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Abstract

Euclidean distance embedding appears in many high-profile applications including wire-
less sensor network localization, where not all pairwise distances among sensors are known
or accurate. The classical Multi-Dimensional Scaling (cMDS) generally works well when the
partial or contaminated Euclidean Distance Matrix (EDM) is close to the true EDM, but
otherwise performs poorly. A natural step preceding cMDS would be to calculate the nearest
EDM to the known matrix. A crucial condition on the desired nearest EDM is for it to have
a low embedding dimension and this makes the problem nonconvex. There exists a large
body of publications that deal with this problem. Some try to solve the problem directly
and some are the type of convex relaxations of it. In this paper, we propose a numerical
method that aims to solve this problem directly. Our method is strongly motivated by the
majorized penalty method of Gao and Sun for low-rank positive semi-definite matrix op-
timization problems. The basic geometric object in our study is the set of EDMs having
a low embedding dimension. We establish a zero duality gap result between the problem
and its Lagrangian dual problem, which also motivates the majorization approach adopted.
Numerical results show that the method works well for the Euclidean embedding of Network
coordinate systems and for a class of problems in large scale sensor network localization and
molecular conformation.

AMS subject classifications. 49M45, 90C25, 90C33

Keywords: Euclidean distance matrix, Lagrangian duality, low-rank approximation, ma-
jorization method, semismooth Newton-CG method.

1 Introduction

Euclidean distance embedding appears in many important applications including wireless sensor
network localization, where only partial (accurate or contaminated) pairwise distances between
n sensors are known. A key question being asked in such context is whether the known distances
contain adequate information to recover the location of the n sensors in typically a low (e.g., 2
or 3) dimensional space. The question is often modeled as a nonconvex optimization problem.
There exist a large number of publications on this problem. Some try to solve the problem
directly and some are the type of convex relaxations of it. The latter type in particular has
attracted tremendous interests of many researchers over the past few years, largely due to it
being an important application of Semi-Definite Programming (SDP). For excellent references
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on this topic, one may refer to the recent surveys by Krislock and Wolkowicz [30] and Liberti et
al. [35], and the thesis [11]. In this paper, we propose a numerical method that aims to solve
this problem directly. Numerical results show that our method works well for the Euclidean
embedding of Network coordinate systems and for a class of problems in large scale sensor net-
work localization and molecular conformation. We now describe the problem, the motivation
that leads to our method, and the major contributions in this paper.

(a) The problem. Suppose we have n points {x1, x2, · · · , xn} in IRr. The primary infor-
mation that is available for those points is the measured Euclidean distances among them

dij ≈ ‖xi − xj‖, for some pairs (xi, xj). (1)

As indicated in (1), those measurements may or may be not accurate. Our main problem is to
recover the n points in IRr purely based on those available distances. There is a wide literature
on this problem (for a long list of papers on this problem, see [9, 5, 11, 30, 35]). We are content
with just mentioning a few fairly recent publications in three categories: Distance Geometry,
Sensor Network Localization (SNL) and Multi-Dimensional Scaling (MDS).

The problem has long been studied in distance geometry (see [35] and the references therein)
and there are software tools available including DGSOL of Moré and Wu [41] and MD-jeep of
Mucherino et al. (see [36, 33, 35]). The problem can also be posted as the SNL problem, which
is often solved by the method of SDP relaxations, see the SDP method of Biswas and Ye [3],
SNLSDP of Biswas et al. [4] and SFSDP of Kim et al. [28]. Deeply rooted in the classical MDS
(cMDS) (see [9, 5]), the Euclidean Distance Matrix (EDM) completion approach initially studied
by Alfakih et al. [1] (see also [46, 29]) uses the (convex) quadratic SDP to tackle the problem.
Our approach is also heavily influenced by the classical MDS, which is outlined below.

(b) cMDS and EDM-based formulations. In cMDS, a n×n matrix D is called a EDM
if there exist points p1, . . . , pn in IRr such that Dij = ‖pi − pj‖2 for i, j = 1, . . . , n (note: the
distance is squared). IRr is often referred to as the embedding space and r is the embedding
dimension when it is the smallest such r. The cMDS is based on the following well-known result.
A n× n symmetric matrix D is EDM if and only if

diag(D) = 0, J(−D)J � 0 and J := I − eeT /n, (2)

where diag(·) is the diagonal operator that takes the diagonal elements of a matrix, X � 0
means that X is positive semidefinite, I (or In when the indication of dimension is needed)
is the identity matrix, and e is the vector of all ones in IRn. The origin of this result can
be traced back to Schoenberg [44] and an independent work [49] by Young and Householder.
See also Gower [21] for a nice derivation of (2). The corresponding embedding dimension is
r = rank(JDJ). In this case, the n embedding points p1, . . . , pn in IRr are given by the columns
of P T , where P ∈ IRn×r satisfies

−JDJ/2 = PP T . (3)

This embedding result is the foundation of the cMDS, which deals with the case when D is not
a true EDM.

Let Sn denote the space of n × n symmetric matrices equipped with the standard inner
product 〈A,B〉 = trace(AB) for A,B ∈ Sn. Let ‖ · ‖ denote the induced Frobenius norm. Let
Sn+ denote the cone of positive semidefinite matrices in Sn (often abbreviated as X � 0 for
X ∈ Sn+) and let Sn+(r) denote the set of positive semidefinite matrices whose ranks are not
greater than r. The cMDS actually solves the following optimization problem:

Y ∗ ∈ arg min ‖Y − (−JDJ/2)‖2, s.t. Y ∈ Sn+(r). (4)
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The n embedding points are given by the columns of P T ∈ IRr×n obtained through Y ∗ = PP T .
The solution Y ∗ can be calculated through the spectral decomposition of JDJ (see e.g., [37,
Thm. 1]). When D is a true EDM with embedding dimension r, it is obvious Y ∗ = −JDJ/2
and the embedding formula (3) is recovered. However, when D is not a true EDM, the cMDS
is often not robust [6] as the nearest distance from D is measured through the transformation
JDJ rather than on D itself.

A more natural “nearness” measurement is the following:

Y ∗ ∈ arg min ‖Y −D‖2/2, s.t. Y ∈ En(r), (5)

where En(r) is the set of EDMs with embedding dimensions not greater than r, and Y ∗ is the
nearest EDM to D from this set. A more general model is

Y ∗ ∈ arg min ‖H ◦ (Y −D)‖2/2, s.t. Y ∈ En(r), (6)

where H ∈ Sn is the weight matrix (Hij ≥ 0) and “◦” is the Hadamard product between ma-
trices. If H = E (the matrix of all ones), (6) reduces to (5). The n embedding points from (5)
or (6) are given by the columns of P T ∈ IRr×n satisfying −JY ∗J/2 = PP T . The cost of having
such natural models is that both problems have no closed-form solutions and have to rely on iter-
ative algorithms for their optimal solutions. This is challenging as both problems are nonconvex.

(c) Methods of convex relaxations. Therefore, convex relaxation methods form an
important approach to those problems. We use (5) below to demonstrate this approach. By the
Schoenberg characterization (2), we have

Y ∈ En(r) ⇐⇒ Y ∈ Snh , −JY J � 0, and rank(JY J) ≤ r,

where Snh is the hollow subspace in Sn defined by Snh := {A ∈ Sn : diag(A) = 0} . The noncon-
vexity of (5) is caused by the rank constraint. Ignoring the rank constraint leads to the convex
relaxation of (5):

min ‖Y −D‖2/2, s.t. Y ∈ Snh and − JY J � 0. (7)

The feasible region of (7) is actually the convex cone of all n × n EDMs, denoted by En. The
convex relaxation problem (7) has a serious drawback. The (generalized) Slater condition does
not hold because JY J has zero as its eigenvalue (e.g., (JY J)e = 0). Two important convex
reformulations emerged to rectify this drawback.

One is based on the fact that there exists a one-to-one linear transformation L : Sn−1
+ 7→ En

(see [1, Eq.(8)]). Therefore, (7) is equivalent to

min ‖L(X)−D‖2/2 s.t. X ∈ Sn−1
+ . (8)

This reformulation establishes an important link to SDP and was first studied by Alfakih et al.
[1]. It was further studied as a prototype of convex quadratic SDPs by Toh [46], where a
regularization term is added to encourage a low-rank solution of (8). The other reformulation
is based on the fact that

−JY J � 0 ⇐⇒ −Y ∈ Kn+ :=
{
A ∈ Sn : xTAx ≥ 0, x ∈ e⊥

}
,

where e⊥ := {x ∈ IRn : eTx = 0}. Therefore, (7) is equivalent to

min ‖Y −D‖2/2, s.t. Y ∈ Snh and − Y ∈ Kn+. (9)
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A nice feature of this reformulation is that it can be treated as a projection problem onto the
intersection of the subspace Snh and the closed convex cone (−Kn+). Hence, the Method of Al-
ternating Projections (MAP) of Dykstra-Han type [13, 22] is a choice. In fact, Glunt et al. [17]
and Gaffke and Mathar [14] independently studied such MAPs, yet based on different projection
formulae onto (−Kn+). A drawback of MAPs is their slow convergence. Recently, Qi [43] pro-
posed a semismooth Newton-CG method, which enjoys the quadratic convergence rate. Another
progress is [26] by Jiang et al. on (convex) semidefinite least squares problems, which include
(8) as a special case. We note that for both reformulations (8) and (9), the Slater condition holds.

(d) Our approach and main contributions. Little success has been achieved towards
the solution of (6). Earlier attempts include a (complicated) two-phase method and its vari-
ants in [18, 19], where no rigorous convergence analysis was given. However, we begin to see
important progresses are being made. For example, Mishra et al. [40] proposed a Manifold-
Based-Optimization (MBO for short) method for (8) with L (see [40, Problem (2)]) being a linear
mapping from Sn+ to En, which is further restricted on a rank-constrained manifold. The MBO

works extremely well for a class of problems, but has its limitations. We will report our numerical
experience of it in Sect. 6.

In this paper, we try to fill the gap by continuing our effort initiated in [43] to tackle the
problem (5), which in terms of the terminologies in (9), is equivalent to

min ‖Y −D‖2/2, s.t. Y ∈ Snh , −Y ∈ Kn+, and rank(JY J) ≤ r. (10)

Casting (5) as (10) is more revealing of the problem structure than its original formulation.
To demonstrate this point, we compare it with the low-rank positive semidefinite least squares
problem recently studied by Gao [15] and Gao and Sun [16]:

min ‖X − C‖2/2, s.t. X ∈ Ω and X ∈ Sn+(r), (11)

where C ∈ Sn is given, Ω is a closed convex set in Sn defined by linear equalities and/or in-
equalities, and the objective function can include the H-weights. A majorized penalty approach
proposed in [15, 16] proves to be extremely efficient for benchmarks of the nearest low-rank
correlation matrix problems. The success of the majorization approach is largely due to the nice
properties of the projection operator to the nonconvex set Sn+(r). We would like to ask what
the corresponding set of Sn+(r) is in (5). It turns out that it is the set

Kn+(r) :=
{
Y ∈ Sn : Y ∈ Kn+ and rank(JY J) ≤ r

}
(not En(r) in (5)!) that plays a similar role in (10) as Sn+(r) does in (11).

Therefore, our research starts from investigating the properties of Kn+(r), followed by a
detailed study of the Lagrangian dual problem of (10) (see (32))

min
y∈IRn

θ(y) := ‖ΠKn
+(r)(−D + Diag(y))‖2/2− ‖D‖2/2, (12)

where ΠKn
+(r)(X) is the orthogonal projection onto Kn+(r) and Diag(y) is the diagonal matrix

with y being its diagonal. Although the projection may be not unique due to the nonconvexity
of Kn+(r), the function θ(y) is well defined and is irrelevant to the choice of the projection. Those
results serve the basis for extending the majorized penalty method of Gao and Sun [16] to the
problem (6). The extension is built in such a way that the Newton method developed in [43] is
well suited to solving the subproblems encountered. The convergence properties of the original
approach of Gao and Sun are inherited and delicate issues such as the choice of penalty (concave)
functions are dealt with so as to improve the numerical performance of the method. We con-
ducted extensive numerical tests on problems of (5) and (6) arising from three important fields:
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Euclidean embedding of Network coordinate systems, Sensor network localization with/without
anchors, and Molecular conformations. Our numerical results show that the proposed method
is very promising.

(e) Organization of the paper. Sect. 2 includes some basic facts related to Kn+ and
Sn+(r). We investigate the properties of ΠKn

+(r)(·) in Sect. 3. In Sect. 4, we study the Lagrangian

dual problem (12). We characterize the subdifferential ∂θ(y) solely based on the information of
the first r largest eigenvalues of (J(−D + Diag(y))J) and the corresponding eigenvectors (see
Eq. (33) and Prop. 3.3). The boundedness of the level set of θ(·) is proved in (Prop. 4.1). We
are also able to characterize when there is no duality gap (Thm. 4.2). This result clarifies the
situations when (5) can be solved to its global optimality. Sect. 5 is devoted to the H weighted
problem (6), where the majorized penalty approach of Gao and Sun [16] is extended. Using the
zero duality gap result (Thm. 4.2), Prop. 5.4 establishes the rationale of the majorized penalty
approach. We conduct extensive numerical tests in Sect. 6. We conclude in Sect. 7.

2 Preliminaries

In this section, we prepare some facts for our nonsmooth analysis of the metric projection onto
Kn+(r). It turns out that the metric projection onto the convex set Kn+ plays a very important
role.

Given a closed set C ⊂ Sn and X ∈ Sn, let ΠC(X) denote an optimal solution of the following
metric projection problem:

min ‖Z −X‖2 s.t. Z ∈ C.

When C is convex, ΠC(X) is unique. When C is not convex, there may be multiple solutions and
we let ΠB

C (X) denote the set of all projections of X onto C.
Let Q ∈ Sn be the Householder matrix defined by

Q := I − 2

vT v
vvT with v := [1, . . . , 1,

√
n+ 1]T ∈ IRn.

We note that Q is symmetric and orthogonal (i.e., Q2 = I). For X ∈ Sn, denote

QXQ =:

[
X̂1 x̂
x̂T x̂0

]
with X̂1 ∈ Sn−1. (13)

According to [23, Thm. 2.1] (see also [17, Eq. (3.16)]), we have the Hayden-Wells formula

ΠKn
+

(X) = Q

[
ΠSn−1

+
(X̂1) x̂

x̂T x̂0

]
Q. (14)

Recall that Sn+(r) is the set of all positive semidefinite matrices whose ranks are not greater
than r. The following are basic identities that we are going to use frequently.

Lemma 2.1 For X having the decomposition (13), let

X0 :=

[
0 x̂
x̂T x̂0

]
.

The following hold.

(i) JΠKn
+

(X)J = ΠSn+(JXJ).

5



(ii) ΠKn
+

(X) = ΠSn+(JXJ) +QX0Q = ΠSn+(JXJ) + (X − JXJ).

(iii) X = JXJ +QX0Q and 〈JXJ,X − JXJ〉 = 0.

(iv) X ∈ Kn+ if and only if X̂1 � 0. Moreover, X ∈ Kn+(r) if and only if X̂1 ∈ Sn−1
+ (r).

Proof. The matrix J defined in (2) has a nice relationship with Q:

J = Q

[
In−1 0

0 0

]
Q. (15)

(i) It follows from the Hayden-Wells formula (14) that

JΠKn
+

(X)J = Q

[
In−1 0

0 0

]
Q2

[
ΠSn−1

+
(X̂1) x̂

x̂T x̂0

]
Q2

[
In−1 0

0 0

]
Q

= Q

[
ΠSn−1

+
(X̂1) 0

0 0

]
Q.

We also note that

JXJ = Q

[
In−1 0

0 0

]
QXQ

[
In−1 0

0 0

]
Q = Q

[
X̂1 0
0 0

]
Q. (16)

The fact of Q being symmetric and orthogonal proves (i).
(ii) This is a consequence of (i). By the Hayden-Wells formula (14), we have

ΠKn
+

(X) = Q

[
ΠSn−1

+
(X̂1) 0

0 0

]
Q+Q

[
0 x̂
x̂T x̂0

]
Q

= JΠKn
+

(X)J +Q

[
0 x̂
x̂T x̂0

]
Q

= ΠSn+(JXJ) +Q

[
0 x̂
x̂T x̂0

]
Q.

(iii) It follows from (13) that

X = Q

[
X̂1 x̂
x̂T x̂0

]
Q = Q

[
X̂1 0
0 0

]
Q+Q

[
0 x̂
x̂T x̂0

]
Q = JXJ +QX0Q.

Moreover, we have

〈JXJ, X − JXJ〉 = 〈JXJ, QX0Q〉 = 〈QJXJQ, X0〉 = 0.

The last equality uses the structure of X0 and the fact (by (16))

QJXJQ =

[
X̂1 0
0 0

]
.

(iv) Under the condition of (iv), it follows from (13) and the Hayden-Wells formula (14) that

X ∈ Kn+ ⇐⇒ ΠKn
+

(X) = X ⇐⇒ QΠKn
+

(X)Q = QXQ ⇐⇒ X̂1 = ΠSn−1
+

(X̂1) ⇐⇒ X̂1 � 0.

This proves the first part. It follows from (16) that rank(JXJ) = rank(X̂1). Hence, X ∈ Kn+(r)

is equivalent to X̂1 ∈ Sn−1
+ (r). �
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The result in (iii) can be regarded as an orthogonal decomposition of matrix X. Therefore,
we have

‖X‖2 = ‖JXJ‖2 + ‖X − JXJ‖2. (17)

It is clear from Lemma 2.1 that the projection ΠKn
+

is related to the projection ΠSn+ . Such
a relationship can be extended to the metric projections ΠKn

+(r) and ΠSn+(r). To establish this

relationship, we need the following results from [15, Sect. 2.4.1].

Let X have the spectral decomposition

X = PΛ(X)P T ,

where Λ(X) := Diag(λ(X)), λ1(X) ≥ . . . ≥ λn(X) are the eigenvalues of X being arranged in
the non-increasing order and P ∈ On with On being the set of all n×n orthogonal real matrices.
Define

α := {i | λi(X) > λr(X)} and β := {i | λi(X) = λr(X)} .

For an index set I ⊆ {1, . . . , n}, XI denotes the submatrix consisting of the columns in X
indexed by I.

Lemma 2.2 [15, Lemma 2.4] The set ΠB
Sn+(r)(X) can be characterized as follows.

ΠB
Sn+(r)(X) =

{
[Pα, PβVβ]Diag(v)[Pα, PβVβ]T

∣∣ Vβ ∈ O|β|}
where v := ((λ1(X))+, . . . , (λr(X))+, 0, . . . , 0)T ∈ IR|α|+|β|.

We let ΠSn+(r)(X) denote a particular solution in ΠB
Sn+(r)(X). The distance ‖X −ΠSn+(r)(X)‖

is irrelevant to the choice of the solution. Define

Ξr(X) :=
1

2

(
‖X‖2 − ‖X −ΠSn+(r)(X)‖2

)
.

Then Ξr(·) is a convex function of X (see [24, Chp. IV: Example 2.1.4]). We let ∂Ξr(X) denote
the subdifferential of Ξr at X.

Lemma 2.3 [15, Prop. 2.5] ∂Ξr(X) is the convex hull of ΠB
Sn+(r)(X), i.e.,

∂Ξr(X) = conv ΠB
Sn+(r)(X).

An important property of ΠSn+(r)(X) is that it provides an orthogonal decomposition of X
in the sense of

X = ΠSn+(r)(X) + (X −ΠSn+(r)(X)) and 〈ΠSn+(r)(X), X −ΠSn+(r)(X)〉 = 0. (18)

This can be verified directly by Lemma 2.2. Consequently we have

‖X‖2 = ‖ΠSn+(r)(X)‖2 + ‖X −ΠSn+(r)(X)‖2,

and hence Ξr(X) = ‖ΠSn+(r)(X)‖2/2.
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3 Properties of Metric Projection ΠKn
+(r)

It has been widely known that the set of positive semidefinite matrices and the set of Euclidean
distance matrices tend to share similar properties (see, e.g., [27, 31, 32]). In this section, we
extend such similarities to the nonconvex sets Sn+(r) and Kn+(r). Much has been known about
the projections onto Sn+(r), see [48, 15]. This makes our extension much easier. We continue to
use the matrix partition of QXQ as in (13). Our first result is about ΠB

Sn+(r)(JXJ).

Lemma 3.1

ΠB
Sn+(r)(JXJ) = Q

[
ΠB
Sn−1
+ (r)

(X̂1) 0

0 0

]
Q and JΠB

Sn+(r)(JXJ)J = ΠB
Sn+(r)(JXJ).

Proof. We note that X̂1 ∈ Sn−1. Let X̂1 have the following spectral decomposition:

X̂1 = U Λ̂1U
T ,

with Λ̂1 := Diag(λ̂1, . . . , λ̂n−1), λ̂1 ≥ . . . ≥ λ̂n−1 being eigenvectors of X̂1 and U ∈ On−1 being
a corresponding orthogonal matrix of orthonormal eigenvectors of X̂1. Let

α̂ :=
{
i
∣∣λ̂i > λ̂r

}
and β̂ :=

{
i
∣∣λ̂i = λ̂r

}
.

Let

U :=

[
U 0
0 1

]
.

From (16), we have

JXJ = QU

[
Λ̂1

0

]
(QU)T

and P := QU is orthogonal. Define v̂ := ((λ̂1)+, . . . , (λ̂r)+, 0, . . . , 0)T ∈ IR|α̂|+|β̂|. It follows from
Lemma 2.2 that

ΠB
Sn+(r)(JXJ) =

{
[Pα̂, Pβ̂Vβ̂]Diag(v̂)[Pα̂, Pβ̂Vβ̂]T

∣∣ Vβ̂ ∈ O|β̂|}
=

{
Q

[
[Uα̂, Uβ̂Vβ̂]Diag(v̂)[Uα̂, Uβ̂Vβ̂]T 0

0 0

]
Q

∣∣∣∣ Vβ̂ ∈ O|β̂|}
= Q

[
ΠB
Sn−1
+ (r)

(X̂1) 0

0 0

]
Q. (19)

The second part of the lemma comes from the first part, the relationships (15), (19), and
the fact Q2 = I. �

Define

Z∗ := ΠSn+(r)(JXJ) +Q

[
0 x̂
x̂T x̂0

]
Q.

Then Lemma 3.1 implies that there exists an element ΠSn−1
+ (r)(X̂1) in ΠB

Sn−1
+ (r)

(X̂1) such that

Z∗ = Q

[
ΠSn−1

+ (r)(X̂1) 0

0 0

]
Q+Q

[
0 x̂
x̂T x̂0

]
Q

= Q

[
ΠSn−1

+ (r)(X̂1) x̂

x̂T x̂0

]
Q

= ΠKn
+

(Z∗) (by Hayden-Wells formula (14))
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Hence, Z∗ ∈ Kn+. Moreover, we have

rank(JZ∗J) = rank(ΠSn−1
+ (r)(X̂1)) ≤ r.

Therefore, Z∗ ∈ Kn+(r). In fact, we have the following result.

Lemma 3.2
Z∗ ∈ ΠB

Kn
+(r)(X).

Proof. Let Z be an arbitrary matrix in Kn+(r). Denote[
Ẑ1 ẑ
ẑT ẑ0

]
:= QZQ.

Then Lemma 2.1(iv) implies Ẑ1 ∈ Sn−1
+ (r). We have the following chain of inequalities.

‖Z −X‖2 = ‖QZQ−QXQ‖2

=

∥∥∥∥[ Ẑ1 ẑ
ẑT ẑ0

]
−
[
X̂1 x̂
x̂T x̂0

]∥∥∥∥2

= ‖Ẑ1 − X̂1‖2 +

∥∥∥∥[ 0 ẑ
ẑT ẑ0

]
−
[

0 x̂
x̂T x̂0

]∥∥∥∥2

≥ min
Z1∈Sn−1

+ (r)
‖Z1 − X̂1‖2 + min

[zT z0]T∈IRn

∥∥∥∥[ 0 z
zT z0

]
−
[

0 x̂
x̂T x̂0

]∥∥∥∥2

(20)

= ‖ΠSn−1
+ (r)(X̂1)− X̂1‖2. (21)

Apparently, the lower bound of (21) is reached when Z = Z∗. This proves our result. �

The following result gives a complete characterization of ΠB
Kn

+(r)(X).

Proposition 3.3 It holds

ΠB
Kn

+(r)(X) = ΠB
Sn+(r)(JXJ) + (X − JXJ). (22)

Moreover, for any pair (ΠKn
+(r)(X), ΠSn+(r)(JXJ)) satisfying

ΠKn
+(r)(X) = ΠSn+(r)(JXJ) + (X − JXJ), (23)

we have
‖ΠKn

+(r)(X)‖2 = ‖ΠSn+(r)(JXJ)‖2 + ‖X − JXJ‖2, (24)

JΠKn
+(r)(X)J = ΠSn+(r)(JXJ), (25)

and
〈ΠKn

+(r)(X), X −ΠKn
+(r)(X)〉 = 0. (26)

Proof. We first note that from Lemma 2.1 (iii) that

Q

[
0 x̂
x̂T x̂0

]
Q = X − JXJ, ∀ X ∈ Sn. (27)

We then note that ΠSn+(r)(JXJ) in the definition of Z∗ above is arbitrarily chosen from ΠB
Sn+(r)(JXJ).

Lemma 3.2 implies that the right-hand side of (22) is included in the left-hand side of (22). Now
we prove the reverse direction.
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Let Z ∈ ΠB
Kn

+(r)(X). It follows from the last statement in the proof of Lemma 3.2 that the

lower bound in (21) is achieved at Z. As a consequence, we must have

Ẑ1 ∈ ΠB
Sn−1
+ (r)

(X̂1) and ẑ = x̂, ẑ0 = x̂0,

which implies the existence of ΠSn−1
+ (r)(X̂1) ∈ ΠB

Sn−1
+ (r)

(X̂1) such that Ẑ1 = ΠSn−1
+ (r)(X̂1). It

follows that

QZQ =

[
Ẑ1 ẑ
ẑT ẑ0

]
=

[
ΠSn−1

+ (r)(X̂1) x̂

x̂T x̂0

]
and

Z = Q

[
ΠSn−1

+ (r)(X̂1) x̂

x̂T x̂0

]
Q = Q

[
ΠSn−1

+ (r)(X̂1) 0

0 0

]
Q+Q

[
0 x̂
x̂T x̂0

]
Q

= ΠB
Sn+(r)(JXJ) + (X − JXJ). (by Lemma 3.1)

This proves (22).
For any pair (ΠKn

+(r)(X), ΠSn+(r)(JXJ)) satisfying (23), we consider the inner product of

ΠSn+(r)(JXJ) and (X − JXJ).

〈X − JXJ, ΠSn+(r)(JXJ)〉

= 〈X0, QΠSn+(r)(JXJ)Q〉 = trace

(
X0

[
ΠB
Sn−1
+ (r)

(X̂1) 0

0 0

])
(using (19))

= 0, (using the structure of X0 in Lemma 2.1) (28)

which implies (24).
By noticing JQX0QJ = 0, we have from Lemma 3.1 and (23) that

JΠKn
+(r)(X)J = JΠSn+(r)(JXJ)J + JQX0QJ = ΠSn+(r)(JXJ),

which proves (25). Finally, we have

〈ΠKn
+(r)(X), X −ΠKn

+(r)(X)〉
= 〈ΠSn+(r)(JXJ) +X − JXJ, −ΠSn+(r)(JXJ) + JXJ〉 (by (22))

= −〈X − JXJ, ΠSn+(r)(JXJ)〉 (by (18) and Lemma 2.1(iii))

= 0. (by (28))

�
Define the function Ξer : Sn 7→ IR by

Ξer(Z) :=
1

2
‖Z‖2 − 1

2
‖ΠKn

+(r)(Z)− Z‖2 ∀ Z ∈ Sn

=
1

2
‖ΠKn

+(r)(Z)‖2. (by (26)) (29)

We note that Ξer(Z) is irrelevant to the choice of ΠKn
+(r)(Z). It follows from [24, Chp. IV:

Example 2.1.4] that Ξer is convex. Let ∂Ξer(X) denote the subdifferential of Ξer at X. We have

Proposition 3.4
∂Ξer(X) = conv ΠB

Kn
+(r)(X).
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Proof. It follows from Prop. 3.3 that there exists an element ΠSn+(r)(JXJ) such that

ΠKn
+(r)(X) = ΠSn+(r)(JXJ) +QX0Q,

where X0 is defined as in Lemma 2.1, which also proved

X = JXJ +QX0Q.

We hence have

‖ΠKn
+(r)(X)−X‖2 = ‖ΠSn+(r)(JXJ)− JXJ‖2, (30)

and

Ξer(X) =
1

2
‖X‖2 − 1

2
‖ΠKn

+(r)(X)−X‖2 (by definition of Ξer)

=
1

2
‖JXJ‖2 +

1

2
‖X − JXJ‖2 − 1

2
‖ΠKn

+(r)(X)−X‖2 (by (17) )

=
1

2
‖JXJ‖2 − 1

2
‖ΠSn+(r)(JXJ)− JXJ‖2 +

1

2
‖X − JXJ‖2 (by (30) )

= Ξr(JXJ) +
1

2
‖X − JXJ‖2. (by definition of Ξr)

Since both Ξer and Ξr are convex, we have (with Y := JXJ) that

∂Ξer(X) = J∂Ξr(Y )J +X − JXJ (by the chain rule of subdifferentials)

= J(conv ΠB
Sn+(r)(JXJ))J +X − JXJ (by Lemma 2.3)

= conv ΠB
Sn+(r)(JXJ) +X − JXJ (by Lemma 3.1)

= conv ΠB
Kn

+(r)(X). (by Prop. 3.3)

This proves our result. �

This result also implies a necessary and sufficient condition for Ξer being differentiable.

Corollary 3.5 Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of JXJ arranged in nonincreasing
order. Then, Ξer(·) is differentiable at X if and only if λr+1 ≤ 0 or in the case of λr+1 > 0 one
must have λr > λr+1.

Proof. Since Ξer(·) is convex, Ξer(·) is differentiable at X if and only if ∂Ξer(X) contains a
singleton. By Prop. 3.4, ∂Ξer(X) is a singleton if and only if ΠB

Kn
+(r)(X) is a singleton. By Prop.

3.3, this holds if and only if ΠB
Sn+(r)(JXJ) is a singleton. It then follows from Lemma 2.2 that

ΠB
Sn+(r)(JXJ) is a singleton if and only if the stated condition holds (noting that zero eigenvalues

among {λi} do not contribute to the calculation of ΠSn+(r)(JXJ)). �

We note that a similar characterization holds for the function Ξr [15, Remark 2.6].

4 Lagrangian Dual Approach for (5)

In this section, we study the Lagrangian dual approach to the problem (5), which is equivalent
to (10). We note that Snh is a subspace, hence (10) is equivalent to (via replacing Y by (−Y ))

vp := min ‖Y +D‖2/2 s.t. Y ∈ Snh and Y ∈ Kn+(r). (31)
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The Lagrangian function L : Sn × IRn 7→ IR is defined by

L(Y, y) := ‖Y +D‖2/2− 〈diag(Y ), y〉
= ‖Y − (−D + Diag(y))‖2/2 + ‖D‖2/2− ‖ −D + Diag(y)‖2/2.

Let

θ(y) := − min
Y ∈Kn

+(r)
L(Y, y)

= −1

2
‖ΠKn

+(r)(−D + Diag(y))− (−D + Diag(y))‖2 +
1

2
‖ −D + Diag(y)‖2 − 1

2
‖D‖2

=
1

2
‖ΠKn

+(r)(−D + Diag(y))‖2 − 1

2
‖D‖2 (by (29))

= Ξer(−D + Diag(y))− 1

2
‖D‖2.

The Lagrangian dual problem is then defined by

vd := max
y∈IRn

−θ(y),

which is equivalent to (in the form of minimization)

−vd = min
y∈IRn

θ(y) = Ξer(−D + Diag(y))− ‖D‖2/2. (32)

This is a convex problem because Ξer(·) is convex and θ(·) is a composition of Ξer with a linear
mapping. Hence, it follows from Prop. 3.4 that the subdifferential of θ at y is given by

∂θ(y) = diag (∂Ξer(Y )) = diag
(

conv(ΠB
Kn

+(r)(Y ))
)
, (33)

where Y := −D + Diag(y).
It is known that vp ≥ vd and the quantity (vp − vd) is called the duality gap. The key

questions for the Lagrangian dual approach are when the duality gap vanishes and whether the
dual objective value vd is attainable. We will answer those questions below.

Proposition 4.1 The level set Lc := {y ∈ IRn : θ(y) ≤ c} is bounded for any constant c ∈ IR.
Consequently, problem (32) has an optimal solution and the dual optimal objective value vd is
attained.

Proof. We prove the conclusion of this result by contradiction. Suppose that there exists
a constant c such that Lc is unbounded. There must be a sequence {yk} satisfying ‖yk‖ → ∞
and θ(yk) ≤ c for all yk. Without loss of generality, we assume that yk/‖yk‖ → ȳ. Denote
Bk := (−D + Diag(yk))/‖yk‖. We have limk→∞B

k = Diag(ȳ). Let

Q(Diag(ȳ))Q =:

[
B̂1 b̂

b̂T b̂0

]
with B̂1 ∈ Sn−1.

It follows from Lemma 2.2 and Prop. 3.3 that ΠB
Kn

+(r)(X) is positively homogeneous, i.e.,

ΠB
Kn

+(r)(ρX) = ρΠB
Kn

+(r)(X), ∀ ρ > 0.

We have

c

‖yk‖2
≥ θ(yk)

‖yk‖2
=

1

2
‖ΠKn

+(r)(−D/‖yk‖+ Diag(yk/‖yk‖)‖2 − 1

2
‖D‖2/‖yk‖2.
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Taking limits on both sides of the above inequality yields (due to the continuity of θ(·))

‖ΠKn
+(r)(Diag(ȳ))‖2 = 0,

which because of (24) implies

‖ΠSn+(r)(JDiag(ȳ)J)‖2 + ‖Diag(ȳ)− JDiag(ȳ)J‖2 = 0.

This further implies

Diag(ȳ)− JDiag(ȳ)J = 0.

It follows from (27) (take X = Diag(y)) that

b̄ :=

[
b̂

b̂0

]
= 0,

where b̄ denotes the last column of (QDiag(ȳ)Q). We thus have

0 = (QDiag(ȳ)Q) en = − 1√
n
QDiag(ȳ)e = − 1√

n
Qȳ,

where we used Qen = −e/
√
n. The nonsingularity of Q implies ȳ = 0, contradicting ‖ȳ‖ = 1.

This proves our results. �

Theorem 4.2 Suppose that ȳ is an optimal solution of the dual problem (32). Then we must
have

0 ∈ diag
(

conv ΠB
Kn

+(r)(−D + Diag(ȳ))
)
. (34)

Moreover, if there exists a matrix Y ∈ ΠB
Kn

+(r)(−D + Diag(ȳ)) such that diag(Y ) = 0, then Y

globally solves the primal problem (5) and there is no duality gap between the primal and dual
problems.

Proof. Since the dual problem is convex, ȳ is its optimal solution if and only if 0 ∈ ∂θ(ȳ),
which is equivalent to (34) by (33). Moreover, Y is feasible to the primal problem (5). We also
have

−θ(ȳ) = L(Y , ȳ) =
1

2
‖Y +D‖2 − 〈diag(Y ), ȳ〉 =

1

2
‖Y +D‖2,

which is the primal objective function value at the feasible solution Y . That is, there is no
duality gap and hence Y solves the primal problem (5). �

Thm. 4.2 will be used to justify the majorized penalty approach to be introduced in the next
section (see Prop. 5.4). Cor. 3.5 has its application to (34).

Corollary 4.3 Let λ1 ≥ λ2 ≥ . . . ≥ λn be the eigenvalues of (J(−D + Diag(ȳ))J). If λr+1 ≤ 0
or in the case of λr+1 > 0, λr > λr+1, then Y ∈ ΠB

Kn
+(r)(−D + Diag(ȳ)) globally solves problem

(5).

Proof. We note that under the conditions stated in the corollary, θ(·) is differentiable at ȳ
and ΠB

Kn
+(r)(−D + Diag(ȳ)) contains just one element Y , which globally solves problem (5) by

Thm. 4.2. �
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5 A Majorized Penalty Approach for (6)

When there exists H-weights, the Lagrangian dual approach studied in Sect. 4 is not possible
because the orthogonal projection onto Kn+(r) under the H-weights cannot be calculated easily.
Therefore, other numerical methods have to be developed for the H-weighted problem (6). The
purpose of this section is to extend the majorized penalty approach of Gao and Sun [16] to
the problem (6). We will first outline this approach and state its nice convergence properties.
We then focus on some implementation issues when applying this approach to (6). Finally, we
justify the approach using the zero duality gap result established in Thm. 4.2.

5.1 The Gao-Sun Proposal

In [16], Gao and Sun proposed a majorized penalty approach for the following problem:

v∗ := min f(X), s.t. X ∈ Ω, X � 0, and rank(X) ≤ r, (35)

where f : Sn 7→ IR is convex, and Ω is a closed convex set in Sn defined by a finite number of
linear equalities and/or inequalities on Sn.

(a) The penalty function. Define

p(X) := 〈I, X〉 −
r∑
i=1

λi(X), ∀ X ∈ Sn

where λ1(X) ≥ λ2(X) ≥ . . . ≥ λn(X) are the eigenvalues of X. Obviously, one has

X � 0 =⇒ p(X) ≥ 0

and
X � 0 and rank(X) ≤ r ⇐⇒ p(X) = 0, X � 0.

Therefore, the concave function p(X) serves as a penalty function of the rank constraint over
Sn+. This yields the following penalty problem, where c > 0 is the penalty parameter.

min f(X) + cp(X), s.t. X ∈ Ω and X � 0. (36)

The following results on the relationship between the original problem (35) and its penalty
problem (36) are the combination of Prop. 3.1 and Prop. 3.2 in [16].

Proposition 5.1 Let X∗c denote a global optimal solution of (36), Xr be a feasible solution of
(35), and X∗ be an optimal solution of the following convex problem (i.e., the rank constraint
in (35) is dropped)

min f(X), s.t. X ∈ Ω and X � 0.

(i) If rank(X∗c ) ≤ r, then X∗c already solves (35).

(ii) If the penalty parameter c is chosen to satisfy c ≥ (f(Xr)−f(X∗))/ε, for some given ε > 0,
then we have

p(X∗c ) ≤ ε and f(X∗c ) ≤ v∗ − cp(X∗c ).

The result in (ii) means that when the rank error measured by p(·) at X∗c is less than ε,
the corresponding objective value comes very close to the optimal value v∗. Such a solution is
referred to as an ε-optimal solution in [16].
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(b) The majorization functions. Due to the nature of the objective function in the
penalty problem (36) (e.g., f(·) being H-weighted and p(·) concave), a majorization scheme is

proposed by Gao and Sun. A function, denoted by mf
k(·), is a majorization of f(·) at Xk if

mf
k(X) ≥ f(X) ∀ X ∈ Sn and mf

k(Xk) = f(Xk).

For f(·) being ‖H ◦ (X −D)‖2/2, mf
k(·) can be chosen to be

mf
k(X) := f(Xk) + 〈H ◦H ◦ (X −D), X −Xk〉+

1

2
‖W 1/2(X −Xk)W 1/2‖2, (37)

where W := Diag(w) and 0 < w ∈ IRn is defined by

wi := max {τ, max{Hij : j = 1, . . . , }} , i = 1, . . . , n (38)

for some τ > 0. Other choices of W can be found in [25].
Since p(·) is concave, we have

p(X) ≤ p(Xk) + 〈Uk, X −Xk〉, ∀ Uk ∈ ∂p(Xk).

A natural majorization mp
k(·) for p(·) is then given by

mp
k(X) := p(Xk) + 〈Uk, X −Xk〉. (39)

Define
mk(X) := mf

k(X) + cmp
k(X), ∀ X ∈ Sn. (40)

The majorization subproblem to be solved is

min mk(X), s.t. X ∈ Ω and X � 0. (41)

(c) The majorized penalty approach. The following algorithm is then used to solve the
penalty problem (36).

Algorithm 5.2 (Majorized Penalty Algorithm (MPA))

(S.1) Choose 0 � X0 ∈ Ω. Set k := 0.

(S.2) Define the majorization function mk(·) as in (40) and solve the subproblem (41) to get
Xk+1.

(S.3) If Xk+1 = Xk, stop; otherwise, set k := k + 1 and go to (S.2).

We note that p(·) is concave and hence it is differentiable almost everywhere. Let ∂Bp(X)
be the B-subdifferential of p(·) at X:

∂Bp(X) :=

{
lim

Xj→X
∇p(Xj) : p(·) is differentiable at Xj

}
.

It is known that ∂Bp(X) ⊆ ∂p(X). Let Ω := Ω ∩ Sn+. For any X ∈ Ω, let NΩ(X) denote the
normal cone of Ω at X:

NΩ(X) :=
{
Z ∈ Sn : 〈Z, Y −X〉 ≤ 0, ∀ Y ∈ Ω

}
.

A point X ∈ Ω is said to be a B-stationary point of (36) if(
∇f(X) +NΩ(X)

)
∩ (c∂Bp(X)) 6= ∅.

A B-stationary point is usually the best that a numerical method can find for (36) as it is
nonconvex. The following convergence result of Alg. 5.2 is the application of [16, Thm. 3.4] to
the case where W is being chosen as in (38).
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Proposition 5.3 Let {Xk} be the sequence generated by Alg. 5.2. Then {f(Xk)} is a mono-
tonically decreasing sequence. If Xk+1 = Xk for some Xk, then Xk is an optimal solution of
(36). Otherwise, the infinite sequence {Xk} satisfies

1

2
‖W 1/2(Xk+1 −Xk)W 1/2‖2 ≤ f(Xk)− f(Xk+1), k = 0, 1, . . . .

Moreover, the sequence {Xk} is bounded and any accumulation point is a B-stationary point of
(36).

5.2 Application to (6)

The problem (6) that we are facing in this paper is different from (35) because our variable
Y is EDM and X in (35) is PSD. Critical issues in applying Alg. 5.2 (denoted as MPA) to (6)
including choosing proper penalty functions and effectively solving the resulting subproblems.
This subsection is patterned after the preceding one to highlight those critical issues as well as
to save us from restating the properties of MPA in our context. Heavy calculations are often
omitted below.

(a) The penalty function. Problem (6) is equivalent to (by replacing Y by (−Y ))

min f(Y ) := ‖H ◦ (Y +D)‖2/2, s.t. Y ∈ Snh , Y ∈ Kn+, and rank(JY J) ≤ r. (42)

Given that JY J � 0 for any feasible point of (42), a natural penalty function for the rank
constraint is q(Y ) := p(JY J). However, we have a better choice for reasons to be given.

Let s ∈ IRn be such that eT s = 1. Define Js := I − esT . It follows from [20, Thm. 2] that

JsY J
T
s � 0, ∀ Y ∈ Snh ∩ Kn+.

Moreover, rank(JsY J
T
s ) is same for all such s. To see why the rank is constant for such s, we

use the identities JsJ = Js and JJs = J . Therefore, we have

rank(JsY J
T
s ) = rank(JsJY JJ

T
s ) ≤ rank(JY J) = rank(JJsY J

T
s J) ≤ rank(JsY J

T
s ).

We further require s > 0. That is, s is a positive vector. Let S := Diag(s). Then,
rank(JsY J

T
s ) = rank(S1/2JsY J

T
s S

1/2). Recall the positive vector w defined in (38). Let s
be the normalized vector of w:

s := w/
n∑
i=1

wi. (43)

The penalty function that we are going to use is

q(Y ) :=

(
n∑
i=1

wi

)
p(S1/2JsY J

T
s S

1/2). (44)

The penalty problem that we are going to solve is

min
1

2
‖H ◦ (Y +D)‖2 + cq(Y ), s.t. Y ∈ Snh and Y ∈ Kn+. (45)

We note that when w = e, q(Y ) reduces to p(JY J).

(b) The majorization functions. The majorization function for f(Y ) is the same as in
(37):

mf
k(Y ) := f(Y k) + 〈H ◦H ◦ (Y k +D), Y − Y k〉+

1

2
‖W 1/2(Y − Y k)W 1/2‖2. (46)
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We now derive the majorization function for q(Y ) at Y k.
Let
√
w be the componentwise square root of w. We also define

Jw := I −
√
w
√
w
T
/

n∑
i=1

wi and Ỹ := W 1/2YW 1/2 ∀ Y ∈ Sn.

It is easy to see that (Jw)2 = Jw and

JsW
−1/2 = (I − esT )W−1/2 = W−1/2Jw,

which implies

S1/2JsY J
T
s S

1/2 = S1/2JsW
−1/2Ỹ W−1/2JTs S

1/2 = JwỸ Jw/
n∑
i=1

wi. (47)

Let Ỹ k := W 1/2Y kW 1/2 and Ỹ k admit the following spectral decomposition:

JwỸ kJw = P kDiag(λk1, . . . , λ
k
n)(P k)T , (48)

where λk1 ≥ . . . ≥ λkn are eigenvalues of JwỸ kJw and (P k)TP k = I. Let P k1 be the submatrix
consisting of the first r columns of P k and define

Uk := P k1 (P k1 )T . (49)

With some calculation, we can verify that

W 1/2
(
Jw(I − Uk)Jw

)
W 1/2 ∈ ∂q(Y k).

The majorization function for q(Y ) is then given by

mq
k(Y ) := q(Y k) + 〈W 1/2(Jw(I − Uk)Jw)W 1/2, Y − Y k〉. (50)

Let
mk(Y ) := mf

k(Y ) + cmq
k(Y ).

The subproblem corresponding to (41) is

min mk(Y ), s.t. Y ∈ Snh ∩ Kn+. (51)

The only remaining issue concerning the application of Alg. 5.2 is how to solve the subproblem
(51). We address this issue below.

(c) Solving the majorization subproblem (51). By ignoring the constant terms in the
objective function, the majorized problem (51) is equivalent to the following problem:

min ‖W 1/2(Y +Dk)W 1/2‖2/2, s.t. Y ∈ Snh and Y ∈ Kn+, (52)

where Dk := −Y k+W−1(H◦H◦(Y k+D))W−1+cW−1/2Jw(I−Uk)JwW−1/2, whose calculation
needs no more than 6n2 operations. Problems of the type (52) are known as the diagonally
weighted least squares problems [15]. Problem (52) can be effectively solved by the well developed
Semismooth Newton-CG method in [43, Eq. (66)]. Moreover, the solution obtained will also
justify why we choose the penalty function (44) over others (e.g., p(JY J)). Below we validate
those claims.
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Let D̃k := W 1/2DkW 1/2. It is easy to see that

Y ∈ Snh ⇐⇒ Ỹ = W 1/2YW 1/2 ∈ Snh

and

Y ∈ Kn+ ⇐⇒ W−1/2Ỹ W−1/2 ∈ Kn+
⇐⇒ W−1/2Ỹ W−1/2 � 0 on {e}⊥

⇐⇒ Ỹ � 0 on
{
W 1/2e

}⊥
⇐⇒ Ỹ ∈ Knw (53)

where Knw is the closed convex cone defined by

Knw :=

{
A ∈ Sn |A � 0 on

{
W 1/2e

}⊥}
.

Problem (52) is equivalent to the following problem.

min ‖Ỹ + D̃k‖2/2, s.t. Ỹ ∈ Snh and Ỹ ∈ Knw. (54)

By applying the Lagrangian dual approach studied in Sect. 4, we obtain the following dual
problem:

min θw(y) := ‖ΠKn
w

(−D̃k + Diag(y))‖2/2− ‖D̃k‖2/2, (55)

which can be effectively solved by the Semismooth Newton-CG method [43, Eq. (66)]. Let yk

denote the optimal solution of (55). Then

Y k+1 = W−1/2ΠKn
w

(−D̃k + Diag(yk))W−1/2 (56)

is the optimal solution of (52). We need to calculate ΠKn
w

(−D̃k + Diag(yk)).

LetQw be the Householder transformation that maps the vectorW 1/2e to [0, . . . , 0,−‖W 1/2e‖]T .
Then

Qw = I − 2

uTu
uuT ,

where

u :=

√w1, . . . ,
√
wn−1,

√
wn +

√√√√ n∑
i=1

wi

T .
Clearly, if w = e, we have Qw = Q. It is easy to verify that

Jw = I − 1∑n
i=1wi

√
w
√
w
T

= Qw

[
In−1 0

0 0

]
Qw.

By making use of the property above, we can prove the following results by following the proof
for Lemma 2.1 (i) and (ii)

ΠKn
w

(A) = ΠSn+(JwAJw) + (A− JwAJw)

JwΠKn
w

(A)Jw = ΠSn+(JwAJw)

}
∀ A ∈ Sn. (57)

When applied to (56), (57) means that we need to compute the spectral decomposition

JwAkJw, where Ak := −D̃k + Diag(yk). We now return to the penalty function (44). In order
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to construct the majorization function mq
k(Y ) at Y k+1, we need to calculate Uk+1 by (49), which

further requires the spectral decomposition (48) for JwỸ k+1Jw. We have

JwỸ k+1Jw = JwW 1/2Y k+1W 1/2Jw (by definition of Ỹ k+1 )

= JwΠKn
w

(Ak)Jw (by (56))

= ΠSn+(JwAkJw) (by (57)).

This means that the spectral decomposition JwỸ k+1Jw is a by-product of computing Y k+1 in
(56). In other words, the choice of the penalty function (44) saves us from doing a new spectral
decomposition (48) in order to construct the majorization function mq

k(Y ) at Y k.

(d) The rationale of the majorized penalty approach. In this part, we explain the
rationale behind the majorized penalty approach for the problem (42). For simplicity, we only
consider the case H = E. But the results below can be extended to the diagonally weighted
case, hence adequate to cover the general case. Therefore, the problem that we consider in this
part is

min f(Y ) := ‖Y +D‖2/2, s.t. Y ∈ Snh , Y ∈ Kn+, and rank(JY J) ≤ r. (58)

The corresponding penalty problem is

min ‖Y +D‖2/2 + cq(Y ), s.t. Y ∈ Snh and Y ∈ Kn+. (59)

Let
Ω :=

{
Y ∈ Sn : Y ∈ Snh and Y ∈ Kn+

}
.

When the majorized penalty approach Alg. 5.2 is applied to (59), we obtain a B-stationary point
Y (see Prop. 5.3): (

∇f(Y ) +NΩ(Y )
)
∩
(
c∂qB(Y )

)
6= ∅. (60)

We assume that Y satisfies the rank constraint rank(JY J) ≤ r. This assumption is reason-
able as one of our stopping criteria for Alg. 5.2 is to ensure that the rank error, measured by
q(Y ), is small (see (62)). This assumption implies Y ∈ Kn+(r). We have the following key result.

Proposition 5.4 We further assume that rank(JY J) = r (i.e., the rank constraint is tight).
Then, there exists y ∈ IRn such that

Y ∈ ΠB
Kn

+(r)(−D + Diag(y)).

Consequently, y solves the Lagrangian dual problem (32) and Y solves the primal problem (58).

Proof. Denote

QY Q =:

[
Z z
zT z0

]
with Z ∈ Sn−1.

Because Y ∈ Kn+(r), we have Y ∈ ΠB
Kn

+(r)(Y ). We also note that

JY J = Q

[
Z 0
0 0

]
Q.

It follows from Prop. 3.3 that

Q

[
Z z
zT z0

]
Q = Y ∈ ΠB

Kn
+(r)(Y ) = ΠB

Sn+(r)(JY J) + Y − JY J = Q

[
ΠB
Sn−1
+ (r)

(Z) z

zT z0

]
Q.
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This means that Z ∈ ΠB
Sn−1
+ (r)

(Z), implying that Z ∈ Sn−1
+ (r). Therefore, we assume that Z

has the following spectral decomposition:

Z = V

[
Λ1 0
0 0

]
V T ,

where Λ1 = Diag(λ1, . . . , λr) with λ1 ≥ . . . ≥ λr > 0 being the eigenvalues of Z; and V TV =
In−1. We write V = [V1, V2] and the columns of V1 being the eigenvectors corresponding to
λ1, . . . , λr.

Then we have

Y = Q

 V

[
Λ1 0
0 0

]
V T z

zT z0

Q and JY J = Q

 V

[
Λ1 0
0 0

]
V T 0

0 0

Q.
It follows from [17, Thm 3.1] that

NKn
+

(Y ) =

Q
 V

[
0 0
0 M

]
V T 0

0 0

Q : −M ∈ Sn−r−1
+

 ,

and from [17, Thm. 3.2] that

NΩ(Y ) = {Diag(y) : y ∈ IRn}+NKn
+

(Y ).

We further note that in this case (i.e., w = e) q(Y ) = p(JY J). Under the assumption
rank(JY J) = r, we have

∂Bq(Y ) =

{
J −Q

[
V1

0

] [
V T

1 0
]
Q

}
=

Q
 V

[
0 0
0 In−r−1

]
V T 0

0 0

Q
 .

The B-stationary point condition (60) implies that there exist y and M ∈ −Sn−r−1
+ such that

Y +D −Diag(y) +Q

 V

[
0 0
0 M

]
V T 0

0 0

Q = cQ

 V

[
0 0
0 In−r−1

]
V T 0

0 0

Q.
Rearranging the similar terms in the above equation yields

−D + Diag(y) = Q

 V

[
Λ1 0
0 M − cIn−r−1

]
V T z

zT z0

Q.
It follows from Prop. 3.3 that

ΠB
Kn

+(r)(−D + Diag(y))

= ΠB
Sn+(r)(J(−D + Diag(y))J) + (−D + Diag(y))− J(−D + Diag(y))J

= Q

 VΠB
Sn−1
+ (r)

([
Λ1 0
0 M − cIn−r−1

])
V T z

zT z0

Q
3 Q

 V

[
Λ1 0
0 0

]
V T z

zT z0

Q
= Y .
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The penultimate line used the fact that M is negative semidefinite.
We note that Y is feasible to problem (58). Hence,

0 = diag(Y ) = diag
(

ΠB
Kn

+(r)(−D + Diag(y))
)
.

It follows from Thm. 4.2 that y solves the dual problem (32) and Y solves the primal problem
(58). �

We make following brief remarks about Prop. 5.4.

(i) When r (e.g., r = 2, 3) is small, which is often the case in real applications, the assumption
rank(JY J) = r (tight rank) always holds. When rank(JY J) is strictly less than r, Y has
to be a global optimal solution (instead of being just a B-stationary point) of (59) in
order for it to be the optimal solution of (58) (see Prop. 5.1(i)). Prop. 5.4 together with
Prop. 5.1 provides the rationale behind the majorized penalty approach. Other rationale
in the context of the low-rank positive semidefinite optimization can be found in [15,
Sect. 4.2], [38], and the recent PhD thesis [39].

(ii) In Alg. 5.2, the subproblem is solved by the semismooth Newton-CG method [43]. The
Lagrange multiplier y calculated by the method can be used as an approximate to y in the
result.

(iii) The result can be extended to the diagonally weighted problem

min ‖W 1/2(Y +D)W 1/2‖/2, s.t. Y ∈ Snh and Y ∈ Kn+(r).

6 Numerical Results

In this section, we report extensive numerical results on both problems (5) and (6), which arise
from three important fields: Euclidean Embedding of Network Coordinate Systems, Sensor
Network Localization (SNL), and Molecular Conformation. This section is organized as follows.
We first describe the solvers we have used and their parameters setting. We then describe the
applications with comments on the obtained numerical results.

6.1 Solvers and Their Parameters Setting

(a) Solvers. The following solvers are tested: SDP solver of [4] (Semidefinite Programming
based solver); MBO solver of [40] (Manifold-Based-Optimization method with its optimization
algorithm option being the trust-region algorithm); and Alg. 5.2 applied to (6). We call the
resulting algorithm EMBED, which stands for “EMbedding the Best Euclidean Distances”.

(b) Initialization. When the matrix D is partially known, it can be used to constructed
a graph having edge (i, j) if dij is known and dij is treated as the corresponding edge weight of
(i, j). The graph is connected if for any two nodes i and j, there exists a chain of edges that link
i and j. Therefore, the shortest path can be calculated between any two nodes if the graph is
connected. For a disconnected graph, it can be decomposed into small sized connected graphs,
which can be dealt with separately. The famous Isomap method of Tenenbaum et al. [45] is a
novel variant of cMDS in that the distances used in cMDS are the shortest path distances of a
connected graph constructed in a certain way based on the partially known distances.

Motivated by Isomap, in this paper, we replace the missing distance dij by its shortest
path distance and keep those known dij unchanged. We used the MATLAB build-in function
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graphallshortestpaths to calculate the shortest path distances to replace all the missing
distances. We denote the resulting distance matrix by Ds. We then solve the convex problem
(9) with D being replaced by Ds by the Semismooth Newton-CG method [43] to obtain Y 0.

We will see that this initialization step is vital to certain problems with many missing dis-
tances (e.g., D is sparse). For more comments, see the second paragraph of Sect. 6.3(f).

(c) Parameters setting. For MBO [40], we set params.tol = params.vtol = 1.0e-5

and the optimization method used is the trust-region method. For SDP [4] solver, we set
OPTIONS.tolrel = 3.0e-4 (all others are default values). For EMBED (Alg. 5.2 applied to (6)),
we terminate it when the following two conditions are met. The first condition is on the objective
function value.

ffrog :=
|
√
f(Y k)−

√
f(Y k−1)|

max{100,
√
f(Y k−1)}

≤ tol, (61)

where f(Y ) = 0.5‖H ◦ (Y −D)‖2 and tol is a small tolerance level (e.g., 1.0× 10−4). In other
words, whenever there is lack of the relative progress on the successive objective function values,
we believe that the current iterate is a good candidate subject to the second condition below.
This stopping criterion was suggested by Gao and Sun [16] for the low-rank nearest correlation
matrix problems.

The second condition is on the rank of the current iterate Y k. There are two ways to monitor
the rank. One is to compute the absolute value of the eigenvalue residue:

rankerror :=

n∑
i=r+1

λi(−JY kJ) ≤ ranktol, (62)

where ranltol is a small tolerance (e.g., 10−2) and λ1 ≥ . . . ≥ λn are the eigenvalues of
(−JY kJ), which is positive semidefinite. This quantity does not scale well with the magnitude
of (−JY kJ). To rectify this drawback, we also calculate the percentage of the first r eigenvalues
of (−JY kJ) out of all the eigenvalues.

Eigenratio :=

r∑
i=1

λi(−JY kJ)/

n∑
i=1

λi(−JY kJ) ≤ Eigentol, (63)

Eigentol is a high percentage (e.g., 90%).
EMBED solves the penalty problem (45) for a fixed penalty parameter c. In practical imple-

mentation, we may start from c0 and increase c a few times before we can find a good solution.
The initial c = c0 is calculated as follows. We first compute rankerror by (62) with Y k = Y 0.
Let

c0 :=

{ √
rankerror, if rankerror > 103

max{10, rankerror}, otherwise.

Update ck (k ≥ 1) as follows

ck :=

{
ck−1, if rank(JY k−1J) ≤ r
4ck−1, otherwise.

That is, we keep the penalty parameter unchanged if the current iterate has the desired embed-
ding dimension. Otherwise, it is increased by 4 times.

We emphasize that the main reason for using a large value (103) in choosing c0 is that for
large scale problems, the initial point often has large rank errors. Choosing a large c0 would
quickly bring the rank of first few iterates close to r. Obviously, this heuristic choice can be
fine tuned depending on problems at hand. All tests were carried out using the 64-bit version
of MATLAB R2011b on a Windows 7 desktop with 64-bit operating system having Intel(R)
Core(TM) 2 Duo CPU of 3.16GHz, and 4.0 GB of RAM. The companion MATLAB package EMBED

is available from http://www.personal.soton.ac.uk/hdqi.
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6.2 Application 1: Euclidean Embedding of Network Coordinate Systems

One important approach to many networked problems is to embed the Internet nodes (e.g.,
network of hosts) in a Euclidean space with an appropriately chosen dimension based on the
pairwise distance (e.g., measured by round-trip time) matrix. However, there is always a bias
on the distance measured. This is due to a number of reasons. For example, during the time
that the measurements are being taken, the nodes may not have full Internet connectivity or
they may experience local connection issues. Real experiences on measuring the distances over
a global network are documented in [42, Sect. V (A): Data Collection].

Consequently, the distance matrix would have missing distances and the embedding has to be
carried out based on the obtained partial distance matrix. For example, the matrix King17401

is a distance matrix among 1740 nodes on the Internet with 13284 missing pairwise distances.
The matrix Meridian25002 is a distance matrix among 2500 nodes with 1766 missing distances.
The matrix Ng193 is a 19× 19 distance matrix with no missing distances. Lee et al. [34] studied
the suitability of the Euclidean embedding. One restriction of this study is that the network has
to be fully connected. In other words, they assume no missing distances among the network.
In [34], the nodes with missing measurements are removed from the network. For example,
King1740 is reduced to only 462 nodes (i.e., King462) after the removal.

One of the standard metrics to measure the overall fitness of embedding is the stress [5]
(also see [34]) defined by

stress :=

√√√√∑i,j(dij − d̂ij)2∑
i,j d

2
ij

,

where dij is the actual measured distance between node i and j and d̂ij is the estimated one.
In this application, we deal with the original matrices with missing distances. We note that the
smaller the stress is, the better the overall estimation will be. Let D = (d2

ij) be the (original)
squared distance matrix and Hij = 1 if dij is available, and 0 otherwise. We calculate the nearest

(squared) distance matrix, denoted by D̂, to D through (6). We then take d̂ij =
√
D̂ij . The

embedding dimension used is 7, which is suggested by [34, Sect. B].
In Table 1, we report the following data obtained by MBO and EMBED (the SDP solver is not

suitable here as the problems King1740 and Meridian2500 are too large and both have a large
number of distances available with less than 1% missing distances): cpu time is in seconds; obj

:=

√∑
(Hij(d̂ij − dij)2); and the stress (the most important data in the table).

Problems MBO EMBED

Name cpu obj stress cpu obj stress

Ng19 0.6 232.81 6.24e-2 0.3 272.12 3.10e-2
King1740 6678 92612525 0.18 501 95965495 0.19
Meridian2500 17784 90865440 0.17 2215 93423287 0.18

Table 1: Comparison between MBO and EMBED on three partial distance matrices from Network
coordinate systems.

The stress data were also computed in [34, Fig.2(a)] by 4 well-known methods in computer
sciences, but based on the fully connected distance matrices as mentioned before. Applying
those methods here is not straightforward. But the data reported in [34] is sufficient to show
that our approach is very promising in this application. By comparing the corresponding stress

1Available from http://pdos.lcs.mit.edu/p2psim/Kingdata.
2Available from http://www.cs.cornell.edu/People/egs/meridian/data.php.
3Available from http://www.cs.rice.edu/ eugeneng/research/gnp.
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data between [34, Fig.2(a)] and Table 1, it is clearly seen that the results by EMBED show a
significant improvement on all problems. For example, the goodness-of-fit (i.e., the stress) of
Meridian2500 is at least 4 times better than that of King2305, which was obtained by removing
the 1766 missing distances from Meridian2500.

We feel that this simple application of our approach to the Network coordinate systems
opens a new embedding method and its full potential needs to be assessed over a large set of
data. However, such a process of assessment, which is more on the assessment methodologies
than optimization methods, is beyond the scope of this paper.

6.3 Application 2: Sensor Network Localization and Molecular Conformation

The first application does not involve actual embedding. We stopped at calculating the stress

measure of the goodness-of-fit. In this application, we calculate the actual embedding and use
another goodness-of-fit measure: the Root Mean Square Distance (RMSD). The problems in
this part are from the Sensor Network Localization (SNL) and Molecular Conformation.

(a) SNL and Molecular conformation. Generally speaking, SNL describes a class of
problems that aim to estimate the location (i.e., Cartesian coordinates) of some points based on
a set of incomplete Euclidean pairwise distances between those points. As in [47], suppose there
are n distinct points in IRr, denoted by [x1,x2, . . . ,xn]. We know the Cartesian coordinates
of the first m points (“anchors”), and the (inaccurate or contaminated) Euclidean distances
dij between “neighboring” points i and j for (i, j) ∈ B, where B is a set of index pairs (i, j)
with 1 ≤ i < j ≤ n. We wish to estimate the Cartesian coordinates of the last (n − m)
points (“sensors”). When m = 0, it is known as anchor-free SNL. There are a large number of
publications on SNL. We do not intend to give a review on this subject, but instead refer to the
survey paper [30] and many references therein. As stated in [30], SNL can be formulated as (6)
with Hij = 1 and Dij = d2

ij for (i, j) or (j, i) ∈ B; and Hij = 0 otherwise.
The molecular conformation considered in this application refers to any one of the infinite

number of possible spatial arrangements of atoms in a molecule that result from rotation of its
constituent groups of atoms about single bounds. We intend to construct a molecular confor-
mation from a set of observed distances among atoms (denoted as {dij : (i, j) ∈ B}), which can
be obtained through an experimental technique such as NMR (Nuclear Magnetic Resonance).
The problem can then be formulated as (6) as we do for SNL.

In the test problems below, Examples 6.1 and 6.5 are examples of molecular conformation
and the rest are of SNL.

(b) Test problems. We tested three groups of problems that can all be modelled as SNL
or molecular conformation. The true coordinates are known in these problems. The first group
consists of deterministic examples.

Example 6.1 [7, 40] (Helix structure) Consider the 3-dimensional helix structure defined by

(x, y, z) = (4 cos(3t), 4 sin(3t), 2t), 0 ≤ t ≤ 2π.

We sample n equal-paced points on [0, 2π] and compute all the distances between those points.

Example 6.2 (The data set of cities4) We choose to test 3 instances. Data of uscap contains
distances of 50 US capitals and they are computed from their 2 dimensional coordinates. Data of
kn57 contains distances (in integer) of miles between 57 cities. Since they are “highway miles”,
the distances are difficult to use to construct an exact planar map. Data of wg59 contains

4Data available from http://people.sc.fsu.edu/∼jburkardt/datasets/cities/cities.html.
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distances (in integer) of 59 cities in western Germany. But it is not clear how those distances
were calculated. The two-dimensional coordinates are also provided in those examples. Hence,
the embedding dimension is r = 2.

The second group are randomly generated examples of SNL with anchors.

Example 6.3 [4] (denoted as SNLa) First, 4 anchors are placed at the positions (±0.45,±0.45).
Then (n − 4) points are randomly generated in the unit square [−0.5, 0.5] × [−0.5, 0.5] via the
MATLAB command: x = rand(2,1). The distances between the n points are then calculated.

Example 6.4 [3, 47] (denoted as SNLb) The n points are generated as in Example 6.3. But
instead of fixed positions of anchors, we choose 10% of the points (i.e., 10n%) to be anchors.

Example 6.5 [2] The last group are the Protein Data Bank (PDB) problems [2]. They are
1GM2, 1PBM, 1PTQ, 1CTF, 1AU6, 1HOE, 1PHT, 1POA, 1AX8, 1F39, 1GPV, 1RGS.

(c) Selection of distances. We select a subset of distances to use according to the following
two rules. The first rule is to randomly select a percentage p (e.g., 15%) of all available distances.
Let the vector v denote those selected distances and σ(v) be the standard deviation of v. Then
the selected distances are perturbed by

d̂ij := dij + nf · σ(v) · εij , (64)

where dij is the true distance between point i and j; nf is the noise factor (e.g., nf = 0.1
corresponds 10% of noise level); and εij are independent standard normal random variables.
This type of perturbation is known to be “additive”.

The second rule is to use the “unit ball” model to define B.

B := {(i, j) : dij ≤ radiorange} ,

where radiorange > 0. Let

d̂ij := dij · |1 + εij · nf|, ∀(i, j) ∈ B. (65)

This type of perturbation is known to be “multiplicative”. Let D = (d̂2
ij).

(d) The goodness-of-fit measure: RMSD. All three solvers are able to provide the esti-
mated positions {x̂i, i = 1, . . . , n}. We will use the Root Mean Square Distance (RMSD) to
measure the accuracy of the estimated positions

RMSD :=
1√
n

(
n∑
i=1

‖x̂i − xi‖2
)1/2

,

where {xi} are the actual positions. In order to calculate RMSD, the Procrustes analysis (see,
e.g. [9, Chp. 5]) has to be carried out on the obtained solutions by each solver. Since the SDP

solver has already included this matching procedure, there is no need to describe it here.
For EMBED, the positions of sensors estimated are further refined to obtain {x̂i, i = 1, . . . , n}

by applying the gradient descent method proposed in [4, Sect. V]. This post-processing step is
necessary as the embedding positions obtained from solving (5) or (6) are based on the nearest
EDM to a contaminated distance matrix. The embedding positions are results of all calculated
nearest distances. Consequently, there is room for improvement when only those known dis-
tances are used via the gradient method. For MBO solver, this post refinement does not lead to
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(a) EMBED before Refinement
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(b) EMBED after Refinement

Figure 1: Example 6.3 with the multiplicative noisy rule (65) solved by EMBED (n = 1000, radiorange =

0.4, and nf = 0.1). Anchors are shown by �. Each sensor position found (“*”) is joined to its true position

(“o”) by a line. The left figure (a) shows the result before the gradient-descent method refinement and

the right figure (b) shows the result after the refinement.

much improvement and it sometimes leads to worse embedding positions. Therefore, we will not
apply this refinement on MBO.

(e) The effect of the gradient-descent method refinement. The necessity and the
effect of the refinement step after solving (6) is clearly demonstrated in Fig. 1, where Exam-
ple 6.3 (n = 1000) was solved by EMBED. The found sensor positions after solving (6) have a
higher RMSD and they tend to be attracted to the center of the graph (they formed a “ring”
around the center). Those found positions are the best one can get from the calculated nearest
EDM. Furthermore, the nearest EDM contains noises because it was obtained from a incom-
plete set of noisy distances. In order for those positions to be ‘closer” to the true positions, they
would have to be embedded in a higher dimensional space. The found positions can then be
seen as the projections from this higher dimensional embedding. This explains why they tend
to be “crowded” around the center. We also note that they are not far from their respective
true positions. The refinement step brings them very close to their true positions (low RMSD).
This “crowding” phenomenon is also observed in the SDP approach, see [4]. We note that the
refinement step of [4] does not always improve RMSD.

(f) Numerical comparison. The SDP solver of [4] is known to be robust and is capable
of providing localization of high quality. Therefore, we choose it to be our benchmark for
comparison. However, it is only suitable for n not very big. Hence, our first test is on small
sized problems in order to learn the solution qualities of EMBED. We then test medium to large
scale problems without comparing to the SDP solver.

We use the PDB problem 1GM2 to conduct our numerical comparison and draw a few ob-
servations. Figure 2 plots the time and RMSD against the radiorange obtained from the three
solvers. For this problem, SDP used much more time than both MBO and EMBED to terminate
while the latter two used a similar amount of time (about 1 second). However, EMBED performed
best in terms of RMSD. The accuracy of localizations increases as the radio range increases
for all three solvers. A large radio range means high density, which is the ratio between the
number of distances known and the total number of the distances. For radiorange = 4, both
SDP and MBO failed to produce a satisfactory localization (RMSD ≥ 5), whereas EMBED yielded a
RMSD (≈ 1) of much better quality. SDP works well from 5, MBO from 7, and EMBED from 4.
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Figure 2: Comparison between Time, RMSD and Radio Range on PDB problem: 1GM2 with the

multiplicative noisy rule (65) (random state is 0, n = 166, nf = 0.1). Results are average on 10 repeated

runs.

The key to the success of EMBED is its use of the shortest path in the Initialization step. To see
this, we also include the behavior of EMBED(o), which is EMBED without using the shortest path.
We used a tighter ranketol = 10−8 (see (62)) in order for EMBED(o) to achieve comparable
results. It can be seen that EMBED(o) only worked well from radiorange ≥ 6 and used longer
time than EMBED. Therefore, using the shortest path distances to replace the missing distances is
vital for the performance of EMBED. Further evidence that supports this observation came from
that, without using the shortest path distances, EMBED would have failed all PDB test problems
except 1PBM, 1AU6 in Table 4.

Problems SDP MBO EMBED

Name n cpu obj rmsd cpu obj rmsd cpu obj rmsd

helix 121 221 492.54 8.19e-2 0.5 488.27 9.71e-2 0.2 492.12 8.09e-2
uscap 50 10 20293488 48.91 2 18696367 103.85 0.1 20172903 46.51
kn57 57 6 9484235 22.01 1.2 9061894 33.69 0.1 9414059 20.88
wg59 59 7 53685 1.42 0.3 52284 1.92 0.1 53554 1.39
SNLa 104 103 3.07 5.80e-3 – – – 0.5 3.09 5.80e-3
SNLb 100 83 2.83 5.79e-3 – – – 0.4 3.01 5.80e-3

Table 2: Average results on 20 instances of each problem when 100% distances are available.
The distances (may not be true distances) are further perturbed according to (64) with nf =

0.1. Problems SNLa, SNLb are not suitable for MBO.

A particular scenario that has higher densities of known distances happens in sampling a
function (e.g., Example 6.1) and in geospatial data (e.g., Example 6.2). Table 2 reports results

on CPU time (in seconds); objective value (
√∑

Hij(‖x̂i − xi‖2 − d2
ij‖)2); and RMSD when all

100% distances are used. The distances are perturbed according to (64). For each problem,
we generated 20 randomly perturbed distances and the results in Table 2 are average on those
20 instances. It can be seen that the SDP solver and EMBED produced localizations of similar
quality in terms of RMSD and EMBED only used a fraction of the time used by the SDP solver.
While MBO performed well on helix and wg59 examples, it yielded much worse localizations
on uscap, kn57 than SDP and EMBED. As MBO is designed for anchor-free SNL problems, the
examples of SNLa, SNLb (with anchors) are not suitable for MBO to compare with the other two
solvers. Hence, we will not test SNLa, SNLb on MBO here and hereafter.

We now present three more tables of results with n ≥ 500. We only compare the results
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between MBO and EMBED. Table 3 is on problems with only 15% distances available (i.e., 85%
distances are uniformly randomly removed). These distances are further perturbed according
to (64). For the PDB problems, both MBO and EMBED return comparable RMSD, but MBO is
significantly faster. Because MBO is designed for anchor-free localization problems, it is not
suitable for SNLa, SNLb, on which EMBED returns localizations of high accuracy (small RMSD).
Table 4 is on problems with the known distances being selected by the “unit ball” model and
being further perturbed according to (65). We also include the problem information such as
density (Density column) and radio range (R column). It is known that the realistic radiorange
values for the PDB data is 6 and acceptable rmsd value is 2 (see [25] for more comments
on reasonable rmsd). EMBED performed satisfactorily on all tested problems except 1F39. By
contrast, MBO failed on all tested problems.

Table 5 is on PDB problems with the known distances being selected by the “unit ball”
model and being kept exact (no further noise is added). This time, MBO was successful with
1AU6, 1PHT (RMSD is about 2), but failed all other problems. Like in Table 4, EMBED was able
to return satisfactory RMSD (with higher accuracy when compared to Table 4) for all problems
except 1F39.

Our numerical results reported above seem to suggest that, when the known distances (exact
or contaminated) are uniformly randomly selected, MBO tends to be faster than EMBED with both
returning satisfactory RMSD. When the known distances are selected by the unit ball model,
MBO tends to fail while EMBED is still capable of returning satisfactory RMSD (except 1F39 in
the PDB problems).

Problems MBO EMBED

Name n cpu obj rmsd cpu obj rmsd

helix 501 2 778.68 1.31e-1 7 788.82 1.10e-1

SNLa 504 - - - 59 11.12 7.16e-3
SNLa 1004 - - - 277 45.67 5.19e-3
SNLa 1504 - - - 805 103.77 3.71e-3
SNLb 500 - - - 86 10.86 7.17e-3
SNLb 1000 - - - 349 45.38 5.56e-3
SNLb 1500 - - - 917 102.39 6.17e-3

1GM2 166 0.4 385.64 5.38e-1 0.8 438.62 6.98e-1
1PBM 388 1.3 1460.73 2.51e-1 6 1490.42 2.08e-1
1PTQ 402 1.3 2294.89 3.29e-1 6 2343.30 2.64e-1
1CTF 487 2 3367.91 3.16e-1 7 3423.92 2.56e-1
1AU6 506 2 2616.75 3.01e-1 8 2664.66 2.31e-1
1HOE 558 3 4221.12 3.28e-1 10 4285.64 2.60e-1
1PHT 814 7 6907.63 2.59e-1 28 6978.64 2.10e-1
1POA 914 8 10763.52 3.14e-1 35 10864.17 2.49e-1
1AX8 1003 11 11799.47 2.78e-1 49 11894.95 2.25e-1
1F39 1534 61 116488.38 9.72e-1 135 117304.86 6.25e-1
1GPV 1842 78 38232.52 2.89e-1 305 38423.28 2.28e-1
1RGS 2015 96 51295.98 3.21e-1 416 51531.39 2.45e-1

Table 3: Average results on 20 instances of each problem when 15% randomly chosen distances
are available. The distances (may not be true distances) are further perturbed according to (64)
with nf = 0.1. Problems SNLa, SNLb are not suitable for MBO.
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Problems MBO EMBED

Name n Density R cpu obj rmsd cpu obj rmsd

helix 501 23.79% 5 8 988.92 5.31 7 753.91 1.64e-1
SNLa 504 36.23% 0.4 - - - 9 27.42 5.51e-3
SNLa 1004 33.99% 0.4 - - - 67 148.94 4.28e-3
SNLa 1504 34.98% 0.4 - - - 155 184.29 5.83e-3
SNLb 500 33.91% 0.4 - - - 8 30.85 4.46e-3
SNLb 1000 33.19% 0.4 - - - 50 82.29 3.11e-3
SNLb 1500 35.50% 0.4 - - - 174 79.67 2.52e-3

1GM2 166 27.06% 6 1.6 406.93 2.73 1.2 338.12 2.94e-1
1PBM 388 13.87% 6 5 711.61 4.38 4 581.29 2.43e-1
1PTQ 402 8.79% 6 5 821.93 8.07 6 491.87 3.75e-1
1CTF 487 7.25% 6 6 890.55 9.36 7 541.29 3.47e-1
1AU6 506 12.65% 6 8 954.64 4.99 7 760.04 2.02e-1
1HOE 558 6.55% 6 8 1023.82 10.01 10 591.56 3.16e-2
1PHT 814 5.35% 6 22 1213.77 8.53 22 790.04 9.44e-1
1POA 914 4.07% 6 17 1295.71 11.83 28 764.35 3.64e-1
1AX8 1003 3.74% 6 26 1292.56 11.17 41 803.88 3.58e-1
1F39 1534 2.16% 6 145 791.15 27.72 53 892.44 12.05
1GPV 1842 2.24% 6 89 1765.46 14.44 246 1148.53 1.19
1RGS 2015 1.87% 6 65 1999.56 18.63 303 1161.10 5.67e-1

Table 4: Average results on 20 instances of each problem when the unit ball model is used to
select the known distances, which (may not be true distances) are further perturbed according
to (65) with nf = 0.1. Problems SNLa, SNLb are not suitable for MBO.

Problems MBO EMBED

Name n Density R cpu obj rmsd cpu obj rmsd

1GM2 166 27.06% 6 2 318.54 3.82 1 1.65e-1 3.42e-3
1PBM 388 13.87% 6 5 589.13 5.81 6 1.33e-2 1.03e-3
1PTQ 402 8.79% 6 4 715.82 8.74 7 5.36e-1 7.88e-3
1CTF 487 7.25% 6 7 820.37 9.25 10 2.63e-1 4.51e-3
1AU6 506 12.65% 6 8 374.56 1.97 10 2.20e-2 4.37e-4
1HOE 558 6.55% 6 8 847.96 10.27 13 6.67e-2 1.11e-3
1PHT 814 5.35% 6 24 285.13 2.18 21 56.46 8.06e-1
1POA 914 4.07% 6 32 946.75 8.82 26 11.02 1.17e-1
1AX8 1003 3.74% 6 29 946.76 8.97 36 6.63 7.08e-2
1F39 1534 2.16% 6 354 154.07 21.93 53 420.45 12.16
1GPV 1842 2.24% 6 81 1263.38 15.16 218 73.92 9.84e-1
1RGS 2015 1.87% 6 83 1639.43 17.82 313 31.65 3.57e-1

Table 5: Average results on 20 instances of each problem when the unit ball model is used to
select the known distances, which are kept exact (no further noise added).
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7 Conclusion

EDMs with low embedding dimensions appear in many multi-disciplinary subjects. We touched
three such applications: Euclidean embedding of Network coordinate systems, Sensor network
localization, and Molecular conformation. In those applications, distances are missing (e.g.,
due to unavailability of network connections) or are inaccurate (e.g., due to measurement bias).
A key problem in such situations is to calculate the nearest EDM to the known one under
the required low embedding dimension constraint. This paper conducted both theoretical and
numerical study of this nonconvex problem.

In theory, we studied the Lagrangian dual approach of the problem when the weights are
uniform (i.e., H = E). A crucial geometrical object in this study is Kn+(r), a counterpart of
Sn+(r). The metric projection onto Kn+(r) plays a vital role in characterizing the zero duality
gap result, which was further used to justify the majorization penalty approach adopted from
Gao and Sun [16].

Numerically, we addressed a few key issues in applying the majorized penalty approach
to our problem. In particular, a specific choice of the penalty function allows us to recycle
the computational results of the semismooth Newton-CG method, which is used to solve the
subproblem of the majorized penalty approach. We emphasize that the high efficiency of the
Newton-CG method is the key to the numerical performance of the majorization method.

In algorithmic implementation, we took the useful experiences from the SDP solver. For
example, the post-refinement step by the gradient descent method is taken from the SDP solver
and it worked very well for the test problems. Most of them are from real applications. Another
important technique used in the SDP solver is the regularization, which is a linear term added to
the objective function in order to alleviate the “crowding” phenomenon also experienced with
our method. However, our preliminary study on the exact form of the regularization term in
our context is not conclusive. The technique is potentially extremely important in improving
the overall embedding quality. We will explore this issue in our future work.
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