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Abstract

Sensor Network Localization (SNL) is a general framework that generates a set of em-
bedding points in a low-dimensional space so as to preserve given distance information as
much as possible. Typical applications include source localization in two or three dimensional
space, molecular conformation in three dimensions, graph embedding and data visualization.
There are three main difficulties in solving SNL: (i) low-dimensional embedding that gives
rise to non-convexity of the problem, coupled with infinitely many local minima; (ii) a large
number of lower and upper bounds for certain distances used to improve the embedding qual-
ity; and (iii) non-differentiability of some loss functions used to model SNL. There exist a few
promising approaches including co-ordinates minimization and semi-definite programming.
This survey mainly focus on a recently established approach: Euclidean Distance Matrix
(EDM) Optimization. We will give a short but essential introduction how this approach is
theoretically well-developed and demonstrate how EDM optimization nicely handles those
difficulties through a few widely used loss functions. We also show how regularization terms
can be naturally incorporated into EDM optimization. Numerical examples are used to
demonstrate the potential of EDM optimization in tackling large scale problems and effect
of regularizations.
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1 Introduction

The sensor network localization (SNL), rather than being treated as an individual localization
problem, will be employed as a general framework to model various types of localization problems
under often partially given distance information. The global positioning system (GPS) is one of
such problems. The essential information that GPS uses is the distances between the receiver
and a few satellites in terms of the amount of times to receive a transmitted signal. The
GPS calculates the location of the user by the trilateration method based on the obtained
distances. Another example, where GPS does not work, is the indoor facility localization [30]. A
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significantly different localization problem is from the geometric graph embedding [27]. A typical
example is to place all nodes of a graph on the surface of the smallest sphere so that the distance
of all neighboring nodes are of unit distance. We refer to [26] for many such problems. The SNL
framework in fact covers many instances of those problems. In the following, we describe the SNL
framework, its four widely used optimization formulations and the computational challenges.

1.1 Sensor network localization

Suppose there are m anchors, denoted as column vectors xi = ai ∈ IRr, i = 1, . . . ,m, and (n−m)
unknown sensors xi ∈ IRr, i = m + 1, . . . , n. We are given some (noisy) distances (denoted as
δij) from sensors to anchors and from sensors to sensors:{

δij ≈ ‖xj − ai‖, for some j ∈ {m+ 1, · · · , n}
δij ≈ ‖xi − xj‖, for some i, j ∈ {m+ 1, · · · , n}, (1)

where ‖ · ‖ is the Euclidean norm. The purpose is to locate those unknown sensors and it is
often done by optimizing certain loss functions. The most often used loss function is Kruskal’s
stress function [25], which is a direct application of the least-squares criterion to (1):

min f1(X) :=
∑n

i,j=1wij

(
‖xi − xj‖ − δij

)2
s.t. xi = ai, i = 1, . . . ,m,

(2)

where “:=” means “define”, X := [x1, . . . ,xn], and the weights wij are defined as follows

wij :=

{
positive constant if δij is given
0 otherwise.

When both xi and xj are anchors, δij := ‖ai − aj‖. We note that f1(X) is nonconvex and
nondifferentiable. If the least-squares criterion is applied to the squared distances, we end up
with a differentiable objective known as the squared stress function [8]:

min f2(X) :=
∑n

i,j=1wij

(
‖xi − xj‖2 − δ2ij

)2
s.t. xi = ai, i = 1, . . . ,m.

(3)

It has long been known that the absolute value loss function is more robust than the least
squares loss function. Therefore, one can consider the following robust variant of (2) and (3)
[9, 20], respectively

min f3(X) :=
∑n

i,j=1wij
∣∣‖xi − xj‖ − δij

∣∣
s.t. xi = ai, i = 1, . . . ,m,

(4)

and
min f2(X) :=

∑n
i,j=1wij

∣∣∣‖xi − xj‖2 − δ2ij
∣∣∣

s.t. xi = ai, i = 1, . . . ,m.
(5)

The question now boils down how to efficiently solve those optimization problems.

1.2 Computational challenges

We explain why those optimization problems are computationally challenging, though some may
be more difficult to solve than the others. There are essentially three intrinsic difficulties. The
first is the constraint of low-dimensional embedding space IRr. If r is allowed to be no less than
(n − 1), those problems can be reformulated as convex optimization and hence would become
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significantly easier to solve. We will see the low-dimensional embedding is equivalent to a rank
constraint when the problem is reformulated as Semi-Definite Programming (SDP) or Euclidean
Distance Matrix (EDM) optimization, and the rank constraint is notoriously known to be hard
to tackle in optimization.

The second challenge is from possibly a large number of lower and upper bounds that some
embedding points should obey:

`ij ≤ ‖xi − xj‖ ≤ uij , (6)

where 0 ≤ `ij ≤ uij are given lower and upper bounds and they are known as interval distance
constraints in [18]. Such constraints appear in molecular conformation [5] and graph embedding
[27], and the number of them could be as high as O(n2). For example, the number of constraints
could be in millions if the number of atoms in molecular conformation is just couple of thousands.
Adding those constraints to any of the four optimization problems would make them extremely
difficult to solve. The third challenge is the non-dfferentiability of some of the loss functions
above. In particular, it is more involved to characterize a stationary point and it is hard to
analyse the convergence of corresponding algorithms. This last challenge is also coupled with
possibly infinitely many local minima. This can be clearly seen when there are no anchors (i.e.,
m = 0). If {x∗i } is a local solution, then any of the {Qx∗i + b} would also be a local solution,
where Q is a r × r rotation matrix and b ∈ IRr is any given (translation) vector.

1.3 Organization

There exist many algorithms each developed for a particular problem of the four above. The
purpose of this paper is to introduce a recently developed EDM optimization approach, which
is suitable to all of the four problems and always follows a differentiable path regardless of the
loss function used. The paper is organized as follows. We give a compact review on relevant
research in next section, including the coordinate minimization, widely used SDP approach and
more recent EDM optimization. In Sect. 3, we give some essential mathematical background for
EDM optimization with particular attention on why EDM optimization has no easy solution by
focusing on the EDM cone. In Sect. 4, we review three main algorithms in EDM optimization:
method of alternating projections, Newton’s method and a penalty method. The former two
can be regarded as convex relaxation methods. In Section 5, we study the role of regularization
and investigate two types of regularization. We show that each regularization can be easily
incorporated into the penalty approach. Numerical results are reported in Sect. 6 and we
conclude the paper in Sect. 7.

2 Literature Review

It is not possible to give a comprehensive review here. We only focus on three groups of
approaches/algorithms for the reason that they are major representatives and they well reflect
the difficulties faced and favorable properties enjoyed by each of the problems in (2)-(5). The first
group is the direct approach that solve those problems directly without having to reformulate
them to other forms. The second group is the convex relaxation through SDP. The last group
is the focus of the paper: EDM optimization.

2.1 The direct approach

By it, we mean any algorithm that solves one of the four problems without reformulating it
into another form. That is, {xi} are its main variables. Let us use the problem (2) to illustrate
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this approach. One efficient way to solve it is by majorization and minimization (MM) scheme.
Consider an optimization problem

min f(x), s.t. x ∈ B,

where f(·) : IRp 7→ IR is a loss function and B ⊆ IRp represents constraints. More often than
not, f(x) is difficult to minimize. Suppose we have another function: fm(·, ·) : IRp × IRp 7→ IR
satisfying the following property:

fm(x,y) ≥ f(x) and fm(y,y) = f(y), ∀ x, y ∈ IRp. (7)

In other words, for any fixed point y ∈ IRp, the graph of fm(·,y) is always above that of f(·) and
they meet at x = y. Such function fm(·, ·) is called a majorization of f(·). The main purpose
of constructing a majorization is to minimize it instead of minimizing f(·).

Starting from a given point xk ∈ IRp, compute

xk+1 = arg min fm(x,xk), s.t. x ∈ B. (8)

We then have

f(xk+1)
(7)

≤ fm(xk+1,xk)
(8)

≤ fm(xk,xk)
(7)
= f(xk).

Therefore, the MM scheme (7) and (8) generates a sequence {xk} with non-increasing function
values. Consequently, {f(xk)} will converge provided that f(x) is bounded from below on B.
The whole point of (8) is that the majorization function f(x,xk) should be easier to minimize.
The rule of thumb is for (8) to have a close form solution. This is exactly what can be achieved
for the stress function (2). It follows from the Cauchy-Schwartz inequality

〈xi − xj , yi − yj〉 ≤ ‖xi − xj‖‖yi − yj‖

that

φ(xi,xj) := −‖xi − xj‖ ≤ φm(xi,xj ,yi,yj) :=

{
− 〈xi−xj , yi−yj〉

‖yi−yj‖ if yi 6= yj

0 otherwise.

Therefore,

f1(X) =

n∑
i,j=1

wij

(
‖xi − xj‖ − δij

)2
≤

n∑
i,j=1

(
wij‖xi − xj‖2 + 2wijδijφm(xi,xj ,yi,yj) + δ2ij

=: fm1 (X,Y ).
)

We note that the majorization function fm1 (X,Y ) is quadratic in X and is easy to minimize
when B = IRp (unconstrained). The resulting algorithm is the famous SMACOF (Scaling by
MAjorizing a COmplicated Function) algorithm [12]. SMACOF is widely used in the field of
Multi-Dimensional Scaling (MDS) [8]. A major weakness of SMACOF is when B is constrained
(e.g., B contains the lower and upper bounds in (6)) because it would not have a closed form
solution any more, severely limiting its applications in many other practical problems. It is
worth pointing out that the MM scheme is very popular in the direct approach. We will see it
also plays a key role in our EDM optimization.
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2.2 SDP convex relaxation

As emphasized before, none of the four problems is convex. The main idea is to construct close
convex approximation to those nonconvex problems with a belief that the convex optimization
would yield a good approximate solution to its true solution. Let us use (3) to illustrate this
approach. We define a couple of notation first. Let Sn be the space of n×n symmetric matrices.
endowed with the standard trace inner product 〈·, ·〉 and the induced Frobenius norm ‖ · ‖. Let
Sn+ be the cone of all positive semidefinite matrices in Sn. Note that

‖xi − xj‖2 = ‖xi‖2 + xj‖2 − 2〈xi,xj〉 = Yii + Yjj − 2Yij ,

where the Gram matrix Y is defined by

Y := XTX =
(
〈xi, xj〉

)n
i,j=1

.

Therefore, the squared stress function can be represented as

f2(X) =

n∑
i,j=1

wij

(
Yii + Yjj − 2Yij − δ2ij

)
,

which is a linear function of Y . The constraint on Y is that Y ∈ Sn+ and it has the rank r (the
embedding dimension). This was initially used by Biswas and Ye [6] to derive a SDP for SNL.
By dropping the rank constraint, one obtains a convex SDP relaxation for the problem (3). The
approach in [6] has been extensively investigated in many subsequent studies, see e.g., [7, 23]
and the references therein. A different line of development, but still employing SDP, is [21, 22]
where an efficient proximal point algorithm with a semismooth Newton step is developed. When
there are many constraints in (6), those SDP-based methods become more expensive. We would
also like to point out that the “plain” distance ‖xi − xj‖ does not have a straightforward SDP
representation, see [29] for such an attempt. Therefore, this approach gets more involved when
it tries to approximate the problem (4). We also refer to the thesis [13] for more applications of
SDP to Euclidean distance geometry problems.

2.3 The origin of EDM optimization

(a) Classical Euclidean geometry: From distances to embedding points. We explain
why EDM optimization is a natural reformulation of the SNL problems. Suppose we have n
points xi ∈ IRr, i = 1, . . . , n. We can easily calculate the pairwise (squared) Euclidean distances

Dij = d2ij = ‖xi − xj‖2, i, j = 1, . . . , n. (9)

Now suppose we only know the matrix D, can we generate a set of points {xi} that satisfy (9)?
There is a classical way to do it.

Consider the double centering matrix

B := −1

2
JDJ with J := I − 1

n
1n1

T
n , (10)

where I is the identity matrix in Sn and 1n is the column vector of all ones in IRn. The matrix
J is known to be the centering matrix. It is known [35, 39, 37] that B is positive semidefinite
and rank(B) = r. Hence, it has the following eigenvalue-eigenvector decomposition:

B = [p1, . . . ,pr]

 λ1
. . .

λr


 pT1

...
pTr

 , (11)
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where λ1 ≥ · · · ≥ λr > 0 are the positive eigenvalues of B and pi, i = 1, . . . , r are the corre-
sponding orthonormal eigenvectors. The embedding points are then given by

X := [x1, . . . ,xn] = [
√
λ1p1, · · · ,

√
λrpr]

T , (12)

which must satisfy (9).

If we already know that the first m points are anchors as in SNL, we can always find a
mapping such that

ai = Qxi + b, i = 1, . . . ,m (13)

where Q is a rotation matrix and b is a shifting vector [2, 34]. We then map the rest of the
points xi, i = m+1, . . . , n to the coordinates system defined by the anchors. This part is known
as the Procrustes analysis, mapping one set of points to another as much accurate as possible.

(b) Classical Multi-dimensional scaling (cMDS). The computational procedure from (10)
to (12) is fundamental in generating embedding points that preserve the given Euclidean dis-
tances. This is based on the assumption that D is a true EDM and has no missing values.
However, in practice, the given distances are often noisy and many may be missing. Let ∆
represent such given distances. In particular, if the value of δij is missing, we simply set δij = 0.
We can modify the computational procedure in (10)-(12) to generate a set of embedding points
yi, i = 1, . . . , n such that

‖yi − yj‖ ≈ δij if δij > 0. (14)

This is done as follows. Let ∆ := (δ2ij) (the squared dissimilarity matrix). Compute

B := −1

2
J∆J (15)

and decompose it as

B = [p̄1, . . . , p̄n]

 λ̄1
. . .

λ̄n


 p̄1

...
p̄n

 , (16)

where λ̄1 ≥ · · · ≥ λ̄n are the real eigenvalues of B (because it is symmetric). Suppose that B
has s positive eigenvalues. The embedding points {yi} can be generated by

[y1, . . . ,yn] = [
√
λ̄1p̄1, · · · ,

√
λ̄sp̄s]

T . (17)

The corresponding Euclidean distance matrix is

Dmds :=
(
‖yi − yj‖2

)n
i,j=1

.

The computational procedure from (15) to (17) is known to be the classical multidimensional
scaling (cMDS), originated from the work of Schoenberg [35] and Young and Householder [39],
popularized by Torgerson [37] and Gower [19].

A natural question is how good cMDS is. This has been partially answered by Sibson [36]
for the case δij = dij + εij with εij being a small perturbation of the true Euclidean distances
dij . We will not review this analysis and its subsequent development. Instead, we cast cMDS
as an optimization problem, which will reveal its sub-optimality. To this purpose, we formally
state the definition of the (squared) Euclidean distance matrix.
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Definition 2.1 A matrix D ∈ Sn is called a (squared) Euclidean distance matrix (EDM) if
there exist a set of points xi ∈ IRp, i = 1, . . . , n with p being any positive integer, such that

Dij = ‖xi − xj‖2, i, j = 1, . . . , n.

The smallest such p is called the embedding dimension of D, denoted as r. It is known that
r = rank(JDJ). We let Dn denote the set of all n× n EDM D.

We also define ‖A‖J := ‖JAJ‖ for A ∈ Sn. Then ‖A‖J is a semi-norm and it is not a true
norm because ‖A‖J = 0 does not imply A = 0. What makes this semi-norm interesting is that
Dmds is the optimal solution of the following problem:

Dmds = arg min ‖D −∆‖J , s.t. D ∈ Dn.

That is, cMDS computes Dmds that is nearest to ∆ under the semi-norm ‖ · ‖J [28]. A more
natural measurement of the nearness is under the Frobenius norm, giving rise to the following
optimization problem:

Dedm = arg min ‖D −∆‖ s.t. D ∈ Dn. (18)

This is the basic model of EDM optimization. It purely focus on D as its main variable and
leaves the aligning the generated embedding points to existing anchors to the Procrustes analysis.

(c) Early research on EDM optimization. The earliest research that had a serious attempt
to solve (18) includes Gaffke and Mathar [15] and Glunt et. al. [16]. Both papers treated D
as the main variable. [17] has also successfully applied the method of alternating projections
in [16] to molecular conformation. The methods in [15] and [16] are of first-order methods. A
second-order method (i.e., Newton’s method) was later developed by Qi [31] and is proved to
enjoy a quadratic convergence rate. Alfakih et. al. [1] took a different route that relies on SDP
solvers. It maps Dn to Sn−1+ through a linear transformation. This approach has been further
investigated by Wolkowicz’s group in a series of papers, see [24, 14] and the references therein.

Compared to the large number of research papers on convex relaxations on SNL, the EDM
optimization has not been well explored, mainly because people believe that SDP is the best
vehicle to solve such problems given that the off-shelf SDP solvers are well developed. However,
it is widely known that SDP has serious computational bottleneck when the size of the problem
is beyond a thousand unless the problem has some special structure, and it only works for some
loss functions. We will see in our numerical test, the EDM optimization can solve general SNL
problems of size n = 3000 in a few minutes (under 3 mintutes) on a standard laptop. Moreover,
EDM optimization has a great capability of tackling more complicated problems with all four loss
functions. We start by reformulating the four problems in Introduction as EDM optimization
below.

2.4 SNL as EDM optimization

Let us recall the data information that we are going to use. We have a dissimilarity matrix
∆ = (δij), which contains the given distance measurements among anchors and sensors, and the
corresponding weight matrix W = (wij), which indicates the quality of the given δij . We require
wij > 0 when δij > 0 and wij = 0 when δij = 0 (missing or not given).

Our main variable is D ∈ Dn. If there are m anchors xi = ai, i = 1, . . . ,m, we may enforce

Dij = ‖ai − aj‖2, i, j = 1, . . . ,m. (19)
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This condition may be fed into the lower and upper bound constraints in (6) by setting

`ij = uij = ‖ai − aj‖, i, j = 1, . . . ,m.

In general, we define

B :=
{
D ∈ Sn

∣∣∣ Lij ≤ Dij ≤ Uij , i, j = 1, . . . , n
}
,

where Lij and Uij are given lower and upper bounds for Dij . For example, Lii = Uii = 0 for
all i = 1, . . . , n because D ∈ Dn must have zero diagonal. Furthermore, in the case we have m
anchors, we may set Lij = Uij = ‖ai − aj‖2 for i, j = 1, . . . ,m. Then any embedding points of
D satisfying (19) can be mapped to the anchors ai through the linear mapping (13). Therefore,
the anchor information is completely encoded to the box constraint B. In this way, the problem
(2) can be reformulated as EDM optimization:

min f (d,2)(D) := 1
2‖
√
W ◦ (

√
D −∆)‖2

s.t. D ∈ Dn, D ∈ B, and rank(JDJ) ≤ r,
(20)

where
√
W is the elementwise square root (hence

√
Dij = dij), and ◦ is the elementwise multi-

plication known as the Hadamard product. It is worth pointing out that the objective function
is convex in D because

f (d,2)(D) =
1

2
〈W, D〉 − 〈W ◦∆,

√
D〉+

1

2
〈W, ∆〉

Note that the first term above is linear in D, the second term is negative of a square root term
and hence is convex, and the third term is constant. Since the rank of J is (n − 1), therefore,
rank(JDJ) ≤ n − 1. If the embedding dimension r is allowed to be no less than (n − 1), then
the problem (20) is convex in D because Dn is a convex cone, which will be explained later.

Similarly, the other three problems can also be put into EDM optimization. We list them
below for easy reference.

min f (D,2)(D) := 1
2‖
√
W ◦ (D −∆)‖2

s.t. D ∈ Dn, D ∈ B, and rank(JDJ) ≤ r,
(21)

min f (d,1)(D) := 1
2‖
√
W ◦ (

√
D −∆)‖1

s.t. D ∈ Dn, D ∈ B, and rank(JDJ) ≤ r,
(22)

where ‖A‖1 :=
∑n

i,j=1 |Aij | is the `1 norm in Sn. The last EDM optimization corresponding to
(5) is

min f (D,1)(D) := 1
2‖
√
W ◦ (D −∆)‖1

s.t. D ∈ Dn, D ∈ B, and rank(JDJ) ≤ r.
(23)

In the above notation of defining the objective functions, we used D to mean that the “squared”
distance is used in the objective and d meaning the “plain” distance is used. For example, f (D,2)

means that the squared distance is used with the least squares, while f (d,1) is that the “plain”
distance is used with the least absolute-values (i.e., `1 norm). The remaining task is to show how
those EDM optimization can be efficiently solved even when n is large. Obviously, any efficient
algorithm would heavily depend on how efficiently we can handle the essential constraints in
EDM optimization: the rank constraint and the cone constraint on Dn. We explain below that
they can be dealt with through an efficient computational manner.

8



3 EDM Optimization: Mathematical Background

Let us set up the minimal requirements for what consist of EDM optimization. It usually takes
the following form:

min f(D), s.t. D ∈ Dn, D ∈ B, rank(JDJ) ≤ r, (24)

where f : Sn 7→ IR. The three constraints are essential in the sense that most of practical
problems would require their embedding points to satisfy them. Of course, other variables and
constraints are permitted to add to the basic model (24). For example, the spherical constraints
studied in [4] may be considered. But such extra features are not our concern here.

The two most difficult parts in solving EDM optimization are the constraint on Dn (conic
constraint) and the rank constraint on rank(JDJ) ≤ r. In this part, we will review their
mathematical properties, essential for our computation.

3.1 EDM cone Dn

The first and also an important issue that we should address is the membership of Dn because
we must need to know if a candidate matrix belongs to it or not in order to solve the EDM
optimization efficiently. One answer to this question is to see if we can calculate the orthogonal
projection ΠDn(A) defined by

ΠDn(A) := arg min ‖A−D‖ s.t. D ∈ Dn. (25)

We note that ΠDn(A) is well defined because Dn is a close convex cone, which is a direct
consequence of its characterization below due to Schoenberg [35]:

D ∈ Dn ⇐⇒ diag(D) = 0 and −D ∈ Kn+, (26)

where Kn+ is the conditionally positive semidefinite cone defined as follows.
We recall that the semidefinite cone Sn+ can be defined as

Sn+ =
{
A ∈ Sn

∣∣∣ vTAv ≥ 0 ∀ v ∈ IRn
}
.

If we restrict v to the subspace 1⊥n :=
{
v ∈ IRn | vT1 = 0

}
, then we have Kn+:

Kn+ :=
{
A ∈ Sn

∣∣∣ vTAv ≥ 0 ∀ v ∈ 1⊥n

}
.

Since the centering matrix J is the projection matrix onto 1⊥n , it is equivalent to say

Kn+ =
{
A ∈ Sn

∣∣∣ JAJ ∈ Sn+} . (27)

It is easy to see that Kn+ is closed and convex, so is Dn by (26). It is worth noting that Sn+ ⊂ Kn+
and Kn+ is bigger than Sn+. Moreover, Kn+ is not self-dual in the sense that(

Kn+
)∗
⊂ Kn+ and

(
Kn+
)∗
6= Kn+,

where for a cone C in Sn, its dual cone C∗ is defined by

C∗ := {Y ∈ Sn | 〈Y, X〉 ≥ 0 ∀ X ∈ C} .

We note that Sn+ is self-dual. Hence EDM optimization is significantly different from SDP.
What does Dn look like? Let us use D3 as an example to understand its (computational)

complexity.
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Figure 1: Shape of D3

Example 3.1 (Projection onto D3) It follows from (26) that

D3 =

D =

 0 x y
x 0 z
y z 0

 ∣∣∣∣∣
2(x+ y)− z ≥ 0
2(x+ z)− y ≥ 0
2(y + z)− x ≥ 0

and x2 + y2 + z2 ≤ 1

2
(x+ y + z)2

 .

For a given matrix A ∈ S3 specified by (a, b, c). Its projection to D3 is

ΠD3(A) = arg min

‖(a, b, c)− (x, y, z)‖

∣∣∣∣∣
2(x+ y)− z ≥ 0
2(x+ z)− y ≥ 0
2(y + z)− x ≥ 0

and
‖(x, y, z)‖ ≤ 1

2 t

t = x+ y + z

 .

The constraint ‖(x, y, z)‖ ≤ 0.5t is a constraint of second-order cone. Hence ΠD3(A) is a
quadratic second order cone programming and hence in general would need an iterative algo-
rithm for its solution. The shape of D3 can be seen in Fig. 3.1.

Although ΠD3 is difficult to compute, it is surprisingly easy to compute the projection onto
Kn+ [15]:

ΠKn
+

(A) = A−ΠSn+(JAJ). (28)

This projection formula is fundamental to the alternating projection methods in [15, 16] and
the Newton method in [31].

Another attempt to answer the question of the membership of Dn is by the triangle inequality
test. For a given pre-distance matrix D satisfying the condition diag(D) = 0 and Dij ≥ 0. We
test all the triangle inequalities:√

Dij +
√
Djk ≥

√
Dik for all triple (i, j, k).
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The following example shows that the triangle inequality test is not enough to verify D ∈ Dn:

D =


0 1 1 1
1 0 4 4
1 4 0 4
1 4 4 0

 .
For this example, all triangle inequalities hold. However, it is not Euclidean because the matrix
(−JDJ) has a negative eigenvalue (−0.5), which implies (−D) 6∈ Kn+ and hence not in Dn due
to (26).

3.2 Two representations of the rank constraint

The second issue we should address is about the rank constraint. We describe two representa-
tions that will lead to two different types of algorithms for EDM optimization.

(a) Representation by eigenvalue functions. Recall that the fact (−D) ∈ Kn+ means
(−JDJ) ∈ Sn+. This implies

rank(JDJ) ≤ r ⇐⇒
n∑

i,j=1

λi =
r∑

i,j=1

λi, (29)

where λ1 ≥ . . . ≥ λn ≥ 0 are the eigenvalues of (−JDJ) in non-increasing order. Define the
eigenvalue function:

p(D) :=
n∑

i,j=1

λi −
r∑

i,j=1

λi = trace(−JDJ)−
r∑

i,j=1

λi ≥ 0, ∀ −D ∈ Kn+.

It is known that the sum of largest eigenvalues is a convex function. Therefore, p(D) is a
difference of two convex functions and it is so called DC function. The characterization in (26)
and the equivalence in (29) translate to

{D ∈ Dn and rank(JDJ) ≤ r} ⇐⇒
{

diag(D) = 0, −D ∈ Kn+, and p(D) = 0
}
. (30)

(b) Representation by distance functions. The essential constraints in EDM optimization
can be grouped as follows.

{D ∈ Dn and rank(JDJ) ≤ r} (26)⇐⇒
{

diag(D) = 0 and −D ∈ Kn+(r)
}

where Kn+(r) is the rank-r cut of Kn+:

Kn+(r) := Kn+ ∩ {A ∈ Sn | rank(JAJ) ≤ r}}.

An important point to make here is that it is quite computational inexpensive to check the
membership of Kn+(r) as we see below.

Let us define the Euclidean distance from a given point A ∈ Sn to Kn+(r) by

dist(A, Kn+(r)) := min
{
‖A− Y ‖ | Y ∈ Kn+(r)

}
and define the function g(·) : Sn 7→ IR to be the squared distance function from (−A) to Kn+(r):

g(A) :=
1

2
dist2(−A, Kn+(r)). (31)

11



It can be seen that

−D ∈ Kn+(r) ⇐⇒ g(D) = 0. (32)

We further define h(·) : Sn 7→ IR by

h(A) :=
1

2
‖A‖2 − g(−A). (33)

It is proved in [33, Prop. 3.4] that h(·) is convex and

h(A) =
1

2
‖ΠKn

+(r)(A)‖2 and ΠKn
+(r)(A) ∈ ∂h(A), (34)

where ∂h(A) is the subdifferential of h(·) at A and ΠKn
+(r)(A) is an nearest point in Kn+(r) from

A:

ΠKn
+(r)(A) ∈ arg min ‖A− Y ‖, s.t. Y ∈ Kn+(r).

We note that there might be many nearest points since Kn+(r) is not convex. The characteriza-
tions in (26) and (32) translate to

{D ∈ Dn and rank(JDJ) ≤ r} ⇐⇒ {diag(D) = 0 and g(D) = 0 } . (35)

(c) Efficient computation. Both the representations in (30) and (35) reply on how to compute
the function p(D) and g(D). We show that they can be both computed efficiently.

Suppose A ∈ Sn has the following spectral decomposition:

A = λ1p1p
T
1 + λ2p2p

T
2 + · · ·+ λnpnp

T
n ,

where λ1 ≥ λ2 ≥ . . . ≥ λn are the eigenvalues of A in non-increasing order, and pi, i = 1, . . . , n
are the corresponding orthonormal eigenvectors. We define a PCA-style matrix truncated at r:

PCA+
r (A) :=

r∑
i=1

max{0, λi}pipTi .

It is proved in [33, Eq. (22), Prop. 3.3] that one particular ΠKn
+(r)(A) can be computed through

ΠKn
+(r)(A) = PCA+

r (JAJ) + (A− JAJ).

Therefore, both p(D) and g(D) can be computed after we obtained PCA+
r (−JDJ), which can

be obtained by computing just first r largest eigenvalues of (−JDJ) and their corresponding
eigenvectors (e.g., via eigs.m in Matlab). Please refer to [40, Sect. II] for more detail.

4 EDM Optimization: Algorithms

We recall that the EDM optimization is essentially nonconvex mainly due to the rank con-
straint and possible non-convex loss function. We still review some important convex relaxation
methods because of two reasons: (i) They are globally convergent; and (ii) they may act as
a subproblem solver in nonconvex approaches. However, our main focus will be on a recently
proposed nonconvex approach for its easy implementation and low-computational cost.

12



4.1 Convex relaxation methods

If we drop the rank constraint from the least squares models (20) and (21), we will get a convex
problem. Let us use (21) as an example. We start with its basic form (by dropping the rank
constraint and letting all weights to be 1 in (21)):

min
1

2
‖D −∆‖2, s.t. D ∈ Snh and −D ∈ Kn+, (36)

where Snh is the hollow subspace

Snh := {A ∈ Sn | diag(A) = 0} .

(a) Method of Alternating Projections (MAP). It is easy to see that (36) is a projection
problem onto Snh ∩ Kn−, the intersection of the subspace Snh and the convex cone Kn− := −Kn+.
The MAP was developed in [15] and [16]: Start with an initial point D0 ∈ Sn, compute

Dk+1 = ΠKn
−

(
ΠSnh (Dk)

)
, k = 0, 1, 2 . . . , . (37)

The two projections are easy to compute. In fact,

ΠSnh (A) = A0, ∀ A ∈ Sn,

where A0 is A except its diagonal is being replaced by 0, and by (28)

ΠKn
−

(A) = −ΠKn
+

(−A) = A+ ΠSn+(−JAJ).

MAP can be extended to deal with the weighted problem:

min f(D) =
1

2
‖
√
W ◦ (D −∆)‖2, s.t. D ∈ Snh ∩ Kn−. (38)

Let wi be the largest element in the i row of
√
W :

wi := max
{√

Wij | j = 1, . . . , n
}

and w := (w1, . . . , wn)T . Let Diag(w) be the diagonal matrix formed by w. A majorization
function of f(D) is

fm(D,Dk) := f(Dk) +∇f(Dk), D −Dk〉+
1

2
‖Diag(

√
w)(D −∆)Diag(

√
w))‖2,

where Dk is the current iterate. Hence, the MM (majorization and minimization) scheme can
be applied to fm(D,Dk) to get

Dk+1 = arg min fm(D,Dk), s.t. D ∈ Snh ∩ Kn−,

which is known as the diagonally weighted projection problem and there exists a computational
formula for the weighted projection onto Kn− (see [31, Sect. 4.2]).

MAP is guaranteed to converge. However, it is incapable of dealing with the rank constraint.
It has to reply on other mechanism to get the embedding dimension right, for example, by en-
forcing many box constraints (6), see [17] for such a mechanism.
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(b) Newton’s method. MAP is a first-order method and hence may take many iterations
to terminate. Newton’s method was developed in [31] and it is designed for the Lagrange dual
problem of (36):

min
y∈IRn

θ(y) :=
1

2
‖ΠKn

+
(∆ + Diag(y))‖2.

Being a Lagrange dual function, θ(y) is convex and is differentiable in this case. The optimality
condition is

F (y) := ∇θ(y) = diag
(

ΠKn
+

(∆ + Diag(y))
)

= 0.

This is a system of nonlinear equations. Newton’s method hence takes the following form:

yk+1 = yk − V −1k F (yk), k = 0, 1, . . . ,

where Vk is a generalized Jacobian of F (·) at yk. Suppose {yk} converges to y∗ satisfying
F (y∗) = 0 (y∗ must be optimal for the dual problem), then the corresponding optimal EDM is

D∗ = −ΠKn
+

(∆ + Diag(y∗)).

The Newton method is proved to converge quadratically and can be further generalized to deal
with the weighted problem (38). We refer to [31] for detailed analysis of this method, which is
further used to solve the subproblems for the rank constrained problem (21) in [33].

4.2 Penalty methods

If we take into account of the rank representations in (30) and (35), the penalty method comes
naturally as a promising approach to EDM optimization. We describe them separately, with a
main focus on penalizing (35).

(a) Penalizing the eigen-function. Take the problem (21) for example. By using (30), it is
equivalent to

min f (D,2)(D) = ‖
√
W ◦ (D −∆)‖2

s.t. D ∈ B, −D ∈ Kn+, p(D) = 0,

where the diagonal constraint diag(D) = 0 is submerged to the box constraint B. We emphasize
that all the constraints except p(D) = 0 are convex. The penalty problem is

min f
(D,2)
ρ (D) = ‖

√
W ◦ (D −∆)‖2 + ρp(D)

s.t. D ∈ B, −D ∈ Kn+,

where ρ > 0 is a penalty parameter. We note that p(D) ≥ 0 whenever −D ∈ Kn+. Therefore,
it is a penalty function over the feasible region. This penalty problem was thoroughly investi-
gated in [33], where the Newton method reviewed above was used to solve its subproblems. The
corresponding analysis is quite involved and it is not possible here to give it a complete review.
Instead, we focus on the other penalty method due to (35) for its easy implementation and low
computational cost each step.

(b) Penalizing the distance function. To illustrate its power, we use the nondifferentiable
problem (20) as an example. We note that this approach can also be used to other EDM
optimization problems. By (35), the problem (20) is equivalent to

min f
(d,2)
ρ (D) = ‖

√
W ◦ (

√
D −∆)‖2

s.t. D ∈ B, g(D) = 0.
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The penalty problem is

min F (D) := ‖
√
W ◦ (

√
D −∆)‖2 + ρg(D), s.t. D ∈ B. (39)

The function F (·) is still difficult to minimize. We will construct a majorization that is easy to
minimize.

Suppose Dk is the current iterate. We recall from (33) that

g(D) =
1

2
‖D‖2 − h(−D)

≤ 1

2
‖D‖2 −

{
h(−Dk) + 〈ΠKn

+(r)(−Dk), −D +Dk〉
}

︸ ︷︷ ︸
by convexity of h(·) and (34)

=
1

2
‖D‖2 − h(−Dk) + 〈ΠKn

+(r)(−Dk), D −Dk〉

=: gm(D,Dk).

That is, gm(D,Dk) is a majorization of g(D) (by verifying the relationship in (7)). Consequently,
a majorization for F (D) is

Fm(D,Dk) = ‖
√
W ◦ (

√
D −∆)‖2 + ρgm(D,Dk).

By applying the MM scheme (8), we arrive at the following algorithm:

Dk+1 = arg min Fm(D,Dk), s.t. D ∈ B. (40)

We see below that the majorization problem has a very nice structure.

Dk+1 = arg min
D∈B

‖
√
W ◦ (

√
D −∆)‖2 + ρ/2‖D‖2 + 〈ρΠKn

+(r)(−Dk), D〉

= arg min
D∈B

ρ

2
‖D‖2 + 〈W + ρΠKn

+(r)(−Dk), D〉 − 2〈W ◦∆,
√
D〉

= arg min
D∈B

1

2
‖D −Dk

ρ‖2 −
2

ρ
〈W ◦∆,

√
D〉,

where
Dk
ρ := −W/ρ−ΠKn

+(r)(−Dk).

Hence, Dk+1 can be computed through the following n(n − 1)/2 one-dimensional optimization
problems:

Dk+1
ij = arg min

1

2

(
Dij − (Dk

ρ)ij

)2
− 2(wijδij/ρ)

√
Dij , s.t. Lij ≤ Dij ≤ Uij . (41)

This is equivalent to solving the following one-dimensional problem. For given ω ∈ IR, α > 0
and an interval B := [a, b] with 0 ≤ a ≤ b, find the optimal solution SB(ω, α) of the problem:

SB(ω, α) := arg min
1

2
(x− ω)2 − 2α

√
x, s.t. x ∈ B = [a, b], (42)

Define
u :=

α

2
, v :=

ω

3
, and τ := u2 − v3.

Let

S(ω, α) :=

{ [
(u+

√
τ)1/3 + (u−

√
τ)1/3

]2
if τ ≥ 0

4v cos2(φ/3) if τ < 0,

where the angle φ is defined by cos(φ) = u/v3/2.
The following results are proved in [40, Prop. 3.4, Prop. 3.5]:

15



Proposition 4.1 Suppose we are given ω ∈ IR, α > 0 and B = [a, b] with 0 ≤ a ≤ b. Then we
have

(i) the solution of (42) is given by

SB(ω, α) = min
{
b, max{a, S(ω, α)}

}
.

(ii) Suppose b > 0 and we have two positive constants ωmax > 0 and α0 > 0. Then there exists
γ > 0 such that

SB(ω, α) ≥ γ

for any ω and α satisfying

|ω| ≤ ωmax and α ≥ α0,

Therefore, Dk+1 in (41) can be computed as follows

Dk+1
ij =

{
min{Uij , max{(Dk

ρ)ij , Lij} if δij = 0

SBij ((Dk
ρ)ij , wijδij/ρ) if δij > 0,

(43)

where Bij := [Lij , Uij ]. For simplicity, we denote the update formula in (43) by

Dk+1 = T (Dk), k = 0, 1, . . . , . (44)

The algorithm just outlined is called SQREDM (Square-Root Model via EDM for (20)) in [40]. We
summarize it below.

Algorithm 1 SQREDM Method

1: Input data: Dissimilarity matrix ∆, weight matrix W , penalty parameter ρ > 0, lower-
bound matrix L, upper-bound matrix U and the initial D0. Set k := 0.

2: Update: Compute Dk+1 by (44) via (43).
3: Convergence check: Set k := k + 1 and go to Step 2 until convergence.

We make a few remarks on the algorithm SQREDM.

(R1) (Differentiable path) Without loss of generality, we may assume the box constraint B is
bounded. Then the generated sequence {Dk} is also bounded because Dk ∈ B. Moreover

‖Dk
ρ‖ = ‖W/ρ+ ΠKn

+(r)(−Dk)‖ ≤ 1

ρ
‖W‖+ ‖ΠKn

+(r)(−Dk)‖ ≤ 1

ρ
‖W‖+ ‖Dk‖,

where the last inequality used the fact that 0 ∈ Kn+(r). The boundedness of {Dk} implies
the boundedness of {Dk

ρ}. It follows from Prop. 4.1(ii) that there exists γ > 0 such that

Dk
ij ≥ γ whenever δij > 0. If δij = 0, then wij = 0 and the term Dij does not enter the

objective function F (D). Consequently, F (D) is differentiable on the generated iterates
{Dk} although it may not be differentiable at other places. Since Dk

ij is bounded away
from 0 by a constant γ > 0 (when δij > 0), F (D) is also differentiable at any of the
accumulation points of {Dk}. The property of being differentiable along the generated
path has greatly simplified the convergence analysis in [40].
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(R2) (Computational complexity) The major computation in SQREDM is on ΠKn
+(r)(−Dk), which

has been dealt with in Sect. 3(c). The overall complexity is O(Nrn2), where O(rn2) is
from computing ΠKn

+(r)(−Dk) and the formula in (43), and N is the number of updates

(number of iterations).

(R3) (Generalization) The convergence of SQREDM has been established in [40]. However, its
framework can be generalized to other EDM optimization problems in principle, though
needing technical adaptation, see [41] for its generalization to the robust model (22).

5 Regularization

Regularization in SNL seems to have been motivated by a similar strategy in dimension reduction
in manifold learning [38], where data sitting on a manifold in a high dimensional space are
mapped to a low dimensional Euclidean space. Flattening a manifold to a low dimensional
space often causes points to be gathered around the geometric center of those points. The idea
was to pull apart the embedding points via enforcing some regularization terms. This idea of
regularization has not been well addressed in EDM optimization. We show below it can be done
without causing too much extra computational burden as least to the algorithm SQREDM.

Suppose we have n points that we would like to push them apart. We introduce two ways
to achieve this purpose. One is to maximize total Euclidean distances among points

R1(D) :=
n∑

i,j=1

‖xi − xj‖ = 〈1n1Tn ,
√
D〉

and the other is to maximize the total squared Euclidean distance suggested by [7]

R2(D) :=
n∑

i,j=1

‖xi − xj‖2 = 〈1n1Tn , D〉,

where xi, i = 1, . . . , n are the embedding points of the EDM D. In particular, R2 has an
interesting interpretation. Suppose the embedding points {xi} are centred, i.e.,

∑n
i=1 xi = 0

(this is so when they are embedding points form D by MDS). Then

R2(D) =
n∑

i,j=1

(
‖xi‖2 − 2〈xi, xj〉+ ‖xj‖2

)
= 2n

n∑
i=1

‖xi‖2,

which is called the variance among the embedding points and maximizing R2 is known as
maximum variance unfolding in [38].

Adding each term to the penalized problem (39) yields

min F (i)(D) := ‖
√
W ◦ (

√
D −∆)‖2 + ρg(D)− βRi(D), s.t. D ∈ B, (45)

where i ∈ {1, 2} and β > 0 is the regularization parameter. Again, we can use MM scheme to
solve this regularized problem. A natural majorization function is

F (i)
m (D,Dk) = Fm(D,Dk) + βRi(D).

We solve

Dk+1 = arg min F (i)
m (D,Dk) s.t. D ∈ B.
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When i = 1, it is easy to see

Dk+1 = arg min
D∈B

F (1)
m (D,Dk)

= arg min
D∈B

1

2
‖D −Dk

ρ‖2 − 2〈W ◦∆/ρ+ β/(2ρ)1n1
T
n ,
√
D〉.

Consequently,
Dk+1
ij = SBij ((Dk

ρ)ij , wijδij/ρ+ β/(2ρ)).

We denote this update by
Dk+1 = T1(Dk), k = 0, 1, . . . , (46)

and refer to it as SQREDMR1.

Algorithm 2 SQREDMR1 Method

1: Input data: Dissimilarity matrix ∆, weight matrix W , penalty parameter ρ > 0, lower-
bound matrix L, upper-bound matrix U and the initial D0. Set k := 0.

2: Update: Compute Dk+1 by (46).
3: Convergence check: Set k := k + 1 and go to Step 2 until convergence.

When i = 2, it is easy to see

Dk+1 = arg min
D∈B

F (2)
m (D,Dk)

= arg min
D∈B

1

2
‖D − (Dk

ρ + (β/ρ)1n1
T
n )‖2 − 2〈W ◦∆/ρ,

√
D〉.

Consequently,

Dk+1
ij =

{
min{Uij , max{(Dk

ρ)ij , Lij} if δij = 0

SBij ((Dk
ρ)ij + β/ρ, wijδij/ρ) if δij > 0,

We denote this update by
Dk+1 = T2(Dk), k = 0, 1, . . . , . (47)

and refer to it as SQREDMR2.

Algorithm 3 SQREDMR2 Method

1: Input data: Dissimilarity matrix ∆, weight matrix W , penalty parameter ρ > 0, lower-
bound matrix L, upper-bound matrix U and the initial D0. Set k := 0.

2: Update: Compute Dk+1 by (47).
3: Convergence check: Set k := k + 1 and go to Step 2 until convergence.

Comparing (46) and (47) to the original algorithm (44), the regularization term does not
create any extra computational difficulties. In contrast, it would be difficult to include the reg-
ularization term R1 in the SDP model in [7] without causing significant computational burden.

6 Numerical Examples

The purpose of this section does not intend to given full assessment of the EDM optimization
on a widely ranged SNL problems, but to illustrate on the role of the regularizations R1(D)
and R2(D). The main message is that they do improve the localization quality as long as the
regularization parameter is small (e.g., less than 1 in our tested cases), though it remains unclear
how to choose the best value.
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6.1 Implementation and test problems

The detailed implementation including stopping criterion for SQREDM can be found in [40] and
we will not repeat it here. We describe our test problems below. There are two cases depending
on the positions of the anchors: (i) Outer position and (ii) Inner position. The case (ii) was also
tested in [40].

Example 6.1 This example is widely tested since its detailed study in [7]. In the square region
[−0.5, 0.5]2, 4 anchors x1 = a1, · · · ,x4 = a4 (m = 4) are placed at

Case (i) (Outer position): (±0.45,±0.45)

Case (ii) (Inner position): (±0.20,±0.20)

The generation of the rest (n−m) sensors (xm+1, · · · ,xn) follows the uniform distribution over
the square region. The noisy ∆ is usually generated as follows.

δij := ‖xi − xj‖ × |1 + εij × nf|, ∀ (i, j) ∈ N
N := Nx ∪Na
Nx := {(i, j) | ‖xi − xj‖ ≤ R, i > j > m}
Na := {(i, j) | ‖xi − aj‖ ≤ R, i > m, 1 ≤ j ≤ m} ,

where R is known as the radio range, εij’s are independent standard normal random variables,
and nf is the noise factor (e.g., nf = 0.2 was used in the tests and it corresponds to 20% noise
level). In literature (e.g., [7]), this type of perturbation in δij is known to be multiplicative
and follows the unit-ball rule in defining Nx and Na (see [3, Sect. 3.1] for more detail). The
corresponding weight matrix W and the lower and upper bound matrices L and U are given as
in the table below. Here, M is a large positive quantity. For example, M := nmaxij ∆ij is the
upper bound of the longest shortest path if the network is viewed as a graph.

(i, j) Wij ∆ij Lij Uij

i = j 0 0 0 0

i, j ≤ m 0 0 ‖ai − aj‖2 ‖ai − aj‖2

(i, j) ∈ N 1 δij 0 R2

otherwise 0 0 R2 M2

To compare the embedding quality, we use a widely used measure RMSD (Root of the Mean
Squared Deviation) defined by

RMSD :=

[
1

n−m

n∑
i=m+1

‖x̂i − xi‖2
]1/2

,

where xi’s are the true positions of the sensors in our test problems and x̂i’s are their corre-
sponding estimates. The x̂i’s were obtained by applying cMDS to the final output of the distance
matrix, followed by aligning them to the existing anchors through the well-known Procrustes
procedure (see [8, Chp. 20] or [34, Prop. 4.1]. All tests were run in Matlab 2017b.
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6.2 Numerical experiments

First, we would like to assess the level of improvement by the two regularizations. We set
n = 104 (100 sensors), nf = 0.2 and R = 0.3, and set the random seed to be rng(0). We also
choose β = 0.8 for both SQREDMR1 and SQREDMR2. Fig. 2 contains the recovered sensors
for both cases. Fig. 2a is for Case (i) of outer anchor positions and Fig. 2b is for Case (ii) of
inner anchor positions. The Root of Mean Squared Deviation (RMSD) has nearly 50% decrease
for the first case while RMSD is only reduced marginally for the second case. This is reasonable
because the choice of β is more suitable to Case (i) than to Case (ii).

(a) (b)

Figure 2: Improving embedding quality by regularization: Fig. 2a is on Case (i) and shows about
50% reduction in RMSD for both regularizations. In contrast, Fig. 2b (Case (ii)) shows a small
improvement for both regularizations.

Second, we would like to test how sensitive SQREDM is to both regularization terms. As
already seen in Fig. 2, the two terms behave quite similarly at β = 0.8. Surprisingly, it is so
over a range of choices. This is clearly shown in Fig. 3 (Case (i)), where RMSD vs β is plotted.
SQREDMR1 and SQREDMR2 follow each other quite closely and they produced better RMSD
than SQREDM for all β ∈ (0, 1.2). Since we are testing the same problem with different choice of
β, the plot (in yellow) for SQREDM is a straight line. This behaviour is also observed for Case
(ii) in Fig. 4, where we see a sudden jump for SQREDMR1 at β ≈ 1.66 and for SQREDMR2 at
β ≈ 2.45. It seems that both terms are less sensitive when β ≤ 1 than the region β ≥ 1. So our
suggestion is to choose β between 0.5 and 1. However, it would be difficult to know what is the
best choice of β because it is problem-dependent.

Finally, we test how fast SQREDM is when n is getting big. We test problems of size ranging
from n = 200 to n = 3000 and report in Fig. 5 the average results over 20 runs from each
randomly generated instance (set rng(’shuffle’)). As seen from Fig. 5a, SQREDM used a
similar amount of time for both cases (Case (i) and Case (ii)) and are pretty fast. For example
n = 2000, it only used about 40 seconds to terminate on a Dell laptop with CPU 2.50Ghz and
8GB RAM and it climbed to about 160 seconds when n is increased to 3000. The quality of the
localization is shown in Fig. 5b, where we also reported the refined RMSD (rRMSD), which is
obtained by using the heuristic gradient method of [7] (called the Refinement Step therein). We
see that the quality after the refinement step is very satisfactory, demonstrating that the final
embedding provided by SQREDM is a good starting point for the refinement step.
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Figure 3: Sensitivity of regularization parameter β on Case (i). Both SQREDMR1 and SQREDMR2
behave quite similarly and both improved the embedding quality over a big range of β from 0
to about 1.3.

(a) (b)

Figure 4: Sensitivity of regularization parameter β on Case (ii). Both SQREDMR1 and SQREDMR2
behave quite similarly and both improved the embedding quality over the range of β from 0
to about 1.6 (see Fig. 4a). Beyond this range, SQREDMR2 continues its steady behaviour, while
SQREDMR1 soon had a big jump to a point that led to bigger RMSD than that by SQREDM (see
Fig. 4b).

7 Conclusion

Sensor Network Localization has been extensively studied and has a capacity of modelling vari-
ous practical problems. In this paper, we reviewed some major computational approaches such
as the coordinates minimization, SDP and EDM optimization, with the latter two being based
on matrix optimization. Therefore, SDP and EDM approaches are both centralized, while the
coordinates minimization can be of distributed. We note that the majorization-minimization
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(a) (b)

Figure 5: Speed and quality of SQREDM for both Case (i) and Case (ii). The amount of time
consumed by SQREDM is similar for both cases (see Fig. 5a).. However, the quality for Case (ii)
is constantly better than for Case(i) (see Fig. 5b), where we also plotted the refined RMSD.

technique has played an important role in both coordinates minimization and the EDM opti-
mization.

In particular, we discussed the origin of EDM optimization, reviewed in detail some of its
major algorithms including the convex relaxation and the latest penalty method SQREDM. We
also addressed the issue of regularization, that has not been studied before in EDM optimiza-
tion. We considered two regularization terms, one is on the ‘plain” distances and the other is
on the “squared” distances. We showed that both terms can be naturally incorporated into
SQREDM, resulting in SQREDMR1 and SQREDMR2, respectively. Their numerical performance was
demonstrated through a SNL test problem. The conclusion is that both regularizations lead to
some improvement in embedding quality, but the level of improvement varies with the problem
type. The potential of regularization in EDM optimization is worth future investigation with
different loss functions and other test problems.
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