Moreover, if the

probability measure Q has a unique extrinsic mean, then it follows from [5, Theorem 2.3] that
any measurable selection from the sample Fréchet mean set is a strongly consistent estimator of
µQ.

Since the range Sk−1+ (m) is a closed subset in Sk−1, for every given Z ∈ Sk−1 there exists

a compact set in Sk−1+ (m) whose distance from Z is the smallest among all points in Sk−1+ (m).

We call this set the projections of Z ∈ Sk−1 on Sk−1+ (m) and denote it by

ΠSk−1
+ (m)(Z) :=

{
Z∗ ∈ Sk−1+ (m) | ‖Z∗ − Z‖ ≤ ‖Y − Z‖ ∀Y ∈ Sk−1+ (m)

}
.

Therefore, since the reflection shape space is embedded into the Euclidean space Sk−1 by the
Schoenberg embedding, we can obtain the characterization of the extrinsic (sample) means
by considering the corresponding projections of the mean of random variables in Sk−1. The
following proposition is taken from [5, Proposition 3.1].

Proposition 1 Let Q be a given probability measure of the reflection shape space (RΣk
m, ρ

e).
Let J be the Schoenberg embedding defined in (2). Denote Q̃ := Q◦J−1 the image of Q, which is
a probability measure in Sk−1. Then, the extrinsic mean set of Q is given by J−1(ΠSk−1

+ (m)(µQ̃)),

where µQ̃ is the classical expected value (mean) of Q̃ in the Euclidean space Sk−1, i.e.,

µQ̃ =

∫
Sk−1

Y Q̃(dY ).

Next, we shall study the formula of the projections ΠSk−1
+ (m)(Z) for a given Z ∈ Sk−1, which

is the solution set of the following nonconvex optimization problem

min
1

2
‖Y − Z‖2

s.t. trace(Y ) = 1, rank(Y ) ≤ m,

Y ∈ Sk−1+ .
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For the given Z ∈ Sk−1, denote λ(Z) = (λ1(Z), λ2(Z), . . . , λk−1(Z))T with the eigenvalues
λ1(Z) ≥ λ2(Z) ≥ . . . ≥ λk−1(Z) of Z arranging in the non-increasing order. Let ν1(Z) > . . . >
νr(Z) be the distinct eigenvalues of Z. For each s ∈ {1, . . . , r}, define the index set

as = {j ∈ {1, . . . , k − 1} | λj(Z) = νs(Z)} . (5)

Let Z = PΛ(Z)P T be the eigenvalue decomposition of Z, where Λ(Z) = diag(λ(Z)) is
the diagonal matrix whose i-th diagonal item is λi(Z), i = 1, . . . , k − 1 and P ∈ Ok−1 is the
(k − 1)× (k − 1) orthogonal matrix. For the given Z ∈ Sk−1, define

θj(Z) :=

∑j
i=1 λi(Z)− 1

j
, j = 1, . . . ,m. (6)

Let κ ∈ {1, . . . ,m} be the largest index such that λκ(Z) > θκ(Z), i.e.,

κ := max {j ∈ {1, . . . ,m} | λj(Z) > θj(Z)} . (7)

Moreover, define the index sets α, β, and γ respectively by

α := {j ∈ {1, . . . , k − 1} | λj(Z) > λm(Z)} (8)

β := {j ∈ {1, . . . , k − 1} | λj(Z) = λm(Z)} (9)

γ := {j ∈ {1, . . . , k − 1} | λj(Z) < λm(Z)} (10)

For the given Z ∈ Sk−1, let g : IRk−1 → IRk−1 be a vector-valued function defined on the
eigenvalue vector of λ(Z) by

g(λ(Z)) = (g1(λ(Z)), . . . , gk−1(λ(Z)))T ∈ IRk−1

with

gj(λ(Z)) =

{
λj(Z)− θκ(Z) if 1 ≤ j ≤ κ,
0 otherwise,

j = 1, . . . , k − 1. (11)

Thus, the projections ΠSk−1
+ (m)(Z) for the given Z ∈ Sk−1 can be characterized as follows.

Proposition 2 Let Z = PΛ(Z)P T be the eigenvalue decomposition of Z. Then,

ΠSk−1
+ (m)(Z) =

{
[Pα PβQ Pγ ]diag(g(λ(Z)))[Pα PβQ Pγ ]T | Q ∈ O|β|

}
. (12)

Proof. It follows from Ky Fan’s inequality (cf. [2, (IV.62)]), we know that Z∗ ∈ ΠSk−1
+ (m)(Z)

if and only if Z and Z∗ have a simultaneous ordered eigenvalue decomposition (i.e., there exists
U ∈ Ok−1 such that Z = UΛ(Z)UT and Z∗ = UΛ(Z∗)UT ), and the eigenvalues of Z∗ is the
optimal solution of the following simple optimization problem

min
1

2
‖y − λ(Z)‖2

s.t.
∑k−1

i=1 yi = 1,

y1 ≥ y2 ≥ . . . ≥ ym ≥ ym+1 = . . . = yk−1 = 0.

It follows from the classical KKT condition that g(λ(Z)) defined in (11) is the unique optimal
solution of this convex problem. Furthermore, since

P TUΛ(Z)UTP = Λ(Z),
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it can be checked directly that P TU ∈ Ok−1 has the block diagonal structure, i.e.,

P TU = diag
(
(P TU)a1a1 , . . . , (P

TU)arar
)

with (P TU)asas ∈ O|as|, s = 1, . . . , r.

Therefore, from the definition of g(λ(Z)), we know that Z∗ ∈ ΠSk−1
+ (m)(Z) if and only if there

exists Q ∈ O|β| such that

Z∗ = [Pα PβQ Pγ ]diag(g(λ(Z)))[Pα PβQ Pγ ]T .

This completes the proof. �
For the given Z, define the subset β1 and β2 of the index set β by

β1 := {j ∈ {1, . . . ,m} | λj(Z) = λm(Z)} and β2 := {j ∈ {m+ 1, . . . , k − 1} | λj(Z) = λm(Z)} .

From (12), we know that the projection set ΠSk−1
+ (m)(Z) is singleton if and only if κ /∈ β1 or

β2 = ∅ for the given Z. Therefore, by combining with Proposition 1, we have the following
corollary on the extrinsic mean of the reflection shape.

Corollary 1 Let Q be a given probability measure on the reflection shape space (RΣk
m, ρ

e).
Then, the extrinsic mean of Q exists if and only if the expect value µQ̃ of the probability distri-

bution Q̃ = Q ◦ J−1 in Sk−1 satisfies that

κ /∈ β1 or λm(µQ̃) > λm+1(µQ̃), (13)

where κ and θm(µQ̃) are defined with respect to the symmetric matrix µQ̃ by (7) and (6), re-
spectively.

For the given Z ∈ Sk−1, if the index set β = β1 ∪ β2 is empty, then we know that the
projection ΠSk−1

+ (m) is a matrix-valued function which is well-defined on a neighborhood of

Z ∈ Sk−1 (also known as the spectral operator according to [8, 9]). Moreover, we know from
[8, Theorem 3.6 & 3.11] that the ΠSk−1

+ (m) is also twice continuously differentiable at Z, i.e., for

any Sk−1 3 H → 0,

ΠSk−1
+ (m)(Z +H)−ΠSk−1

+ (m)(Z) = Π′Sk−1
+ (m)

(Z)H +O(‖H‖2), (14)

where Π′
Sk−1
+ (m)

(Z) at Z is the derivative of ΠSk−1
+ (m) at Z given by

Π′Sk−1
+ (m)

(Z)H = P
(
Ξ ◦ P THP

)
P T − P

 1

κ
tr(P TαHPα)I|α| 0

0 0

P T , (15)

where the symmetric matrix Ξ ∈ Sk−1 is defined by

Ξij :=



1 if 1 ≤ i, j ≤ κ,

λi(Z)− θκ(Z)

λi(Z)− λj(Z)
if 1 ≤ i ≤ κ and κ+ 1 ≤ j ≤ k − 1,

−λj(Z) + θκ(Z)

λi(Z)− λj(Z)
if κ+ 1 ≤ i ≤ k − 1 and 1 ≤ j ≤ κ,

0 otherwise,

i, j = 1, . . . , k − 1.
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4 The asymptotic analysis of the extrinsic mean

In this section, we always assume that the extrinsic mean µQ of probability measure Q on
the reflection shape space (RΣk

m, ρ
e) exists, which implies that the mean µQ̃ of the probability

distribution Q̃ = Q ◦ J−1 in Sk−1 satisfies condition (13) and the projection ΠSk−1
+ (m) is well-

defined in a neighborhood of µQ̃ in Sk−1 and differentiable at µQ̃ with the derivative Π′
Sk−1
+ (m)

given by (15).

Let X1, X2, . . . be a sequence of i.i.d. random variables in the reflection shape space
(RΣk

m, ρ
e) with the common probability measure Q. Since the Schoenberg mapping J given

by (2) is a homeomorphism, we know that the images Y1 = J(X1), Y2 = J(X2), . . . is a sequence
of i.i.d. random variables in the Euclidean space Sk−1 with the common probability measure

Q̃ = Q ◦ J−1. For the given sample size n, let Y n =
1

n

n∑
i=1

Yi be the sample mean. Then, we

know from the strong law of large numbers that Y n converges to the mean µQ̃ almost surely as
n→∞. Therefore, we know that for a sufficiently large sample size n, the projection mapping
ΠSk−1

+ (m) is well-defined at the sample mean Y n almost surely.

Let us further assume that the common distribution of the i.i.d. random variables Y1, . . . , Yn
in Sk−1 has the covariance matrix Σ (under certain orthogonal base of Sk−1). It follows from

the multivariate central limit theorem that the distribution of Gn :=
√
n
(
Y n − µQ̃

)
converges

to a Gaussian distribution with zero mean and the covariance Σ as n→∞, i.e.,

Gn =
√
n
(
Y n − µQ̃

)
d−→ G,

where G is a symmetric random matrix with this limit Gaussian distribution. The following
lemma is taken from Anderson [1], which is important for our analysis.

Lemma 1 Let E and E ′ be two given Euclidean space. Let Un be a given E-valued random
variable defined on a probability space (Ω,A,P). Suppose that Un converges in distribution to
the E-valued random variable U . For each n, let Fn : E → E ′ be a given function, and let Vn
be the E ′-valued random variable defined by Vn = Fn(Un). Assume that there exists a function
F : E → E ′ such that for every continuity point Y of F ,

lim
n→∞

Fn(Yn) = F (Y ) as lim
n→∞

Yn = Y.

If the probability of the set of discontinuities of F in E is zero, then we have

Vn
d−→ V as n→∞,

where V is the E ′-valued random variable given by V = F (U).

The following results are on the asymptotic distribution of the extrinsic mean of the reflection
shapes.

Theorem 1 Let X1, . . . , Xn be a sequence of i.i.d. random variables in the reflection shape
space (RΣk

m, ρ
e) with the common probability measure Q. Assume that the extrinsic mean of

Q exists. Let Y n =
1

n

n∑
i=1

Yi be the sample mean of Yi = J(Xi), i = 1, . . . , n, and let µQ̃ be
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the mean of the image probability distribution Q̃. Let G be the random matrix with the limit
distribution of Gn =

√
n(Y n − µQ̃). Then, we have

√
n
(

ΠSk−1
+ (m)(Y n)−ΠSk−1

+ (m)(µQ̃)
)

d−→ Z as n→∞,

where Z is a symmetric random matrix given by Π′
Sk−1
+ (m)

(µQ̃)(G).

Proof. Since the extrinsic mean of Q exists, we know that the projection ΠSk−1
+ (m) is con-

tinuously differentiable in a neighborhood of µQ̃. It is clear that the derivative function F :=

Π′
Sk−1
+ (m)

(µQ̃) is continuous everywhere over Sk−1. Suppose that H ∈ Sk−1 is arbitrarily chosen.

Let Hn ∈ Sk−1 be a sequence converging to H. For the sufficiently large n, we define

Fn(Hn) :=
√
n

(
ΠSk−1

+ (m)(µQ̃ +
Hn√
n

)−ΠSk−1
+ (m)(µQ̃)

)
.

Therefore, we know from (14) that

lim
n→∞

Fn(Hn) = F (H).

Thus, the desired result follows directly from Lemma 1. �
It is well-known that the eigenvalues and eigenvectors of symmetric matrices have the

following perturbation properties: for any given Z ∈ Sk−1 with eigenvalue decomposition
Z = P (Z)Λ(Z)P (Z)T and any Sk−1 3 H → 0,

Λasas(Z +H)− Λasas(Z) = Λ(Pas(Z)THPas(Z)) +O(‖H‖2), s = 1, . . . , r,

where as, s = 1, . . . , r are defined by (5) with respect to Z. Moreover, for the given Z ∈ Sk−1,
if we define the functions Ps : Sk−1 → Sk−1, s = 1, . . . , r by

Ps(Y ) =
∑
i∈as

Pi(Y )Pi(Y )T for any Y = P (Y )Λ(Y )P (Y )T ,

then Ps, s = 1, . . . , r are twice continuously differentiable near Z, which implies that for any
Sk−1 3 H → 0,

Ps(Z +H)− Ps(Z) = P ′s(Z)H +O(‖H‖2), s = 1, . . . , r,

where the derivative P ′s(Z), s = 1, . . . , r are given by

P ′s(Z)H = P (Z)T
[
Ωs(Z) ◦ P (Z)THP (Z)

]
P (Z)T

with

(Ωs(Z))ij =


1

λi(Z)− λj(Z)
if i ∈ as, j ∈ as′ , s′ 6= s,

−1

λi(Z)− λj(Z)
if i ∈ as′ , j ∈ as, s′ 6= s,

0 otherwise ,

i, j = 1, . . . , k − 1 .

Let Y1, . . . , Yn in Sk−1 be a sequence of the i.i.d. random matrices with the mean µ and Y n

be the correpsonding sample mean. Let G be the random matrix with the limit distribution of√
n(Y n − µ). Then, by the similar argument of Theorem 1, we obtain from Lemma 1 that as

n→∞ √
n
(
Λasas(Y n)− Λasas(µ)

) d−→ Λ(Pas(µ)TGPas(µ)), s = 1, . . . , r

and √
n
(
Ps(Y n)− Ps(µ)

) d−→ P ′s(µ)G, s = 1, . . . , r,

where all index sets as are defined with respect to the mean µ.
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5 Two-sample test on the reflection shape space

As an application of the obtained asymptotic distribution of the sample extrinsic mean, we
can construct the statistical test to compare two probability distributions Q1 and Q2 on the
reflection shape space (RΣk

m, ρ
e).

Let X1
1 , . . . , X

1
n and X2

1 , . . . , X
2
n be two i.i.d. samples from Q1 and Q2 respectively. For

simplicity, we also assume that they are mutually independent. Suppose that the extrinsic
means of Q1 and Q2 exist, denoted by µQ1 and µQ2 , respectively. The hypothesis which we
want to test is

H0 : Q1 = Q2.

Let Y 1
i = J(X1

i ) and Y 2
i = J(X2

i ), i = 1, . . . , n be the image samples in Sk−1. Also, we

denote Y
1
n = 1

n

∑n
i=1 Y

1
i and Y

2
n = 1

n

∑n
i=1 Y

2
i the corresponding sample means. Let µQ̃1

and

µQ̃2
be the means of Q̃1 = Q1 ◦J−1 and Q̃2 = Q2 ◦J−1, and G1 and G2 be the random matrices

with the limit distributions of G1
n =
√
n(Y

1
n − µQ̃1

) and G2
n =
√
n(Y

2
n − µQ̃2

), respectively.
Following the standard two-sample hypothesis procedure (see e.g., [19]), which was also used

in [3], we are able to construct the test statistic by comparing the means µQ̃1
and µQ̃2

. Therefore,
if the null hypothesis H0 is true, then we have µQ̃1

= µQ̃2
= µ. Then, by the independence

assumption of Q1 and Q2, we know from Theorem 1 that

√
2n
(

ΠSk−1
+ (m)(Y

1
n)−ΠSk−1

+ (m)(Y
2
n)
)

=
√

2n
(

ΠSk−1
+ (m)(Y

1
n)−ΠSk−1

+ (m)(µ)
)
−
√
n
(

ΠSk−1
+ (m)(Y

2
n)−ΠSk−1

+ (m)(µ)
)

d−→ N (0,
1

2
Σ1 +

1

2
Σ2),

where Σ1 and Σ2 are the covariance matrices of the symmetric Gaussian random matrices G1

and G2 under some basis of Sk−1. Here, for simplicity, we just choose the standard orthogonal
basis of Sk−1, i.e., {

eie
T
i ,

1

2
(eie

T
j + eje

T
i ) | 1 ≤ i < j ≤ k − 1

}
, (16)

and ei is the vector with the i-th entry being one and the others being zeros. We use the

pooled sample mean µ̄n := Y
1
n+Y

2
n

2 to estimate the true mean µ. Also, let S1, S2 ∈ IR(k−1)×n

be two matrices whose j-th columns are the coordinate vectors of Π′
Sk−1
+ (m)

(µ̄n)(Y 1
j − µ̄n) and

Π′
Sk−1
+ (m)

(µ̄n)(Y 2
j − µ̄n) under the standard basis of Sk−1 given by (16), respectively. Denote Σ1

and Σ2 the sample covariance matrices of the random vector {S1
j }nj=1 and {S2

j }nj=1, respectively.
Finally, we define the statistic

T := (S1 − S2)T
(

1

n
Σ1 +

1

n
Σ2

)−1
(S1 − S2).

If we know that the H0 is true, then T converges in distribution to χ2 distribution with d :=
(k−1)(k−2)

2 degrees of freedom. Therefore, we will reject H0 at asymptotic level τ if

T > χ2
d(1− τ),

where χ2
d(1−τ) is the (1−τ)-quantile of the Chi-squared distribution with d degrees of freedom.

Next, we will implement the obtained statistical test of the reflection shapes on the following
simple classification problem taken from [13]. We will use the exact same settings as those of [13]
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Figure 1: The classification of the cube and pyramid

in the numerical expression. Consider two 3D-shapes in Figure 1: the left one is the regular unit
cube and the right one is the pyramids without top section. Each one has 8 landmarks. With
different parameters ε > 0, two configurations in Figure 1 can be represented by the following
3× 8 matrices (ε = 1 for the left one and 0 < ε < 1 for the right one)

0 1 1+ε
2

1−ε
2 0 1 1+ε

2
1−ε
2

0 0 1−ε
2

1−ε
2 1 1 1+ε

2
1+ε
2

0 0 ε ε 0 0 ε ε

 .
Also, we add independent Gaussian noise with mean 0 and variance σ2 = 0.2 to each landmark.
For each shape, let the sample size n = 10. We try to distinguish these two shapes by considering
the test for the equality of means to the significance level 0.05. We report the percentages of
correct classifications as follows.

Table 1: Percentage of correct classification in 1000 simulations

ε Z-mean D-mean S-mean E-mean

0 74% 20% 40% 70%
0.2 57% 15% 31% 62%
0.3 42% 10% 21% 59%

In Table 1, our extrinsic mean of reflection shapes is denoted by “E-mean”. The Ziezold
mean (cf. [13]), the mean defined by Dryden et al. [11] and the Schoenberg mean defined by
[3] are denoted by “Z-mean”, “D-mean” and “S-mean”, respectively. The numerical results of
the Z-mean are taken from [13]. Also, the corresponding R-package can be found from [14]. We
implemented our algorithms for the “D-mean”, “S-mean” and “E-mean” in MATLAB 2013a.
The numerical experiments were run in MATLAB under a Windows 8 64-bit system on an Intel
Core i7 2.4GHz CPU with 8GB memory. From Table 1, we can see that in most cases, the
performance of the extrinsic reflection shape mean is better than others with respect to the
percentage of correct classifications. However, in the case that ε = 0, for the noisy nearly two-
dimensional pyramids, the corresponding Schoenberg mean (if exists) and D-mean are always in
three-dimensional space. Therefore, the performance of these two means are not as well as others
(see also [13] for more details). In particular, we know from the definition of the projections
(12) that our extrinsic reflection shape mean may have lower embedding dimension. It can be
seen from Table 1 that our extrinsic reflection shape mean performs equally well as the Ziezold
mean, where the true embedding dimension is used.
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