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Abstract

In [15], Higham considered two types of nearest correlation matrix problem, namely the
W -weighted case and the H-weighted case. While the W -weighted case has since then been
well studied to make several Lagrangian dual based efficient numerical methods available, the
H-weighted case remains numerically challenging. The difficulty of extending those methods
from the W -weighted case to the H-weighted case lies in the fact that an analytic formula for
the metric projection onto the positive semidefinite cone under the H-weight, unlike the case
under the W -weight, is not available. In this paper, we introduce an augmented Lagrangian
dual based approach, which avoids the explicit computation of the metric projection under
the H-weight. This method solves a sequence of unconstrained strongly convex optimization
problems, each of which can be efficiently solved by a semismooth Newton method com-
bined with the conjugate gradient method. Numerical experiments demonstrate that the
augmented Lagrangian dual approach is not only fast but also robust.

AMS subject classifications. 49M45, 90C25, 90C33

1 Introduction

In [15], Higham considered two types of nearest correlation matrix problem. One is under the
W -weighting:

min
1
2
‖W 1/2(X −G)W 1/2 ‖2

s.t. Xii = 1, i = 1, . . . , n ,
X ∈ Sn

+ ,

(1)

where Sn and Sn
+ are respectively the space of n × n symmetric matrices and the cone of

positive semidefinite matrices in Sn, ‖ · ‖ is the Frobenius norm induced by the standard trace
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inner product in Sn, and the matrix G ∈ Sn is given. The positive definite matrix W ∈ Sn is
known as the W -weight to the problem and W 1/2 is the positive square root of W .

The constraints in (1), collectively known as the correlation constraints, specify that any
feasible matrix is a correlation matrix. Solving the W -weighted problem (1) is equivalent to
solving a problem of the type (cf. [22, Sec. 4.1]):

min
1
2
‖X −G ‖2

s.t. A(X) = e ,
X ∈ Sn

+ ,

(2)

where the linear operator A : Sn 7→ IRn is given by A(X) = diag(W−1/2XW−1/2) and e ∈ IRn

is the vector of all ones. We often use X º 0 to denote X ∈ Sn
+.

The other nearest correlation matrix problem that is considered by Higham is under the
H-weighting:

min
1
2
‖H ◦ (X −G) ‖2

s.t. Xii = 1, i = 1, . . . , n ,
X ∈ Sn

+ ,

(3)

where the weighting is now in the sense of Hardamard: (A ◦B)ij = AijBij . Here the matrix H
is symmetric and each of its entries is positive, i.e., Hij > 0 for all i, j = 1, . . . , n. We refer the
reader to [3] for a concrete example in finance to see how H was constructed. We note that in
the special case that H = E, the matrix of all ones, (3) turns out to be (2) with W = I, the
identity matrix.

The W -weighted problem (1) has been well studied since Higham [15] and now there are
several good methods for it including the alternating projection method [15], the gradient and
quasi-Newton methods [18, 8], the semismooth Newton method combined with the conjugate
gradient solver [22] and its modified version with several (preconditioned) iterative solvers [5],
and the inexact interior-point methods with iterative solvers [39, 38]. All of these methods
except the inexact interior-point methods crucially rely on the fact that the projection of a
given matrix X ∈ Sn onto Sn

+ under the W -weight, denoted by ΠW
Sn

+
(X), which is the optimal

solution of the following problem:

min
1
2
‖W 1/2(Y −X)W 1/2‖2

s.t. Y ∈ Sn
+ ,

is given by the formula (see [15, Thm. 3.2])

ΠW
Sn

+
(X) = W 1/2

(
W 1/2XW 1/2

)
+
W 1/2,

where for any A ∈ Sn,
A+ := ΠI

Sn
+
(A) .

It has long been known by statisticians that for any A ∈ Sn, ΠSn
+
(A) ≡ ΠI

Sn
+
(A) admits an

explicit formula [32]. This means that for any X ∈ Sn, ΠW
Sn

+
(X) can be computed explicitly.
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To simplify the subsequent discussions, we assume, without loss of generality, that W ≡ I
(for reasons, see [22, Sec. 4.1]). We note that (·)+ = ΠSn

+
(·). To see how the metric projection

operator ΠSn
+
(·) is tangled in the derivation of these methods mentioned above and also to

motivate our method for the H-weighted case, let us consider the Lagrangian function of problem
(2),

l(X, y) :=
1
2
‖X −G‖2 + yT (b−A(X)), (X, y) ∈ Sn

+ × IRn , (4)

where the linear operator A : Sn 7→ IRn is the diagonal operator, i.e, A(X) = diag(X) for any
X ∈ Sn and b := e. Since problem (2) automatically satisfies the generalized Slater constraint
qualification, from the duality theory developed by Rockafellar [28] we know that problem (2)
can be equivalently solved by its Lagrangian dual problem

max
y∈IRn

{
min

X∈Sn
+

l(X, y)
}

, (5)

which, via the metric projector (·)+, can be equivalently reformulated as the following uncon-
strained optimization problem (see [28, 18, 8] for details)

min
y∈IRn

θ(y) :=
1
2
‖(G +A∗(y))+‖2 − bT y − 1

2
‖G‖2 (6)

in the sense that if ȳ is an optimal solution to (6), then X := (G +A∗(ȳ))+ solves (2). Here A∗
is the adjoint of A.

The objective function θ(·) in (6) is known to be once continuously differentiable and convex
[28], despite the fact that the projection operator (·)+ is usually not differentiable. Therefore,
the gradient method and quasi-Newton methods can be developed to solve (6) directly. Malick
remarked in [18] that the alternating projection method is actually the gradient method for (6)
with a constant steplength one. These methods converge at best linearly. Because θ(·) is convex
and coercive [28], solving (6) is equivalent to finding a point ȳ satisfying its optimality condition

∇θ(y) = A(G +A∗(y))+ − b = 0.

Define
F (y) := A(G +A∗(y))+, y ∈ IRn .

Then F (·) is Lipschitz continuous and whence the generalized Jacobian ∂F (y) in the sense of
Clarke [10] is well-defined. For any y ∈ IRn, let ∂2θ(y) := ∂F (y). The generalized Newton
method takes the following form:

yk+1 = yk − V −1
k (∇θ(yk)), Vk ∈ ∂2θ(yk), k = 0, 1, . . . . (7)

A formula for calculating V ∈ ∂2θ(y) can be found in [22, p.378]. Clarke’s Jacobian based
generalized Newton method (7) was thoroughly analyzed by Qi and Sun [22] and is proven to
be quadratically convergent. Numerical experiments conducted in [22, 5] seem to confirm that
it is the most effective method available so far.

When it comes to the H-weighted problem (3), it is unfortunate that all of those Lagrangian
dual based methods become infeasible mainly due to the lack of a computable formula for the
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projection of X ∈ Sn onto Sn
+ under the H-weight. That is, the optimal solution, denoted

ΠH◦
Sn

+
(X), to the following problem

min
1
2
‖H ◦ (Y −X)‖2, s.t. Y ∈ Sn

+

is not known to have an explicit formula1. For this reason, it is not known if the Lagrangian
dual problem for the H-weighted case can be reduced to an explicitly defined unconstrained
optimization problem. Consequently, comparing to the original problem, not much benefit would
be gained through considering the Lagrangian dual problem. This implicates, in particular, that
the Newton method for the W -weighted case cannot be straightforwardly extended to the H-
weighted case.

A natural question then arises: can we still expect an efficient dual approach for the H-
weighted case? This paper will provide an affirmative answer to this question by exploiting the
augmented Lagrangian dual approach – the augmented Lagrangian method, thanks to Rockafel-
lar [29, 30] for his pioneering work on convex optimization problems. Let c > 0 be a parameter.
The augmented Lagrangian function for the H-weighted problem (3) is given by (e.g., see [31,
Sec. 11K])

Lc(X, y, Z) :=
1
2
‖H ◦ (X −G)‖2 + yT (b−A(X)) +

c

2
‖b−A(X)‖2

+
1
2c

(‖(Z − cX)+‖2 − ‖Z‖2
)
, (8)

where (X, y, Z) ∈ Sn×IRm×Sn, A = diag, and b = e. The augmented Lagrangian dual problem
takes the following form

min
y∈IRn, Z∈Sn

{
νc(y, Z) := − min

X∈Sn
Lc(X, y, Z)

}
. (9)

The major computational task in the augmented Lagrangian dual approach, as outlined in
(22)-(24), at each step for a given (y, Z) ∈ IRn × Sn, is to solve the following unconstrained
optimization problem:

min
X∈Sn

Lc(X, y, Z). (10)

Note that for any (y, Z) ∈ IRn×Sn, L(·, y, Z) is a strongly convex and continuously differentiable
function. Therefore, the gradient method and quasi-Newton methods can be developed in theory
for (10). However, our numerical experiments show that the gradient method is extremely slow
and is hence disregarded. The size of the variable X in (10) is n̄ := n(n + 1)/2. Maintaining an

1It was stated in [16, Cor. 2.2] that when H is positive definite, ΠH◦
Sn
+

(X) is uniquely determined by the

equation
H ◦ΠH◦

Sn
+

(X) = (H ◦X)+ .

This does not seem to be true even for this special case. A counterexample is

H =

�
1 ε
ε 1

�
, X =

�
1 2
2 1

�
, 0 < ε ≤ 1/2.
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n̄ × n̄ positive definite matrix is extremely expensive due to memory problems even when n is
small, say n = 100. This rules out the quasi-Newton methods where an n̄ × n̄ positive definite
matrix is maintained and updated at each iteration (limited-memory quasi-Newton methods
may still be exploited, but their convergence analysis is hardly satisfactory).

The main purpose of this paper is to show that Newton’s method is an efficient method for
(10). The Newton method that we are going to use is quite similar to (7) with the difference
that the number of the unknowns in the Newton equation here is n̄, which is the order of
O(n2), instead of n. These equations, even when n is relatively large, say n = 1, 000, do not
create too much difficulty when we apply the conjugate gradient method to solve them. The
major reason behind this is that the H-weighted problem (3) has two mathematical properties,
namely the automatic fulfillment of the constraint nondegeneracy and the strong second-order
sufficient condition (see Sec. 2). These two properties not only ensure that the Newton equations
encountered in the Newton method are well conditioned but also guarantee that the augmented
Lagrangian method possesses a fast linear convergence, a property established by Rockafellar
[29, 30] for general convex optimization problems. We will make all of those results solid in the
main body of the paper.

A similar approach is also conducted in [23], where the problem considered is the type of the
W -weighted with a background in correlation stress testing, which requires a large number of
correlations to be fixed beforehand. Theoretically, being an augmented Lagrangian dual based
method, the approach in [23] can be extended to the H-weighted case considered here. Indeed,
it was [23], together with [22], that inspired us to further investigate the effectiveness of the
augmented Lagrangian dual approach for the H-weighted problem (3).

The type of interior-point methods (IPMs) was deliberately left out of the above discussions
because it deserves its own space for comments. As early as [16], Johnson et. al. have already
started to use IPMs to solve the H-weighted matrix optimization problems of various types. The
H-weighted nearest correlation matrix problem (3) can be reformulated as a linear optimization
problem with mixed semidefinite and second order cone constraints [15, 39]. Consequently,
publicly available IPMs based software like SeDuMi [34] and SDPT3 [41] can be applied to
solve these problems directly. However, since at each iteration these solvers require to formulate
and solve a dense Schur complement matrix (cf. [4]), which for the problem (3) amounts to a
linear system of dimension (n + n̄) × (n + n̄), the size of the H-weighted problem that can be
solved on a Pentium IV PC (the computing machine that we are using) is limited to a small
number, say n = 80 or 100 at most. Serious and competitive implementation of inexact IPMs
was carried out by Toh et. al [39] for solving a special class of convex quadratic semidefinite
programming (QSDP) including the W-weighted problem (1) and Toh [38] for a general convex
QSDP with the H-weighted problem (1) being targeted and tested in particular. The search
direction used in [38] was obtained by solving the augmented equation via the preconditioned
symmetric quasi-minimal residual (PSQMR) iterative solver. It is this QSDP-solver that we are
going to compare with. Our numerical tests show that the augmented Lagrangian dual approach
for the H-weighted nearest correlation problem (3) is not only faster but also more robust.

The paper is organized as follows. In Section 2, we study some mathematical properties of
the H-weighted problem (3), mainly on the constraint nondegeneracy and the strong second-
order sufficient condition. Section 3 is on the augmented Lagrangian method. We first outline
an abstract form of the method and then state its convergence results. In Section 3.2, we present
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two practical algorithms. One is the semismooth Newton-CG method for solving subproblems
of the type (10) encountered in the augmented Lagrangian method, which is detailed in the
second algorithm. Convergence analysis for the two algorithms is included in Section 3.3. We
report numerical results in Section 4 and conclude the paper in Section 5.

2 Mathematical Properties of the H-Weighted Case

This section gives a brief account of the two mathematical properties of the H-weighted problem
(3) mentioned in the introduction. The two properties will justify the use of the augmented
Lagrangian method to be introduced in the next section. Although it is not our intention in this
paper to address degenerate problems, the two properties will also provide some room to relax
the positivity requirement on the elements of H. For example, some of the off-diagonal weights
Hij are allowed to be zeros without damaging the two properties. The zero weight means no
restriction on the corresponding correlation.

2.1 The Constraint Nondegeneracy Property

Let us cast the problem (3) into the following convex QSDP:

min
1
2
〈X, Q(X)〉 − 〈C, X〉+

1
2
‖H ◦G‖2

s.t. A(X) = b,
X ∈ Sn

+,

(11)

where A = diag, Q = H ◦H◦, C = H ◦H ◦G, and b = e.
For any X ∈ Sn

+, let TSn
+
(X) be the tangent cone of Sn

+ at X and lin
(
TSn

+
(X)

)
be the largest

linear space contained in TSn
+
(X), respectively. We say that the constraint nondegeneracy holds

at a point X satisfying the constraints in (11) if

A(
lin TSn

+
(X)

)
= IRn. (12)

For the origin of the constraint nondegeneracy, its various forms, and its role in general opti-
mization, see [6, 7, 25, 26, 27, 33].

The constraint nondegeneracy can be easily verified for the correlation constraints. Let
X ∈ Sn. Suppose that X has the spectral decomposition

X = Pdiag(λ1, . . . , λn)P T , (13)

where λ1 ≥ · · · ≥ λn are the eigenvalues of X and P is a corresponding orthogonal matrix of
orthonormal eigenvectors. Then, from [32, 14, 40] we know that

X+ = Pdiag(max(0, λ1), . . . , max(0, λn))P T . (14)

Define
α := {i | λi > 0}, β := {i | λi = 0}, and γ := {i | λi < 0}.
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Write P = [Pα Pβ Pγ ], where Pα contains columns in P indexed by α; and Pβ and Pγ are defined
similarly. The tangent cone TSn

+
(X+) was first characterized by Arnold [2] as follows

TSn
+
(X+) = {B ∈ Sn

∣∣ [ Pβ Pγ ]T B [ Pβ Pγ ] º 0} .

Consequently,

lin
(
TSn

+
(X+)

)
=

{
B ∈ Sn

∣∣ P T
β BPβ = 0, P T

β BPγ = 0, P T
γ BPγ = 0

}
.

Equivalently,

lin
(
TSn

+
(X+)

)
=



PBP T

∣∣ B =




Bαα Bαβ Bαγ

BT
αβ 0 0

BT
αγ 0 0


 ,

Bαα ∈ S |α|
Bαβ ∈ IR|α|×|β|

Bαγ ∈ IR|α|×|γ|



 . (15)

The following result says that any point satisfying the correlation constraints is constraint non-
degenerate. It can be proved similarly as [39, Prop. 4.2], where it used a characterization of
the constraint nondegeneracy in [1] and [22, Lem. 3.3] and the result is stated only for optimal
solutions. We provide here a proof for the general case.

Proposition 2.1 Any point satisfying the correlation constraints {diag(X) = e, X ∈ Sn
+} is

constraint nondegenerate.

Proof. Let X ∈ Sn satisfy the correlation constraints. Suppose that X has the spectral
decomposition (13). Because X is positive semidefinite, γ = ∅. Also because diag(X) = e,
α 6= ∅. Moreover, this diagonal constraint also implies (see [22, Lem. 3.3])

∑

`∈α

P 2
i` > 0, i = 1, . . . , n. (16)

To show that condition (12) holds at X, it suffices to prove
(
diag

(
lin TSn

+
(X)

))⊥
= {0} .

Let v ∈ IRn be an arbitrary element of the left-hand side set of the above equation. We shall
prove v = 0. It follows that for any PBP T ∈ lin

(
TSn

+
(X)

)
, we have

0 = 〈v, diag(PBP T )〉 = 〈diag(v), PBP T 〉 = 〈P T diag(v)P, B〉, (17)

where B is from (15). The structure of B implies

P T diag(v)Pα = 0,

which in turn implies
0 = diag(v)Pα = diag(v)

(
Pα ◦ Pα

)
.

Summing up each row of the above matrix equation yields

0 = vi

∑

`∈α

P 2
i`, i = 1, . . . , n.

The property (16) ensures vi = 0 for each i = 1, . . . , n. This completes our proof. ¤
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2.2 The Strong Second-Order Sufficient Condition

Now let us consider the Karush-Kuhn-Tucker system of the QSDP (11)

Q(X)−A∗(y)− Z = C
A(X) = b

X º 0, Z º 0, 〈X, Z〉 = 0



 . (18)

Any triple (X, ȳ, Z) ∈ Sn × IRm × Sn satisfying (18) is called a KKT point of (11). By using
the fact that Sn

+ is a self-dual cone, we know from Eaves [12] that (X, ȳ, Z) ∈ Sn × IRm × Sn

satisfies the KKT conditions (18) if and only if it satisfies the following system of nonsmooth
equations

F (X, y, Z) :=



Q(X)− C −A∗(y)− Z

b−A(X)
Z − [Z −X]+


 =




0
0
0


 , (X, y, Z) ∈ Sn × IRm × Sn. (19)

Apparently, F is globally Lipschitz continuous everywhere as (·)+ is so.
Let (X, ȳ, Z) ∈ Sn × IRm × Sn be a KKT point of problem (11). Denote X := X − Z.

Suppose that X has the spectral decomposition (13). Define

app (ȳ, Z) :=
{

B ∈ Sn
∣∣∣ A(B) = 0, P T

β BPγ = 0, P T
γ BPγ = 0

}
. (20)

Note that app (ȳ, Z) is independent of the choice of P in (13) (see [35, Eq. (38) and Eq. (39)]).
We also define

M(X) :=
{

(ȳ, Z)
∣∣∣ (X, ȳ, Z) is a KKT point of (11)

}
.

The set M(X) is known to be the set of Lagrangian multipliers at X. For the H-weighted
problem (3), M(X) contains a unique point (ȳ, Z) because the constraint nondegeneracy holds
at X by Prop. 2.1. For a proof on this, see [7, Thm. 5.85]. We say that the strong second-order
sufficient condition (SSOSC) holds at X if

〈B,H ◦H ◦B〉+ ΥX(Z,B) > 0 ∀ 0 6= B ∈ app (ȳ, Z), (21)

where the term ΥX(Z, B) is defined by

ΥX(Z,B) = 〈Z, BX
†
B〉

and X
† is the Moore-Penrose pseudo-inverse of X. Note that ΥX(Z, B) is quadratic in B and is

always nonnegative because Z º 0 and X º 0. Note also that in the left hand side of (21), the
first term 〈B,H ◦H ◦B〉 > 0 for any B 6= 0 due to the assumption that Hij > 0, i, j,= 1, . . . , n.
Therefore, we have the following statement.

Proposition 2.2 Assume that Hij > 0, i, j = 1, . . . , n. Let (X, ȳ, Z) be the unique KKT point
of the H-weighted nearest correlation matrix problem (3). Then the SSOSC (21) holds at X.

We make several remarks below.
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(i) The SSOSC was first proposed by Sun [35] in the study of the strong regularity of nonlinear
semidefinite programming (NSDP). The original definition runs over the set M(X). As
this set is a singleton in our case, (21) is just a specialization of the original one given in
[35, Def. 3.2].

(ii) In some practical cases [3], the diagonal weights Hii are assigned zero values (i.e., Hii = 0,
i = 1, . . . , n). This does not have any effect on (21) because for any B ∈ app (ȳ, Z), we
must have Bii = 0, i = 1, . . . , n (see the definition (20)). Therefore, the diagonal weights
in H have no contribution to the value 〈B, H ◦H ◦B〉. Consequently, our assumption in
Prop. 2.2 can be replaced by Hij > 0, for all i 6= j, i, j = 1, . . . , n.

(iii) Furthermore, for the SSOSC (21) to hold at X, one does not have to assume that all of
the off-diagonal weights to be positive. In fact, as the following example shows, some of
them are allowed to be zeros without damaging the SSOSC. This example also shows that
too many zero off-diagonal weights do destroy the SSOSC (21).

Example 2.3 Consider the H-weighted problem (3) in S4 with data given by

H =




1 0 1 1
0 1 1 1
1 1 1 1
1 1 1 1


 and G =




1 −1 1 −1
−1 1 −1 1

1 −1 1 0.5
−1 1 0.5 1


 .

Such a matrix G is known as a pseudo-correlation matrix because −1 ≤ Gij ≤ 1, Gii = 1 for
all i, j = 1, . . . , 4, and λmin(G) = −0.8860 < 0. After running our augmented Lagrangian dual
method–Algorithm 3.4, with some help of analytical cross validation, we found a KKT point
(X, ȳ, Z) with

X =




1 −1 τ1 −τ1

−1 1 −τ1 τ1

τ1 −τ1 1 τ2

−τ1 τ1 τ2 1


 , Z =




0 0 τ1 − 1 1− τ1

0 0 1− τ1 τ1 − 1
τ1 − 1 1− τ1 0 τ2 − 0.5
1− τ1 τ1 − 1 τ2 − 0.5 0


 + diag(ȳ),

and ȳ1 = ȳ2 = 2τ1(1− τ1), ȳ3 = ȳ4 = ȳ1 − τ2(τ2 − 0.5), and

τ1 =
(
(1 +

√
109/108)/4

)1/3
−

(
(−1 +

√
109/108)/4

)1/3
, and τ2 = 1− τ2

1 .

Therefore, X is an optimal solution (but we cannot assess at this moment if it is the unique
solution). The matrix X := X − Z has the spectral decomposition (13) with

P =




−0.5822 −0.0000 0.7071 0.4013
0.5822 0.0000 0.7071 −0.4013

−0.4013 0.7071 0.0000 −0.5822
−0.4013 0.7071 −0.0000 0.5822


 and λ =




2.9505
1.0495

−0.4283
−1.3293


 .

Hence, β = ∅, γ = {3, 4}, implying that

app(ȳ, Z) =
{

B ∈ S4
∣∣∣ diag(B) = 0, P T

γ BPγ = 0
}

.
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It is only down to some elementary calculations to verify that for any B ∈ app (ȳ, Z), we have
B12 = 0. In other words, if 0 6= B ∈ app (ȳ, Z), then there must exist an off-diagonal element
Bij 6= 0, (i, j) /∈ {(1, 2), (2, 1)}. Consequently, for such B we must have

〈B, H ◦H ◦B〉 ≥ H2
ijB

2
ij > 0.

That is, the strong second-order sufficient condition (21) holds even some off-diagonal weights
in H are zeros. Because of the fulfilment of the SSOSC, we can now claim that X is indeed the
unique optimal solution. We also note that the strict complementarity condition holds for this
example.

However, if H contains more zero off-diagonal weights, the SSOSC (21) may not hold any
more. For example, if H becomes

H =




1 0 1 1
0 1 0 1
1 0 1 0
1 1 0 1




and G remains unchanged, an optimal solution found by Algorithm 3.4 has ȳ = 0 and Z = 0 as
its Lagrangian multipliers. This implies γ = ∅ and hence

app(ȳ, Z) =
{

B ∈ S4
∣∣∣ diag(B) = 0

}
.

There exists 0 6= B ∈ app (ȳ, Z) such that 〈B,H ◦ H ◦ B〉 = 0. We also note that the term
ΥX(Z,B) always equals 0 because Z = 0. Therefore, the SSOSC (21) fails to hold.

One may be curious why we went all the way to use Algorithm 3.4 to give the seemingly
nontrivial Example 2.3 in S4. Is it possible to have an example in S3? The answer is surprisingly
no as long as G is a pseudo-correlation matrix. We give a brief proof to this result next.

Suppose that H ∈ S3 has only one zero off-diagonal weight, namely H12 = 0 and Hij > 0
for all (i, j) 6∈ {(1, 2), (2, 1)}. Let

G =




1 τ1 τ2

τ1 1 τ3

τ2 τ3 1


 , −1 ≤ τi ≤ 1, i = 1, 2, 3.

The following fact can be easily verified

Fact 2.4 For arbitrary chosen τ2, τ3 ∈ [−1, 1], the following matrix

X =




1 τ2τ3 τ2

τ2τ3 1 τ3

τ2 τ3 1




is the nearest correlation matrix to G under the H-weight (there may be more than one nearest
correlation matrix). If τ2 = ±1 and τ3 = ±1, then X is the unique nearest correlation matrix.
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Because of this fact and H12 = 0, the corresponding Lagrangian multipliers for X are ȳ =
0 ∈ IR3 and Z = 0 ∈ S3. This implies

app (ȳ, Z) =
{

B ∈ S3
∣∣∣ diag(B) = 0

}
.

Let B ∈ S3 be such that B12 6= 0 and Bij = 0 for (i, j) 6∈ {(1, 2), (2, 1)}. It follows that
B ∈ app (ȳ, Z) and 〈B,H ◦H ◦B〉 = 0. Thus, the SSOSC (21) fails to hold because ΥX(Z, B)
is always zero. The argument certainly extends to H containing more zero off-diagonal weights.
Hence, the SSOSC is never satisfied in S3 when H contains zero off-diagonal weights. The
prerequisite of G being a pseudo-correlation matrix is crucial in the above argument. When G
is not restricted to be a pseudo-correlation matrix, it is indeed possible to construct an example
in S3 showing that the SSOSC may still hold even H contains some zero off-diagonal weights
(see [21, Example 3.9]).

Let the mapping F be defined by (19). The following results states the local invertibility of F
near the KKT point (X, ȳ, Z), which is important for the convergence analysis of the augmented
Lagrangian method for solving the H-weighted problem (3).

Proposition 2.5 There exist a neighborhood N of (X, ȳ, Z) in Sn × IRn × Sn and a constant
ζ > 0 such that

‖F (X, y, Z)− F (X̃, ỹ, Z̃)‖ ≥ ζ−1‖(X, y, Z)− (X̃, ỹ, Z̃)‖ ∀ (X, y, Z) and (X̃, ỹ, Z̃) ∈ N .

Proof. This follows directly from Proposition 2.1, Proposition 2.2, and [35, Thm. 4.1]. ¤

3 The Augmented Lagrangian Method

As we discussed in the introduction, the Lagrangian dual approach is not applicable to the
H-weighted problem (3) because the metric projection onto Sn

+ under the H-weight does not
have an explicitly computable formula. The consequence is that its corresponding Lagrangian
dual problem does not reduce to an explicitly defined unconstrained optimization problem.
Compared with the original problem (3), not much benefit would be gained through considering
the Lagrangian dual problem.

In this section, we will demonstrate that the augmented Lagrangian dual approach works well
in theory for the H-weighted case. The two mathematical properties in the preceding section
justify the use of the method. We arrange this section as follows.

3.1 Outline of the Augmented Lagrangian Method

Let the augmented Lagrangian function be defined by (8) with c > 0. The augmented Lagrangian
method for solving (3) can be stated as follows. Let c0 > 0 be given. Let (y0, Z0) ∈ IRm × Sn

+

be the initial estimated Lagrangian multiplier. At the kth iteration, determine

Xk+1 ∈ arg minLck
(X, yk, Zk); (22)

11



compute (yk+1, Zk+1) by
{

yk+1 := yk + ck(b−A(Xk+1)),
Zk+1 := (Zk − ckX

k+1)+,
(23)

and update ck+1 by
ck+1 := ck or ck+1 > ck (24)

according to certain rules.
As for the global convergence and the rate of convergence of the augmented Lagrangian

method for the H-weighted problem (3), we can directly use the convergence theory developed
by Rockafellar in [29, Thm. 2] and [30, Thm. 5] for general convex programming problems
combining with Proposition 2.5 to get the following result.

Proposition 3.1 Let (X, ȳ, Z) be the unique KKT point of problem (3). Let (Xk, yk, Zk) be the
sequence generated by the augmented Lagrangian method (22)-(24) with limk→∞ ck = c∞ ≤ ∞.
Then

lim
k→∞

(Xk+1, yk+1, Zk+1) = (X, ȳ, Z)

and for all k sufficiently large,

‖(yk+1, Zk+1)− (ȳ, Z)‖ ≤ ζ√
ζ2 + c2

k

‖(yk, Zk)− (ȳ, Z)‖ (25)

and
‖Xk+1 −X‖ ≤ ζ

ck
‖(yk+1, Zk+1)− (yk, Zk)‖ , (26)

where ζ > 0 is the constant given in Proposition 2.5.

Recall that for any given ck > 0, the convex function νck
(·) defined in (9) is continuously

differentiable with

∇νck
(yk, Zk) =




−(b−A(Xk+1))
1
ck

(
Zk − (Zk − ckX

k+1)+
)


 . (27)

This means that the sequence {(yk+1, Zk+1)} generated by the augmented Lagrangian method
(22)-(24) can be regarded as a gradient descent method applied to the augmented Lagrangian
dual problem (9) with a step-length ck at the kth iteration:

(yk+1, Zk+1) = (yk, Zk)− ck∇νck
(yk, Zk) , k = 0, 1, ...

Consequently, one may expect a slow convergence inherited by the gradient method. However,
(25) in Proposition 3.1 says that the sequence {(yk+1, Zk+1)} converges to (ȳ, Z) at a linear
rate inversely proportional to ck for all ck sufficiently large. This fast convergence has a recent
new interpretation in the context of NSDP: locally the augmented Lagrangian method can be
treated as an approximate semismooth Newton method [37] as long as ck is sufficiently large.
It is this interpretation at the first place that attracted us to attempt to apply the augmented
Lagrangian method to the H-weighted problem (3).
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3.2 A Semismooth Newton-CG Method

Section 3.1 provides a convergence analysis on the augmented Lagrangian method. But one
critical issue has not been addressed yet: How to solve the subproblem (22)? This issue is
fundamentally important because the method is not going to be useful any way if solving each
subproblem is difficult. We propose to use a semismooth Newton-CG method to solve (22) and
explain in this subsection why it works.

Fix c > 0 and (y, Z) ∈ IRn × Sn. Define

θ(X) := Lc(X, y, Z), X ∈ Sn .

Our aim is to develop Newton’s method for the problem

min
X∈Sn

θ(X). (28)

Since θ(·) is a strongly convex function, solving (28) is equivalent to solving the following non-
smooth equation

0 = ∇θ(X) = Q(X)−A∗(y + c(b−A(X)))−ΠSn
+
(Z − cX)− C . (29)

It is proven in [36] that the projection operator ΠSn
+
(·) is strongly semismooth. See [9] for

some extensions. Since all other terms in ∇θ(·) are linear, (29) is a semismooth equation, for
which generalized Newton’s method has been well developed (see [17, 24]). Let ∂ΠSn

+
(Z − cX)

denote the generalized Jacobian of ΠSn
+
(·) at (Z − cX). Then the generalized Jacobian of ∇θ(·)

at X, denoted by ∂2θ(X), is given by

∂2θ(X) = Q+ c
(
A∗A+ ∂ΠSn

+
(Z − cX)

)
.

The Newton method for the semismooth equation (29) is then defined by

Xk+1 = Xk − V −1
k (∇θ(Xk)), Vk ∈ ∂2θ(X), k = 0, 1, . . . . (30)

The implementation of the Newton method (30) requires the availability of V ∈ ∂2θ(X) and the
nonsingularity of V , both of which can be easily realized. Any V ∈ ∂2θ(X) has the formula

V = Q+ cA∗A+ cW, W ∈ ∂ΠSn
+
(Z − cX).

The operator A∗A is obviously positive semidefinite and so is any W in ∂ΠSn
+
(Z − cX) [19,

Prop. 1]. The positive definiteness of V comes from that of Q because Q = H ◦H◦ and Hij > 0.
An explicit formula for any W ∈ ∂ΠSn

+
(Z − cX) can be found in [20, Lem. 11].

Now we are ready to describe the algorithm for solving problem (28).

Algorithm 3.2 (A Semismooth Newton-CG Method)

Step 0. Given X0 ∈ Sn, η ∈ (0, 1), µ ∈ (0, 1), τ1 ∈ (0, 1), τ2 ∈ (1,∞), τ3 ∈ (1,∞), and
ρ ∈ (0, 1). Let j := 0.

13



Step 1. Select an element Vj ∈ ∂2θ(Xj), compute sj := min{τ1, τ2‖∇θ(Xj)‖}, and apply the
CG method [13] starting with the zero vector as the initial search direction to

∇θ(Xj) + (Vj + sjI)∆X = 0 (31)

to find a search direction ∆Xj such that

‖∇θ(Xj) + (Vj + sjI)∆Xj‖ ≤ ηj‖∇θ(Xk)‖ , (32)

where ηj := min{η, τ3‖∇θ(Xj)‖}.
Step 2. Let lj be the smallest nonnegative integer l such that

θ(Xj + ρl(∆Xj))− θ(Xj) ≤ µρl
〈∇θ(Xj),∆Xj

〉
.

Set tj := ρlj and Xj+1 := Xj + tj(∆Xj).

Step 3. Replace j by j + 1 and go to Step 1.

Note that since for each j ≥ 0, Vj + sjI is positive definite, one can always use the CG
method to find ∆Xj such that (32) is satisfied. Furthermore, since the CG method is applied
with the zero vector as the initial search direction, it is not difficult to see that ∆Xj is always
a descent direction for θ(·) at Xj . In fact, it holds that

1
λmax(Vj + sjI)

‖∇θ(Xj)‖2 ≤ 〈−∇θ(Xj),∆Xj
〉 ≤ 1

λmin(Vj + sjI)
‖∇θ(Xj)‖2 , (33)

where for any matrix A ∈ Sn, λmin(A) and λmax(A) represent the smallest and largest eigenvalue
of A, respectively. For a proof on (33), see [42]. Therefore, Algorithm 3.2 is well defined as long
as ∇θ(Xj) 6= 0 and its convergence analysis can be conducted in a similar way as in [22, Thm.
5.3]. We state these result in the next theorem, whose proof is omitted for brevity.

Theorem 3.3 Suppose that in Algorithm 3.2, ∇θ(Xj) 6= 0 for all j ≥ 0. Then Algorithm 3.2
is well defined and the generated iteration sequence {Xj} converges to the unique solution X∗

of problem (28) quadratically.

In our numerical experiments, the parameters used in Algorithm 3.2 are set as follows:
η = 10−2, µ = 10−12, τ1 = 10−2, τ2 = 10, τ3 = 104, and ρ = 0.5.

3.3 A Practical Augmented Lagrangian Method

Section 3.2 addresses the fundamental issue of solving problem (22). In order to use the aug-
mented Lagrangian method (23) for solving the H-weighted problem (3), we need to know when
to terminate Algorithm 3.2 without affecting the convergence results presented in Proposition
3.1 so as to make the method practical. Fortunately, Rockafellar [29, 30] has already provided
a solution on this.

For each k ≥ 0, define

θk(X) := Lck
(X, yk, Zk), X ∈ Sn .
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Since θk is strongly convex, we can use the following stopping criterion considered by Rockafellar
for general convex optimization problems [29, 30] but tailored to our need:





1
h2

min

‖∇θk(Xk+1)‖2 ≤ ε2
k

2ck
, εk > 0,

∞∑

k=0

εk < ∞ ,

1
h2

min

‖∇θk(Xk+1)‖2 ≤ δ2
k

2ck
‖(yk+1, Zk+1)− (yk, Zk)‖2, δk > 0,

∞∑

k=0

δk < ∞ ,

‖∇θk(Xk+1)‖ ≤ (δ′k/ck)‖(yk+1, Zk+1)− (yk, Zk)‖, 0 < δ′k → 0 ,

(34)

where hmin := min{Hij | i, j = 1, . . . , n} and (yk+1, Zk+1) is defined by (23).
Finally, a ready-to-implement version of the augmented Lagrangian method (22)-(24) can

be described as follows.

Algorithm 3.4 (A Practical Augmented Lagrangian Method)

Step 0. Given c0 > 0 and κ > 1. Let X0 ∈ Sn be arbitrary. Let y0 ∈ IRn and Z0 ∈ Sn
+ be the

initial estimated Lagrangian multipliers. Let k := 0.

Step 1. Apply Algorithm 3.2 to problem

min
X∈Sn

θk(X)

with θ(·) = θk(·) and the starting point Xk to obtain Xk+1 satisfying the stopping criterion
(34).

Step 2. Compute (yk+1, Zk+1) by (23) and update ck+1 = ck or ck+1 = κck.

Step 3. Replace k by k + 1 and go to Step 1.

As for the case of the exact augmented Lagrangian method for the H-weighted problem (3),
we can also directly use [29, Thm. 2] and [30, Thm. 5] for general convex programming problems
combining with Proposition 2.5 to get the following convergence theorem for Algorithm 3.4.

Theorem 3.5 Let (X, ȳ, Z) be the unique KKT point of problem (3). Let ζ > 0 be the constant
given in Proposition 2.5. Let (Xk, yk, Zk) be the sequence generated by Algorithm 3.4 with
limk→∞ ck = c∞ ≤ ∞. Then

lim
k→∞

(Xk+1, yk+1, Zk+1) = (X, ȳ, Z)

and for all k sufficiently large,

‖(yk+1, Zk+1)− (ȳ, Z)‖ ≤ ak‖(yk, Zk)− (ȳ, Z)‖
‖Xk+1 −X‖ ≤ a′k‖(yk+1, Zk+1)− (yk, Zk)‖ ,

where
ak :=

[
ζ(ζ2 + c2

k)
−1/2 + δk

]
(1− δk)−1 → a∞ = ζ(ζ2 + c2

∞)−1/2

and
a′k := ζ(1 + δ′k)/ck → a′∞ = ζ/c∞.
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4 Numerical Results

In this section, we report our numerical experiments conducted for the H-weighted nearest
correlation problem (3) in MATLAB 7.1 running on a PC Intel Pentium IV of 2.40 GHz CPU
and 512 MB of RAM.

In our numerical experiments, the initial penalty parameter c0 is set to be 10 and the constant
scalar κ is set to be 1.4. The initial point (X0, y0) is obtained by calling the quadratically con-
vergent Newton method presented in ([22]) for solving the equally weighted nearest correlation
matrix problem

min
1
2
‖X −G ‖2

s.t. Xii = 1, i = 1, . . . , n ,
X ∈ Sn

+

and Z0 is set to be
Z0 := X0 −G− diag(y0).

The stopping criterion for terminating Algorithm 3.4 is

Tolk ≤ 5.0× 10−6 ,

where
Tol0 := ‖F (x0, y0, Z0)‖

and for each k ≥ 0,

Tolk+1 := max{‖∇θk(Xk+1)‖, ‖b−A(Xk+1)‖, ‖Zk −ΠSn
+
(Zk − ckX

k)‖/√ck } .

In Step 1 of Algorithm 3.4, Xk+1 is computed to satisfy

‖∇θk(Xk+1)‖ ≤ min{0.01, 0.5× Tolk},
which is based on (34). In Step 2, ck+1 is updated to ck+1 = κck if Tolk+1 > 1

4Tolk and ck+1 = ck

otherwise.
To simulate the possible realistic situations, the H-weight matrix H is generated with all

entries uniformly distributed in [0.1, 10] except for 2 × 100 entries in [0.01, 100]. The MATLAB
code for generating such a matrix H is as follows:

W0 = sprand(n,n,0.5); W0 = triu(W0) + triu(W0,1)’; W0 = (W0+W0’)/2;
W0 = 0.01*ones(n,n) + 99.99*W0;
W1 = rand(n,n); W1 = triu(W1) + triu(W1,1)’; W1 = (W1+W1’)/2;
H = 0.1*ones(n,n)+9.9*W1;
s = sprand(n,1,min(10/n,1)); I = find(s>0);
d = sprand(n,1,min(10/n,1)); J = find(d>0);
if length(I) >0 & length(J)>0
H(I,J) = W0(I,J); H(J,I) = W0(J,I); end
H = (H+H’)/2;

Our first example is a 387 × 387 correlation matrix case taken from the database of the
RiskMetrics.
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Example 4.1 The correlation matrix G is the 387×387 1-day correlation matrix (as of June 15,
2006) from the lagged datasets of RiskMetrics (www.riskmetrics.com/stddownload edu.html).
For the test purpose, we perturb G to

G := (1− α)G + αE,

where α ∈ (0, 1) and E is randomly generated symmetric matrix with entries in [-1,1]. The
MATLAB code for generating E is: E = 2.0*rand(387,387) - ones(387,387); E = triu(E)
+ triu(E,1)’; E = (E+E’)/2. We also set Gii = 1, i = 1, . . . , n.

Our second example is randomly generated with n = 100, 500, 1000, and 1500, respectively.

Example 4.2 A correlation matrix G is first generated by using MATLAB’s built-in function
randcorr: x=10.ˆ[-4:4/(n-1):0]; G=gallery(’randcorr’,n*x/sum(x)); and is then per-
turbed to

G := (1− α)G + αE,

where α ∈ (0, 1), E is randomly generated as in Example 4.1: E = 2.0*rand(n,n) - ones(n,n);
E = triu(E) + triu(E,1)’; E = (E+E’)/2, and Gii is set to be 1 for i = 1, . . . , n.

The small added term αE in the above examples makes a correlation matrix to be a pseudo-
correlation matrix. Our numerical results are reported in Tables 1-2, where Alg. 3.4 and
IP-QSQP refer to Algorithm 3.4 and Toh’s inexact interior point method with the PSQMR as
the iterative solver [38], respectively. Iter and LiSys stand for the number of total iterations and
the number of total linear systems solved. Res represents the relative residue computed at the
last iterate:

Res := max{‖∇θk(Xk+1)‖/(1 + ‖C‖), ‖b−A(Xk+1)‖/(1 + ‖b‖), |〈Xk+1, Zk+1〉|/(1 + |obj|) } ,

where
obj :=

1
2
||H ◦ (Xk+1 −G)‖2 .

In Table 1, ∗ means that the PSQMR reaches the maximum number of steps set at 1000 and in
Table 2, out of memory means that our PC runs out of memory.

From Tables 1-2 and other similar testing results not reported here, we have observed that
our algorithm is not only faster but also more robust than IP-QSQP, in particular for those cases
that a good initial correlation matrix estimation is available, as in many real-world situations.

5 Conclusion

The convergence theory of the augmented Lagrangian method for the convex optimization prob-
lem has been well established by Rockafellar [29, 30]. The main purpose of this paper is to
demonstrate that this method is not only fast but also robust for the H-weighted correlation
matrix problem. Theoretically, one only needs to verify the conditions used in [29, 30]. It turns
out that the constraint nondegeneracy property and the strong second-order sufficient condition
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Algorithm α cputime Iter LiSys Res
Alg. 3.4 0.1 0:04:52 13 36 3.1× 10−9

0.05 0:04:12 12 29 2.7× 10−8

0.01 0:04:58 12 27 1.6× 10−9

0.005 0:04:16 11 21 1.7× 10−9

IP-QSDP 0.1 0:17:43 17 34 1.7× 10−8

0.05 0:18:36 18 36 3.3× 10−8

0.01 0:37:28 25 50 8.5× 10−8

0.005 0:36:21 17 34 2.6× 10−1∗

Table 1: Numerical results of Example 4.1

are sufficient in order to apply Rockafellar’s convergence results. We outlined how the two prop-
erties naturally lead to the linear convergence of the method (cf. Proposition 3.1 and Theorem
3.5).

The key element for the practical efficiency of the augmented Lagrangian dual approach is
the semismooth Newton-CG algorithm introduced in this paper. We believe that the excel-
lent numerical results reported in this paper are largely due to this semismooth Newton-CG
algorithm.

Finally, we note that, in a straightforward way, we may extend this approach to deal with
a more general version that allows certain elements being fixed or contained in some confidence
intervals, i.e.,

min
1
2
‖H ◦ (X −G) ‖2

s.t. Xii = 1, i = 1, . . . , n ,
Xij ≥ lij , (i, j) ∈ Bl ,
Xij ≤ uij , (i, j) ∈ Bu ,
X ∈ Sn

+ ,

(35)

where Bl and Bu are two index subsets of {(i, j) | 1 ≤ i < j < n}, lij ∈ [−1, 1] for all (i, j) ∈ Bl,
uij ∈ [−1, 1] for all (i, j) ∈ Bu, and lij ≤ uij for any (i, j) ∈ Bl ∩Bu. We omit the details here as
our theoretical analysis still holds and there are no other methods available to allow us to make
a reasonable comparison.

Acknowledgements. The authors would like to thank our colleague Kim-Chuan Toh for
sharing with us his excellent code for solving the H-weighted nearest correlation matrix problem
[38]. Several helpful discussions on the implementation of the augmented Lagrangian method
with Yan Gao and Xinyuan Zhao at the National University of Singapore are also acknowledged
here.
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Algorithm n α cputime Iter LiSys Res
Alg. 3.4 100 0.1 0:00:10 10 24 1.1× 10−8

0.05 0:00:10 8 22 1.1× 10−8

0.01 0:00:16 8 22 1.6× 10−8

0.005 0:00:41 8 34 1.1× 10−8

IP-QSDP 0.1 0:01:27 14 28 6.6× 10−8

0.05 0:02:08 16 32 9.6× 10−9

0.01 0:03:36 19 38 1.8× 10−8

0.005 0:06:05 18 36 2.6× 10−8

Alg. 3.4 500 0.1 0:06:22 10 26 4.7× 10−9

0.05 0:05:53 9 23 8.4× 10−9

0.01 0:08:06 10 24 1.1× 10−9

0.005 0:08:49 9 24 5.1× 10−9

IP-QSDP 0.1 0:41:22 14 28 9.5× 10−8

0.05 0:39:47 14 28 8.7× 10−8

0.01 1:34:16 19 38 1.8× 10−8

0.005 1:46:42 19 38 2.9× 10−8

Alg. 3.4 1, 000 0.1 0:42:24 14 32 5.6× 10−8

0.05 0:36:12 11 29 3.5× 10−10

0.01 0:34:59 10 26 2.0× 10−9

0.005 0:33:30 9 22 2.9× 10−9

IP-QSDP 0.1 3:13:58 14 28 1.2× 10−8

0.05 4:36:47 15 30 3.6× 10−8

0.01 8:00:46 21 42 2.3× 10−8

0.005 6:39:58 21 42 4.7× 10−8

Alg. 3.4 1, 500 0.1 2:01:48 12 31 8.3× 10−10

0.05 1:54:57 11 27 1.2× 10−9

0.01 1:46:43 9 25 2.6× 10−9

0.005 2:06:06 9 26 1.1× 10−9

IP-QSDP – – – – out of memory

Table 2: Numerical results of Example 4.2
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