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Summary. Given the data (xi, yi) ∈ �2, i = 0, 1, . . . , n which are in
convex position, the problem is to choose the convex best C1 interpolant
with the smallest mean square second derivative among all admissible cubic
C1-splines on the grid. This problem can be efficiently solved by its dual
program, developed by Schmdit and his collaborators in a series of papers.
The Newton method remains the core of their suggested numerical scheme.
It is observed through numerical experiments that the method terminates in
a small number of steps and its total computational complexity is only of
O(n). The purpose of this paper is to establish theoretical justification for the
Newton method. In fact, we are able to prove its finite termination under a
mild condition, and on the other hand, we illustrate that the Newton method
may fail if the condition is violated, consistent with what is numerically ob-
served for the Newton method. Corresponding results are also obtained for
convex smoothing.
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1 Introduction

The given data (xi, yi) ∈ �2, i = 0, 1, . . . , n is said to be in convex position
if

τi ≤ τi+1 i = 1, . . . , n − 1
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where τi := (yi − yi−1)/(xi − xi−1) and

� : a = x0 < x1 < . . . < xn−1 < xn = b.

The problem to be considered in this paper is to find a convex interpolant
to the given data with the smallest mean square second derivative, which is
often referred to as the convex best interpolation problem and described as
follows:

minimize ‖s ′′‖2(1)

subject to s(xi) = yi, i = 0, 1, · · · , n,(2)

s is convex on [a, b], s ∈ V [a, b],(3)

where constraint (2) is the interpolation condition and constraint (3) is the
convexity restriction on the admissible functions from some function space
V [a, b] defined on [a, b], giving meaningful definition of the objective (1).

Now we choose the admissible function space V [a, b] := Sp (3,�),
the set of cubic C1 splines on �. Then for s ∈ Sp (3,�), we have for
x ∈ [xi−1, xi],

s(x) = yi−1 + mi−1(x − xi−1) + (3τi − 2mi−1 − mi)
(x − xi−1)

2

hi

+ (mi−1 + mi − 2τi)
(x − xi−1)

3

h2
i

(4)

with hi := xi − xi−1, i = 1, . . . , n. It follows that

s(xi) = yi, s ′(xi) = mi, i = 0, 1, . . . , n.(5)

Further, s is easily proved to be convex on [a, b] if and only if

2mi−1 + mi ≤ 3τi ≤ mi−1 + 2mi, i = 1, . . . , n;(6)

see [19]. Also it is easy to see that s is twice differentiable except, perhaps, at
the nodes {xi}n0. Hence the Lebesgue norm in (1) makes sense with respect to
s ′′, meaning minimizing the mean square second derivative. Thus we arrive
at the following minimization problem:

min φ(m0, . . . , mn) :=
∫ b

a

s ′′(x)2dx =
n∑

i=1

φi(mi−1,mi)(7)

s. t. 2mi−1 + mi ≤ 3τi ≤ mi−1 + 2mi, i = 1, . . . , n

where

φi(x, y) := 4

hi

{
x2 + xy + y2 − 3τi(x + y) + 3τ 2

i

}
.(8)

This is a quadratic programming problem of special structure. The Hessian
of φ is symmetric positive definite. Hence problem (7) is uniquely solvable.
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Although it can be directly solved by standard constrained optimization
methods [11,20], problem (7) can be more effectively solved by its (uncon-
strained) dual program. Let q : �2 → � be the continuously differentiable
piecewise quadratic function defined by

q(a, b) :=



(a2 + ab + b2) for a ≤ 0, b ≤ 0
( 1

2a + b)2 for a ≥ 0, a + 2b ≤ 0
(a + 1

2b)
2 for b ≥ 0, 2a + b ≤ 0

0 for a + 2b ≥ 0, 2a + b ≥ 0.

The dual problem of (7) is the following unconstrained optimization prob-
lem, which can be derived either by the Fenchel conjugate theory [4,26], or
by the Kuhn-Tucker optimality theorem [2].

max
p∈�n−1

−
n∑

i=1

hi

12
q(pi, pi−1) −

n−1∑
i=1

pi(τi+1 − τi)(9)

with p0 = pn = 0. We write (9) as a minimization problem:

min
p∈�n−1

L(p) :=
n∑

i=1

hi

12
q(pi, pi−1) +

n−1∑
i=1

pi(τi+1 − τi)(10)

with p0 = pn = 0. Since L(·) is convex, the optimality condition of (10) has
the form of nonlinear equations

F(p) = −d(11)

where d ∈ �n−1 with di = 12(τi+1 − τi) and F : �n−1 → �n−1 is given by

Fi(p) = hi+1∂2q(pi+1, pi) + hi∂1q(pi, pi−1), i = 1, . . . , n − 1.(12)

Once a solution of (11), say p̄, is obtained, the solution of (7), denoted by m̄,
can be calculated via the explicit formula [2, (28)]:

m̄i−1 = τi − hi

12

(
p̄i + 1

2
p̄+
i−1 − 2p̄−

i−1

)−
,

m̄i = τi + hi

12

(
p̄i−1 + 1

2
p̄+
i − 2p̄−

i

)−
,

for i = 1, 2, . . . , n, where a+ = max(0, a) and a− = − min(0, a) for a ∈ �.
Then the convex bestC1 interpolant can be constructed by (4). Based on those
theoretical results, it is suggested that the (ordinary) Newton method is ap-
plied to (10) or equivalently to (11). Numerical experiments [2,23–25] show
that the Newton method terminates in a small number of steps (averaging 3−5
steps) if a sufficiently good starting point is used, which is often provided by
the steepest descent method. The finite termination is even observed when
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starting from rough points. It is also pointed out that the Newton method alone
sometimes failed to find a solution [23,26]. However, it has been unknown
when the Newton method has the finite termination property or when it fails.
The difficulty is partially due to the combinatorial nature of the generalized
Hessian, which defines the Newton method, see (13) and (16). This nature is
the direct consequence of separability (L is the sum of n piecewise quadratic
functions of dimension 2 and a linear term) and twice non-differentiability of
the function L in (10), which in turn makes it extremely difficult in proving
nonsingularity of the generalized Hessian.

The purpose of this paper is to establish theoretical justification for the
Newton method. On the one hand, we show the finite termination of the New-
ton method under a mild condition by describing the accurate structure of
the generalized Hessian, see Lemma 3.2; and on the other hand, we illustrate
with an example that it may fail to find a solution if the condition is violated.
These results are consistent with what is numerically observed for the New-
ton method. Corresponding results for convex smoothing are also obtained.
Other contribution in this regard includes deriving the explicit formula (53)
of the generalized Hessian. The problem of convex smoothing is to deter-
mine a smooth function s such that s(xi) is an approximation to yi (instead
of interpolating yi) and s is convex. Convex smoothing is particularly useful
when the feasible set (6) is empty, i.e., convex C1 interpolation (4) does not
exist, see [23,26]. See also [3] for general comments for smoothing.

Another optimization problem of (1) is of the convex L2 interpolation,
where the admissible function space V [a, b] is W 2,2[a, b], the Sobolev space
of functions with absolutely continuous first derivative and second derivative
in L2[a, b]. This problem has been treated in [18,14,1,9]. The solution turns
out to be a cubic spline, but with nodes in general unknown. The quadratic
convergence of the Newton method for this problem, conjectured in [14],
has been recently settled in [6–8], which also inspired our investigation to
problems considered in this paper.

An outline of the paper follows. Since the nonsmooth equation (11) is
piecewise linear and we will consider the convergence of the Newton meth-
od for solving it, it is necessary to formulate the Newton method formally
for such a nonlinear system of equations, which is done in the next section.
It is shown in Section 3 that the Newton method has the finite termination
property under a mild condition, and violating this condition may result in
failure of the method. In Section 4, we extend these results to the problem of
convex smoothing. Conclusions are drawn in Section 5.

2 The newton method for systems of PC1 equations

Since the purpose of this paper is to analyze the convergence property of the
Newton method, it is necessary to present the method in a formal context,
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see (13). We also describe it in a different way using the B-differential, see
(16). Both versions will benefit our convergence analysis in the next section.

Although the Newton method we will treat in this paper is for systems of
piecewise linear equations, we found it extremely suitable to describe it un-
der a more general framework for systems of PC1 (piecewise continuously
differentiable) equations, mainly due to the following two reasons: First, the
result of quadratic convergence of the Newton method for PC1 equations
will be used in our convergence analysis. Hence there is need to present the
Newton method for PC1 equations separately; Second, the definition of the
Newton method for PC1 equations reveals a way of calculating the Hessian
matrix, which has a good use in our key result Lemma 3.2. We begin with a
formal definition of a PC1 mapping.

Definition 2.1 [16] Let G : � → � be a continuous mapping. G is a PC1

mapping if there exists a countable family {Ui : i ∈ "} of closed subsets of
� such that

(a) cl (int Ui) = Ui for every i ∈ ",
(b) ∪i∈"Ui = � ,
(c) (int Ui) ∩ (int Uj) = ∅ whenever i, j ∈ " and i �= j ,
(c) {Ui : i ∈ "} has a locally finite property, i.e., for any x ∈ � , there

exists an open neighborhood N of x such that {i : N ∩ Ui} is finite,
(e) for each i ∈ " the restriction G|Ui of the mapping to each Ui is a

C1 mapping. More precisely, there exists C1 mapping Gi from an open
neighborhood of Ui into � such that G(x) = Gi(x) for any x ∈ Ui .

We call the family {Ui : i ∈ "} a subdivision of � , and each Ui (equiva-
lently Gi) a piece. So we say that G is PC1 on a subdivision {Ui : i ∈ "}
of � . For simplicity of discussions, we shall assume for the moment that Gi

is defined on the whole space � for each i ∈ ".

LetG : � → � be aPC1 mapping with piecesUi andGi . Then the k-th
step of the Newton method for the PC1 equations: G(p) = 0 is as follows:
Given pk ∈ � , choose a piece Ui that contains pk; then find

pk+1 = pk − (∇Gi(pk))−1G(pk).(13)

Another way of stating the Newton method (13) is using the B-differential,
denoted by ∂B , for nonsmooth Lipschitz mappings, introduced by Qi in [22].
Suppose for a while that the mapping G : � → � is locally Lipchitzian,
let DG be the set where G is differentiable and ∇G(p) denote its Jacobian
at p ∈ DG. Then ∂BG(·) at a point p is defined by

∂BG(p) :=

 lim

pr→p

pr∈DG

∇G(pr)


 .(14)
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It is easy to see that ∂BG(·) is well defined everywhere and is bounded. Now
we come back to the case that G is a PC1 mapping. Let

I (p) = {i ∈ " : p ∈ Ui} for each p ∈ � .

Then we have

∂BG(p) = {∇Gi(p) : i ∈ I (p)}.(15)

Using the B-differential, the k-th step of the Newton method (13) has the
following form: Choose Vk ∈ ∂BG(pk); then find

pk+1 = pk − V −1
k G(pk).(16)

If G(·) is the gradient mapping of some continuously differentiable func-
tion θ : � → �, then ∂BG(p) is usually called the generalized Hessian of
θ(·) at p, see [13] for general treatment of the generalized Hessian with CL1

data. The following local convergence result was established in [16, Theorem
1], restated in the B-differential:

Theorem 2.2 Letp∗ be a solution of the system ofPC1 equationsG(p) = 0.
Suppose that
(i) all V ∈ ∂BG(p∗) are nonsingular matrices and
(ii) for each i ∈ I (p∗), ∇Gi is locally Lipschitz continuous at p∗.
Then every sequence generated by the method (16) is quadratically conver-
gent to p∗ provided that the starting point p0 is sufficiently close to p∗.

Before going to the next section, we would like to make two remarks
on the calculation of ∂BG: (i) If G is continuously differentiable at p, then
∂BG(p) = {∇G(p)}. Differentiability only is not enough for ∂BG being a
singleton. (ii) If G is the sum of two Lipschitz functions, say

G(p) = G1(p) + G2(p),

with both G1 and G2 being directionally differentiable, we have the relation
in general [21]

∂BG(p) ⊆ ∂BG
1(p) + ∂BG

2(p).

If one of Gi, i = 1, 2 is continuously differentiable at p, equality holds. To
our special function F defined in (12), even if neither of ∂BGi(p), i = 1, 2
is singleton, it is still possible to detect elements in ∂BG

1(p) and in ∂BG
2(p)

which make up elements in ∂BG(p). It is this possibility that allows us to
prove nonsingularity of the generalized Hessian. See (19) for an illustration
of this remark.
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3 Finite termination

Let F be defined by (12). Then the Newton method for the equation (11) is
as follows:

pk+1 = pk − V −1
k (F (pk) + d) for some Vk ∈ ∂BF (pk).(17)

In this section, we shall study the convergence properties of the Newton
method (17). We first characterize when the condition (i) in Theorem 2.2 is
satisfied for F , with which local quadratic convergence follows from Theo-
rem 2.2 as the second condition (ii) is automatically met with any piecewise
linear mappings. Then we show that the finite termination of the Newton
method follows when the iterate pk is sufficiently close to a solution p∗ and
it lies in the same pieceUi asp∗ does. The finite termination property explains
the numerically observed behavior of the Newton method that it terminates
after a small number of steps when starting from a sufficiently good point
[26,2,23,25].

To make it easy to calculate ∂BF (p), we further define two functions
f, g : �2 → � by

f (a, b) := ∂2q(a, b) and g(a, b) := ∂1q(a, b).(18)

Then

Fi(p) = hi+1f (pi+1, pi) + hig(pi, pi−1), i = 1, . . . , n − 1

with p0 = pn = 0

Hence when calculating elements in ∂BFi(p), we need to calculate ele-
ments in ∂Bf (pi+1, pi) and elements in ∂Bg(pi, pi−1) respectively. Take
∂Bf (pi+1, pi) for example, the calculation is made with respect to all vari-
ables (p1, p2, . . . , pn−1). Since f (pi+1, pi) is only dependent onpi+1 andpi

(independent of others), each element in ∂Bf (pi+1, pi) must have the form
of αei + γ ei+1, α, γ ∈ �. Here ei denotes the i-th unit vector in �n−1. We
also let e0 and en be the zero vector in �n−1. The task is to calculate α and γ .
Likewise, each element in ∂Bg(pi, pi−1) has the form of ωei−1 +βei with ω

and β to be determined. Hence each element in ∂BFi(p) has the form of

ωei−1 + (α + β)ei + γ ei+1 for some ω, α, β, γ ∈ �.

Our key Lemma 3.2 characterizes when the condition (i) in Theorem 2.2
is satisfied. To give a clue on how to prove it, we first take a look at an ex-
ample which gives rise to a four dimensional dual problem. The calculation
process for elements in ∂BF (p) for some point p ∈ �4 captures all ingredi-
ents for proving the lemma. Further, the example reveals more information
at its solution, see Remark (iii) after the proof of Lemma 3.2

Example 3.1 The given data is: (x0, y0) = (0, 0), (x1, y1) = (1, 1), (x2, y2)

= (2, 3), (x3, y3) = (3, 7), (x4, y4) = (4, 12) and (x5, y5) = (5, 27).
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The data is in convex position. We evaluate ∂BF (p) at p̄ = (−1, 0,−1,
−1)T . Let p̄0 = p̄5 = 0. We have four steps to calculate elements in ∂BF (p).

Step 1. i = 1. It then follows

g(p1, p0) = 2p1 and f (p2, p1) = 2p1 + p2,

when p is near p̄, resulting

F1(p) = 2(h1 + h2)p1 + h2p2

for all p near p̄ and hence

∂BF1(p̄) = {2(h1 + h2)e1 + h2e2}.
Step 2. i = 2. g(p2, p1) is given by two pieces p2/2 + p1 and 2p2 + p1

when p is near p̄. To calculate ∂Bg(p̄2, p̄1), we take a sequence {pr} → p̄

withpr
2 > 0. Then g(pr

2, p
r
1) = pr

2/2+pr
1 for all r sufficiently large, yielding

1
2e2 + e1 ∈ ∂Bg(p̄2, p̄1). On the other hand, we take a sequence {pr} → p

with pr
2 < 0, then g(pr

2, p
r
1) = 2pr

2 + pr
1 for all r sufficiently large, yielding

2e2 + e1 ∈ ∂Bg(p2, p1). Hence

∂Bg(p̄2, p̄1) =
{

1

2
e2 + e1, 2e2 + e1

}
.

The function f (p3, p2) near p̄ is also given by two pieces: p2/2 + p3 and
2p2+p3. Like the calculation process above, we first take a sequence {pr} →
p̄ with pr

2 > 0, then f (pr
3, p

r
2) = pr

2/2+pr
3 for all r sufficiently large, result-

ing 1
2e2+e3 ∈ ∂Bf (p̄3, p̄2). On the other hand, takepr

2 < 0, thenf (pr
3, p

r
2) =

2pr
2 +pr

3 for all r sufficiently large, resulting 2e2 +e3 ∈ ∂Bf (p̄3, p̄2). Hence

∂Bf (p̄3, p̄2) =
{

1

2
e2 + e3, 2e2 + e3

}
.

Matching the cases of the positive sequence (i.e, pr
2 > 0) together as well as

the cases of the negative sequence (i.e., pr
2 < 0) together, we have

∂BF2(p̄) =
{
h2e1 + 1

2
(h2 + h3)e2 + h3e3, h2e1 + 2(h2 + h3)e2 + h3e3

}
.

(19)
Step 3. i = 3. g(p3, p2) is always given by 2p3 + p2 for all p near p̄,

yielding
∂Bg(p̄3, p̄2) = {2e3 + e2}.

f (p4, p3) is given by 2p3 + p4 for all p near p̄, yielding

∂Bf (p̄4, p̄3) = {2e3 + e4}.
Hence

∂BF3(p̄) = {h3e2 + 2(h3 + h4)e3 + h4e4} .
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Step 4. i = 4. Like Step 1, it is easy to see

∂BF4(p̄) = {h4e3 + 2(h4 + h5)e4)} .
Hence ∂BF (p̄) constitutes two elements, they are:


2(h1 + h2) h2

h2
1
2 (h2 + h3) h3

h3 2(h3 + h4) h4

h4 2(h4 + h5)


(20)

and 


2(h1 + h2) h2

h2 2(h2 + h3) h3

h3 2(h3 + h4) h4

h4 2(h4 + h5)


 .(21)

Matrix (21) is positive definite as it is diagonally dominant. Although matrix
(20) is not diagonally dominant, it is positive definite too. A typical feature
leading to this is that the diagonal element value 1

2 (hi + hi+1) does not oc-
cur in a consecutive way; That is, it cannot happen that any two adjacent
diagonal elements can take values of the kind 1

2 (hi + hi+1) simultaneously.
This feature is not accidental. It holds uniformly for points satisfying some
condition, which is stated in the following lemma.

Lemma 3.2 Let p̄ ∈ �n−1 be given and p̄0 = p̄n = 0. Suppose

(p̄i, p̄i−1) ∈ W for all i = 1, . . . , n(22)

where
W := {(a, b) | 2a + b < 0 or a + 2b < 0}.(23)

Then each element V ∈ ∂BF (p̄) has the following tridiagonal structure

V =




V11 h2

h2
. . .

. . .

. . .
. . . hn−1

hn−1 Vn−1,n−1




with Vii , i = 1, . . . , n − 1 satisfying the following conditions
(i) V11 = 2(h1 + h2) and Vn−1,n−1 = 2(hn−1 + hn),
(ii) for i = 2, . . . , n − 1, Vii = 2(hi + hi+1) or Vii = 1

2 (hi + hi+1), and
(iii) it cannot occur that any two adjacent diagonal elements, say Vii and
Vi+1,i+1 take the values 1

2 (hj + hj+1), j = i, i + 1 simultaneously.
Consequently, every element in ∂BF (p̄) is positive definite.
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Proof. For any point p ∈ �n−1 at which F(p) is differentiable, ∇F(p) is
tridiagonal. It then follows from the definition of ∂B in (14) that every element
in ∂BF (p̄) must be tridiagonal too. Now let V ∈ ∂BF (p̄).

(i) The first row of V must belong to ∂BF1(p̄). We recall that

F1(p) = h2f (p2, p1) + h1g(p1, p0).

Since p̄0 = 0 and (p̄1, p̄0) ∈ W , we must have p̄1 < 0. It then holds

q(p1, p0) = p2
1 and g(p1, p0) = 2p1

for all p sufficiently close to p̄. Hence

∂Bg(p̄1, p̄0) = {2e1}.
We also have

q(p2, p1) =
{
( 1

2p2 + p1)
2 if p1 < 0, p2 ≥ 0, p2 + 2p1 ≤ 0

p2
2 + p2p1 + p2

1 if p1 < 0, p2 ≤ 0

and f (p2, p1) is given by one piece, i.e., f (p2, p1) = 2p1 + p2 for all
p1 < 0. Hence, we have

∂Bf (p̄2, p̄1) = {2e1 + e2}.
It holds that

∂BF1(p̄) = h2∂Bf (p̄2, p̄1) + h1∂Bg(p̄1, p̄0) = {2(h1 + h2)e1 + h2e2}.
That is

V11 = 2(h1 + h2) and V12 = h2.

Similarly, we can prove that

Mn−1,n−2 = hn−1 and Vn−1,n−1 = 2(hn−1 + hn).

This finishes the proof for (i). We now prove (ii) and (iii) together.
(ii) and (iii). We consider Fi, Fi+1, i ∈ {2, . . . , n− 2} together. There are

four cases to be considered depending on which region the pair (p̄i, p̄i−1)

falls in, which are depicted in Figure 1 for easy reference.

Case 1. p̄i > 0 and p̄i + 2p̄i−1 < 0.

It then holds that

q(pi, pi−1) = (
1

2
pi + pi−1)

2 and g(pi, pi−1) = 1

2
pi + pi−1

for all p sufficiently close to p̄, yielding

∂Bg(p̄i, p̄i−1) = {1

2
ei + ei−1}.(24)
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Since p̄i > 0 and (p̄i+1, p̄i) ∈ W , we must have p̄i+1 < 0, implying

q(pi+1, pi) = (pi+1 + 1

2
pi)

2

and

f (pi+1, pi) = pi+1 + 1

2
pi and g(pi+1, pi) = 2pi+1 + pi

for all p sufficiently close to p̄. Hence

∂Bf (p̄i+1, p̄i) = {ei+1 + 1

2
ei} and ∂Bg(p̄i+1, p̄i) = {2ei+1 +ei}.(25)

Now since p̄i+1 < 0 and (p̄i+2, p̄i+1) ∈ W , we have for all p sufficiently
close to p̄

q(pi+2, pi+1) =
{
( 1

2pi+2 + pi+1)
2 if pi+2 ≥ 0

p2
i+2 + pi+2pi+1 + p2

i+1 if pi+2 ≤ 0.

It is easy to see for those p, f (pi+2, pi+1) is given by one piece, that is

f (pi+2, pi+1) = 2pi+1 + pi+2,

resulting in
∂Bf (p̄i+2, p̄i+1) = {2ei+1 + ei+2}.(26)

Hence we have from (24)–(26) that

∂BFi(p̄) = hi+1∂Bf (p̄i+1, p̄i) + hi∂Bg(p̄i, p̄i−1)

=
{
hiei−1 + 1

2
(hi + hi+1)ei + hi+1ei+1

}
(27)

∂BFi+1(p̄) = hi+2∂Bf (p̄i+2, p̄i+1) + hi+1∂Bg(p̄i+1, p̄i)

= {hi+1ei + 2(hi+1 + hi+2)ei+1 + hi+2ei+2} .(28)

Case 2. p̄i < 0 and p̄i−1 < 0.

It then holds that

q(pi, pi−1) = p2
i + pipi−1 + p2

i−1

for all p sufficiently close to p̄, implying

g(pi, pi−1) = 2pi + pi−1

and hence
∂Bg(p̄i, p̄i−1) = {2ei + ei−1}.(29)
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Noticing p̄i < 0 and (p̄i+1, p̄i) ∈ W , we have

q(pi+1, pi) =
{
( 1

2pi+1 + pi)
2 if pi+1 ≥ 0

(p2
i+1 + pi+1pi + p2

i ) if pi+1 ≤ 0

for all p sufficiently close to p̄. It is easy to see for those p that

f (pi+1, pi) = 2pi + pi+1

and

g(pi+1, pi) =
{

1
2pi+1 + pi if pi+1 ≥ 0
2pi+1 + pi if pi+1 ≤ 0

(30)

Hence
∂Bf (p̄i+1, p̄i) = {2ei + ei+1}.(31)

Also we note that for (pi+2, pi+1) ∈ W ,

q(pi+2, pi+1) =


(pi+2 + 1

2pi+1)
2 if pi+1 ≥ 0 & pi+2 ≤ 0

(p2
i+2 + pi+2pi+1 + p2

i+1) if pi+1 ≤ 0 & pi+2 ≤ 0
( 1

2pi+2 + pi+1)
2 if pi+1 ≤ 0 & pi+2 ≥ 0.

Thus we have for those p that

f (pi+2, pi+1) =
{

1
2pi+1 + pi+2 if pi+1 ≥ 0
2pi+1 + pi+2 if pi+1 ≤ 0.

(32)

It then follows from (30) and (32) that ∂Bg(p̄i+1, p̄i) and ∂Bf (p̄i+2, p̄i+1)

depending on the value p̄i+1 might take:
Case 2.1. If p̄i+1 > 0, then we have

∂Bg(p̄i+1, p̄i) = {1

2
ei+1 + ei} and ∂Bf (p̄i+2, p̄i+1) = {1

2
ei+1 + ei+2}.

(33)
Case 2.2. If p̄i+1 < 0, then we have

∂Bg(p̄i+1, p̄i) = {2ei+1+ei} and ∂Bf (p̄i+2, p̄i+1) = {2ei+1+ei+2}.(34)

We will consider the remaining case p̄i+1 = 0 later. It follows from (29),
(31), (33) and (34) that for p̄i+1 > 0

∂BFi(p̄) = {hiei−1 + 2(hi + hi+1)ei + hi+1ei+1}(35)

∂BFi+1(p̄) =
{
hi+1ei + 1

2
(hi+1 + hi+2)ei + hi+2ei+2

}
(36)

and for p̄i+1 < 0

∂BFi(p̄) = {hiei−1 + 2(hi + hi+1)ei + hi+1ei+1}(37)

∂BFi+1(p̄) = {hi+1ei + 2(hi+1 + hi+2)ei + hi+2ei+2} .(38)
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Now we consider the case p̄i+1 = 0. Let a sequence {pr} converge to p̄ with
pr
i+1 �= 0. Then ∂BFi(p

r) and ∂BFi+1(p
r) can be calculated by (35) and (36)

for pr
i+1 > 0 and by (37) and (38) for pr

i+1 < 0. Hence by the definition of
∂B in (14), we have

∂BFi(p̄) = {hiei−1 + 2(hi + hi+1)ei + hi+1ei+1}(39)

∂BFi+1(p̄) =
{
hi+1ei + 1

2 (hi+1 + hi+2)ei + hi+2ei+2

hi+1ei + 2(hi+1 + hi+2)ei + hi+2ei+2

}
.(40)

Case 3. (p̄i, p̄i−1) ∈ W is such that p̄i = 0.

Then we must have p̄i−1 < 0. We say that Case 3 is the limit case of Case 1
and Case 2 in the sense that there exists a sequence {pr} withpr

i �= 0 converg-
ing to p̄ with only two possibilities: either pr

i > 0 or pr
i < 0. When pr

i > 0,
∂BFj (p

r), j = i, i+1 can be calculated as for Case 1; while for pr
i < 0, they

can be calculated as for Case 2. In the end, elements in ∂BFj (p̄), j = i, i +1
can be calculated according to (27) and (28), or (35) and (36), or (37) and
(38), or (39) and (40).

Case 4. p̄i < 0 and 2p̄i + p̄i−1 < 0.

It then holds that

q(pi, pi−1) =
{
(pi + 1

2pi−1)
2 if pi−1 ≥ 0

(p2
i + pipi−1 + p2

i−1) if pi−1 ≤ 0

for all p sufficiently close to p̄, implying

g(pi, pi−1) = 2pi + pi−1

for all those p. Hence, we have

∂Bg(p̄i, p̄i−1) = {2ei + ei−1} .

Noticing p̄i < 0 and (p̄i+1, p̄i) ∈ W , the situation becomes the same as in
Case 2 from (29) and below it. Hence, elements in ∂BFj (p̄), j = i, i + 1 can
be calculated according to (35) and (36), or (37) and (38), or (39) and (40).

In summary, elements in ∂BFj (p̄), j = i, i + 1, under the condition of
(22), can be calculated by one of the pairs: (27) and (28), (35) and (36), (37)
and (38), and (39) and (40). Observations in (ii) and (iii) hold for those pairs.
This completes the proof for (ii) and (iii).

Finally, we prove the positive definiteness of every element in ∂BF (p̄).
Let V ∈ ∂BF (p̄) and 0 �= u ∈ �n−1. We then have
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uT V u =
n−1∑
i=1

V 2
iiu

2
i +

n−1∑
i=2

2hiui−1ui

= 2h1u
2
1 + 2h2u

2
1 +

n−2∑
i=2

V 2
iiu

2
i

+
n−1∑
i=2

2hiui−1ui + 2hn−1u
2
n−1 + 2hnu

2
n−1

≥ 2h1u
2
1 +

n−1∑
i=2

hi

{
min{2u2

i−1 + 1

2
u2
i ,

1

2
u2
i−1 + 2u2

i } + 2ui−1ui

}

+ 2hnu
2
n−1

= 2h1u
2
1 + 1

2

n−1∑
i=2

hi min{4u2
i−1 + 4ui−1ui + u2

i , u2
i−1

+ 4ui−1ui + 4u2
i } + 2hnu

2
n−1

= 2h1u
2
1 + 1

2

n−1∑
i=2

hi min{(2ui−1 + ui)
2, (ui−1 + 2ui)

2} + 2hnu
2
n−1

> 0.(41)

Hence V is positive definite. The first inequality (41) used the fact of (iii). ��

-4 -3 -2 -1 0 1 2 3 4
-4

-3

-2

-1

0

1

2

3

4

b

a

b

a ≥ 0
a + 2b ≤ 0

b Case 1
(p̄i, p̄i−1)

a ≤ 0, b ≤ 0

b

(p̄i, p̄i−1)

Case 2

b

(p̄i, p̄i−1)

Case 3

b ≥ 0
2a + b ≤ 0

b

(p̄i, p̄i−1)

Case 4

Fig. 1. Illustration of all four cases in the proof of Lemma 3.2
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Lemma 3.2 allows us to establish finite termination of the Newton method
for the equation (11).

Theorem 3.3 Let p∗ ∈ �n−1 be a solution of the piecewise linear equation
(11). Let p∗

0 = p∗
n = 0. Suppose that

(p∗
i , p

∗
i−1) ∈ W for all i = 1, . . . , n(42)

where W is defined by (23). Then the Newton method finds the solution in a
finite number of steps provided the starting point p0 is sufficiently close to
p∗.

Proof. Since every element in ∂BF (p∗) is nonsingular (Lemma 3.2), the it-
erates {pk} generated by the Newton method converge to p∗ quadratically
provided that p0 is sufficiently close to p∗ (Theorem 2.2). Suppose now pk

is so close to p∗ that pk and p∗ fall in the same piece, say Ui , of F . Hence
a linear function F i : �n−1 → �n−1 exists and satisfies F i(Ui) = F |Ui .
Necessarily, ∇F i(p∗) ∈ ∂BF (p∗), see (15). That is, ∇F i(p∗) is nonsingular.
Noticing that F i(p∗) = F(p∗) = −d, we have

pk+1 = pk − (∇F i(pk))−1(F (pk) + d)

= pk − (∇F i(pk))−1(F i(pk) − F i(p∗) + F i(p∗) + d)

= pk − (∇F i(pk))−1(F i(pk) − F i(p∗))
= pk − (∇F i(pk))−1∇F i(pk)(pk − p∗)
= pk − (pk − p∗) = p∗.

Since the above derivation is valid for any piece Ui which contains pk and
p∗, the Newton method finds the solution p∗ and terminates at pk+1. ��
Remarks (i) The key idea of proving the finite termination of the Newton
method is that when the iterate is sufficiently close to the solution, and both
the iterate and the solution fall in one piece on which the underlying func-
tion is linear, the Newton method finds the solution in one step. This idea
is not new and has been used in [10,15,17,27] in showing the finite termi-
nation of various Newton methods for a number of problems, which can be
reformulated as piecewise linear equations.

(ii) Under the condition of (42), every element in ∂BF (p∗) is nonsingular.
This fact implies that p∗ is an isolated solution of (11), see [22, Proposition
2.5]. Since the solution set of the equation (11) is convex, p∗ is the only
solution. It then follows from [12, Proposition 3.2.5] that the level set of the
unconstrained minimization problem (10) is bounded, i.e., the set

{p ∈ �n−1| L(p) ≤ α}
is bounded for any α ∈ � if nonempty. Hence the steepest descent method
can be used at an early stage to provide a sufficiently good starting point for
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the Newton method, and the Newton method will stop in a few more steps,
according to Theorem 3.3. This numerical scheme is exactly what suggested
in a series of papers by Schmidt and his collaborators [2,23,24,4,25,26], and
their numerical observation is consistent with the convergence theory proved
in this paper.

(iii) Remarks (i) and (ii) may be invalid if the condition (42) is violat-
ed. Let us illustrate this possibility by Example 3.1. It is easy to verify that
the unique solution for Example 3.1 is p∗ = (2,−13, 60,−42). Obviously,
(p∗

1, p
∗
0) = (2, 0) �∈ W , violating the condition (42). ∂BF (p∗) contains only

one element (noticing all hi = 1):


1/2 1 0 0
1 2 0 0
0 0 1/2 1
0 0 1 4




which is singular. Hence Newton’ method fails since the Newton equation is
not guaranteed to admit a solution at all when pk is sufficiently close to p∗.

4 Convex smoothing

In this section, we obtain the finite termination of the Newton method for the
problem of convex smoothing, which is to construct the best approximation
to the given data (often categorized as data fitting).

Given the data (xi, yi) ∈ �2, i = 0, 1, . . . , n, the convex smoothing con-
sidered in this section is to determine a convex C1 spline s on the grid with
s(xi) = zi being approximation to yi at xi . Hence, it follows (4) that the
function has the expression for x ∈ [xi−1, xi]

s(x) = zi−1 + mi−1(x − xi−1)(43)

+
(

3
zi − zi−1

hi

− 2mi−1 − mi

)
(x − xi−1)

2

hi

+
(
mi−1 + mi − 2

zi − zi−1

hi

)
(x − xi−1)

3

h2
i

with s ′(xi) = mi , i = 0, 1, . . . , n. Furthermore, s is convex if and only if

2mi−1 + mi ≤ 3
zi − zi−1

hi

≤ mi−1 + 2mi, i = 1, . . . , n;(44)

see (6). Then the best C1 spline of this kind minimizes

6(s) :=
n∑

i=1

{
wi 

∫ xi

xi−1

s ′′(x)2dx + ri−1(s(xi−1) − yi−1)
2 + ri(s(xi) − yi)

2

}
(45)



Dual newton method for convex best C1 interpolation and smoothing 17

subject to the constraints that

s has the form (43) on each [xi−1, xi] and is convex on [x0, xn](46)

where wi, ri and  are positive parameters to be determined a priori [3,23].
With some labor of calculation, problem (45) with (46) reads

min
z,m∈�n+1

n∑
i=1

6i(zi−1,mi−1, zi, mi)(47)

s.t. (zi−1,mi−1, zi, mi) satisfies (44) for i = 1, . . . , n(48)

where

6i(a, b, c, d) := 4wi 

hi

{(
b − c − a

hi

)2

+
(
b − c − a

hi

)(
d − c − a

hi

)

+
(
d − c − a

hi

)2
}

+ ri−1(a − yi−1)
2 + ri(c − yi)

2.

It follows from [23, Theorem 2] that problem (47)–(48) is uniquely solvable
and can be effectively solved by its (unconstrained) dual program (in the form
of minimization)

min
u,v∈�n−1

ψ(u, v) :=
n∑

i=1

Hi(ui−1, vi−1, ui, vi)(49)

with u0 = un = v0 = vn = 0 and

Hi(ρ, ξ, σ, η) := yi−1ρ − yiσ + yi − yi−1

hi

(ξ − η) + hi

12wi 
q(ξ, η)

+h2
i ρ

2 − 2hiρ(ξ − η) + (ξ − η)2

4ri−1h
2
i

+h2
i σ

2 − 2hiσ (ξ − η) + (ξ − η)2

4ri−1h
2
i

.

Once a solution of (49) is obtained, the solution of the primal problem (47)–
(48) can be calculated via the formula in [23, Theorem 3], and the convex
function s minimizing (45) is constructed via (43). Note that we have made
sign change in function Hi(·, ·, ·, ·), compared with [23] where −σ and −η

are used. This sign change allows use of the same piecewise quadratic func-
tion q(·, ·), instead of using one of its variants [23, Proposition 4].

For simplicity, we assume wi = 1 and  = 1, extension to arbitrary
wi > 0 and  > 0 is straight forward. Since ψ(u, v) is piecewise con-
tinuously differentiable quadratic function, the piecewise linear system of
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equations obtained by setting ∇ψ(u, v) = 0 (optimality condition) are

∇uiψ(u, v) = 1

2

(
1

ri−1
+ 1

ri

)
ui − 1

2ri−1hi

vi−1

+ 1

2

(
1

ri−1hi

− 1

rihi+1

)
vi + 1

2rihi+1
vi+1 = 0(50)

and

∇viψ(u, v) = τi+1 − τi + 1

2ri−1hi

ui−1 + 1

2

(
1

ri−1hi

− 1

rihi+1

)
ui

− 1

2rihi+1
ui+1 − 1

ri−1h
2
i

vi−1 +
(

1

ri−1h
2
i

+ 1

rih
2
i+1

)
vi

− 1

rih
2
i+1

vi+1 + 1

12
Fi(v) = 0(51)

for i = 1, . . . , n−1, whereFi is defined as in (12). For simplicity of notation,
let @ : �n−1 × �n−1 → �2(n−1) be defined by

@i(u, v) := ∇uiψ(u, v) and @n−1+i (u, v) := ∇viψ(u, v), i = 1, . . . , n−1.

Then the k-th step of the Newton method at (uk, vk) for the dual problem (49)
(or equivalently for the equations (50) and (51)) is: ChooseVk ∈ ∂B@(uk, vk)

and let
(uk+1, vk+1) = (uk, vk) − V −1

k @(uk, vk).(52)

The remaining task is to work out the structure of ∂B@(u, v). Let D :=
diag(1/r0 + 1/r1, . . . , 1/rn−2 + 1/rn−1), and

A :=




1
r0h1

− 1
r1h2

1
r1h2

− 1
r1h2

. . .
. . .

. . .
. . . 1

rn−2hn−1

− 1
rn−2hn−1

1
rn−2hn−1

− 1
rn−1hn




and

B :=




1
r0h

2
1
+ 1

r1h
2
2

− 1
r1h

2
2

− 1
r1h

2
2

. . .
. . .

. . .
. . . − 1

rn−2h
2
n−1

− 1
rn−2h

2
n−1

1
rn−2h

2
n−1

+ 1
rn−1h2

n




.

Noticing that the only term which is nondifferentiable in ∇viψ(u, v) is Fi(v),
with some labor of calculation, we have

∂B@(u, v) =
{

1

2

(
D A

AT 2B + 1
6M

)
| M ∈ ∂BF (v)

}
.(53)
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Using the evaluation above, we can prove a result parallel to Theorem 3.3 of
the finite termination of the Newton method (52).

Theorem 4.1 Let (u∗, v∗) ∈ �n−1 × �n−1 be a solution of the dual problem
(49). Let v∗

0 = v∗
n = 0. Suppose that

(v∗
i , v

∗
i−1) ∈ W for all i = 1, . . . , n(54)

whereW is defined by (23). Then the Newton method (52) finds the solution in
a finite number of steps provided that the starting point (u0, v0) is sufficiently
close to (u∗, v∗).

Proof. We only need to prove that every element in ∂B@(u∗, v∗) is positive
definite. The remaining proof argument is similar to the corresponding part
in the proof of Theorem 3.3.

We first note that, under the current assumption, Lemma 3.2 implies
that each element in ∂BF (v∗) is positive definite. Let V be an element in
∂B@(u∗, v∗), then there exists a matrixM in ∂BF (v∗) such thatV has the form
of (53). Let (ū, v̄) ∈ �n−1 × �n−1 be given and let ū0 = ūn = v̄0 = v̄n = 0,
then

κ(ū, v̄)

:= (ūT , v̄T )V

(
ū

v̄

)

= 1

2
ūT Dū + ūT Av̄ + v̄T Bv̄ + 1

12
v̄TMv̄

=
n∑

i=1

(
(hiui−1 − (v̄i−1 − v̄i))

2

4ri−1h
2
i

+ (hiui − (v̄i−1 − v̄i))
2

4rih2
i

)
+ 1

12
v̄TMv̄.

Hence κ(ū, v̄) = 0 only if v̄Mv̄T = 0, which in turn implies v̄ = 0 (by the
positive definiteness of M). Then

κ(ū, v̄) =
n∑

i=1

(
u2
i−1

4ri−1
+ u2

i

4ri

)
.

Therefore, κ(ū, v̄) = 0 implies ū = v̄ = 0. Moreover, if (ū, v̄) �= 0, then
κ(ū, v̄) > 0. This proves the positive definiteness of V . ��

Remark The theoretical result on the finite termination verifies the numerical
experience reported in [23]. On the other hand, the Newton method may fail
to find a solution if the condition (54) is violated.
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5 Conclusions

The Newton method has long been known to be numerically effective for solv-
ing the convex best C1 interpolation problem and its smoothing. However,
no theoretical justification was available in the literature for its effectiveness.
The paper fills this gap by showing that the Newton method has the finite
termination property under a mild condition, and violation of this condition
may force the method fails. The convergence analysis relies on accurate es-
timation of the generalized Hessian. It would be very interesting if the finite
termination domain can be enlarged beyond the region defined by (23). We
also hope that our proof technique can be extended to some more general
problems as shape-preserving interpolation with obstacles.
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12. Hiriart-Urruty, J-B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms

I. Springer-Verlag 1993
13. Hiriart-Urruty, J-B., Strodiot, J.J., Nguyen, V.H.: Generalized Hessian matrix and sec-

ond-order optimality conditions for problems with CL1 data. Appl. Math. Optim. 11,
43–56 (1984)

14. Irvine, L.D., Marin, S.P., Smith, P.W.: Constrained interpolation and smoothing. Cons-
tr. Approx. 2, 129–151 (1986)

15. Kanzow, C., Qi, H.-D., Qi, L.: On the minimum norm solution of linear programs. J.
Optim. Theory and Appl. 116, 333–345 (2003)

16. Kojima, M., Shindo, S.: Extension of Newton and quasi-Newton methods for systems
of PC1 equations. J. Oper. Res. Soc. Japan 29, 352–373 (1986)



Dual newton method for convex best C1 interpolation and smoothing 21

17. Mangasarian, O.L.: Finite Newton method for classification problems. Optim. Method
and Software 17, 913–929 (2002)

18. Micchelli, C.A., Smith, P.W., Swetits, J., Ward, J.D.: Constrained Lp approximation.
Constr. Approx. 1, 93–102 (1985)

19. Neuman, E.: Uniform approximation by some Hermite interpolation splines. J. Com-
put. Appl. Math. 4, 7–9 (1978)

20. Nocedal, J., Wright, S.J.: Numerical Optimization. Springer-Verlag, 1999
21. Pang, J.-S., Sun, D., Sun, J.: Semismooth homeomorphisms and strong stability of

semidefinite and Lorentz complementarity problems. to appear in: Math. Oper. Res.
22. Qi, L.: Convergence analysis of some algorithms for solving nonsmooth equations.

Math. Oper. Res. 18, 227–244 (1993)
23. Schmidt, J.W.: An unconstrained dual program for computing convex C1-spline

approximants. Computing 39, 133–140 (1987)
24. Schmidt, J.W.: On tridiagonal linear complementarity problems. Numer. Math. 51,

11–21 (1987)
25. Schmidt, J.W., Hess, W.: Spline interpolation under two-sided restrictions on the

derivatives. Z. Angew. Math. Mech. 69, 353–365 (1989)
26. Schmidt, J.W.: Dual algorithms for solving convex partially separable optimization

problems. Jber. d. Dt. Math.-Verein. 94, 40–62 (1992)
27. Sun, D., Han, J., Zhao, Y.: The finite termination of the damped Newton algorithm

for linear complementarity problems. (Chinese) Acta Math. Appl. Sinica 21, 148–154
(1998)


