Meta-Analysis of Diagnostic Studies by Means of (S)ROC-Modelling – a Profile-likelihood Approach based upon the Lehmann-family

Dankmar Böhning

Professor and Chair in Applied Statistics, School of Biological Sciences University of Reading, UK

Vienna, Institute for Medical Statistics, 18 March 2009

<ロト < 副 ト < 臣 ト < 臣 ト 臣 9000 1/53

Introduction and Background of Diagnostic Setting

Problems with Conventional Methods for Meta-Analysis of Diagnostic Studies

<ロ > < 回 > < 臣 > < 臣 > 三 2/53

SROC-Modelling

Profile or Adjusted Profile Likelihood?

Simulation Study

Application to BNP Meta-Analysis

Goodness-of-Fit

<ロ > < 回 > < 直 > < 直 > < 直 > 三 2000 3/53

Cooperation

Professor Dr. Heinz Holling Statistics and Quantitative Methods Faculty of Psychology and Sport Science University of Münster, Germany

Support

German Research Foundation (DFG)

Often studies are done in medicine or psychology to determine:

discriminatory ability of a diagnostic test to separate people

<ロト < 団 > < 臣 > < 臣 > 王 2000 4/53

- with a specific disease (or condition)
- from those without

Measures of Diagnostic Accuracy

- ► Specificity: P(T − |D−) = 1 − u Probability of a negative test result for a healthy person
- Sensitivity: P(T + |D+) = p Probability of a positive test result for a diseased person

<ロト < 団 > < 臣 > < 臣 > 臣 2000 5/53

Estimating Diagnostic Accuracy

- ▶ Specificity: $P(T |D -) = 1 \hat{u} = \frac{n-x}{n}$ where x are the number of false-positives out of n healthy individuals, n - x are the true-negatives
- Sensitivity: $P(T + |D+) = \hat{p} = \frac{y}{m}$ where y are the number of true-positives out of m healthy individuals, y - m are the false-negatives

Frequently available:

- a variety of diagnostic studies
- providing diagnostic measures

 x_i, n_i (specificity)

 y_i, m_i (sensitivity)

- ▶ for i = 1, ..., k
- leading to the field of meta-analysis

An Example: Meta-Analysis of Diagnostic Accuracy of Natriuretic Peptides for Heart Failure

- diagnosis of heart failure is difficult
- overdiagnosis and underdiagnosis is occurring
- natriuretic peptides have been proposed as a diagnostic test
- meta-analysis provided by Doust *et al.* (2004) for brain natriuretic peptide (BNP)
- restriction on studies that use left ventricular ejection fraction of 40% or less as gold standard

<ロト < 団 ト < 臣 ト < 臣 ト 三 8/53

Data of Meta-Analysis on Diagnostic Accuracy of BNP for Heart Failure

	diseased		healthy		
study	y(TP)	m - y(FN)	n - x(TN)	x(FP)	n + m
Bettenc. 2000	29	7	46	19	101
Choy 1994	34	6	22	13	75
Valli 2001	49	9	78	17	153
Vasan 2002a	4	6	1612	85	1707
Vasan 2002b	20	40	1339	71	1470
Hutcheon 2002	29	2	102	166	299
Landray 2000	26	14	75	11	126
Smith 2000	11	1	93	50	155

The Cut-off Value Problem

- Why not proceed with the available armada of meta-analysis methods?
- continuous or ordered categorical test uses cut-off value
- sensitivities and specificities from different studies not comparable
- different values for sensitivity and specificity might be due to different diagnostic accuracy or different cut-off value
- cut-off problem introduces bias of unknown direction and size

Illustration of the cut-off value problem for a **single study**:

Illustration for a single study on Depression

- Lotrakul *et al.* (2008) seek to determine the diagnostic accuracy for the Thai version of the Patient Health Questionnaire (PHQ-9)
- a screening tool for major depression in primary care patients
- sensitivity and specificity were estimated in a diagnostic study involving 279 patients for different cut-off values
- Mini International Neuropsychiatric Interview and the Hamilton Rating Scale for Depressions were used as gold standards
- Lotrakul *et al.* (2008) consider different cut-off values and determine associated sensitivities and specificities

Illustration for a single study

Table: Performance of various PHQ-9 cut-off scores in detectingmajor depression (following Lotrakul et al. 2008)

Cut-off	Sensitivity	Specificity
6	0.95	0.48
7	0.95	0.55
8	0.89	0.65
9	0.84	0.77
10	0.74	0.85
11	0.68	0.89
12	0.68	0.90
13	0.63	0.94
14	0.47	0.96
15	0.37	0.97

Coping with the cut-off value problem for a single study: The ROC-curve

 let p̂_i and û_i be the different values of sensitivity and 1-specificity according to different cut-off values c_i, i = 1, ..., k

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- construct a diagram with pairs (\hat{p}_i, \hat{u}_i)
- called the Receiver Operating Characteristic (ROC)
- benefit: incorporates the different values of the cut-off

Illustration of the cut-off value problem for a **single study**:

The SROC-diagram for meta-analytic situations

Consider the pairs (sensitivity, 1-specificity) estimated by

$$(\hat{p}_i, \hat{u}_i) = (y_i/m_i, x_i/n_i)$$

<ロト < 回 ト < 臣 ト < 臣 ト 三 18/53

for i = 1, ..., k

- include them in a ROC diagram
- it is called summary ROC because the points relate to different studies instead of different cut-off values

SROC-diagram for MA of BNP and Heart Failure

Modelling of the SROC-diagram

Consider the Lehmann family for θ > 0 and i = 1, ..., k (Le 2006):

$$p_i = u_i^{\theta}$$

or as a simple slope-only model

$$\log p_i = \theta \log u_i$$

- note model has one parameter of interest θ and k nuisance parameters u₁,..., u_k
- note that θ represents the diagnostic power whereas the nuisance parameter captures heterogeneity in the specificities

Inference

consider the product-binomial likelihood as the joint distribution of Y_i and X_i for the *i*-th study (index is suppressed for notational convenience)

$$\binom{m}{y}p^{y}(1-p)^{m-y} \times \binom{n}{x}u^{x}(1-u)^{n-x}$$

which we replace by the normal approximation for log Y_i and log X_i

$$\frac{1}{\sqrt{2\pi s^2}} \exp\{-\frac{1}{2} \frac{(\log y - \log(mp))^2}{s^2} \\ \times \frac{1}{\sqrt{2\pi t^2}} \exp\{-\frac{1}{2} \frac{(\log x - \log(nu))^2}{t^2} \}$$

<ロ > < 回 > < 国 > < 国 > < 国 > 三 22/53

Inference

▶ the normal approximation for log Y_i and log X_i

$$\frac{1}{2\pi st} \exp\{-\frac{1}{2} \frac{(\log y - \log(mp))^2}{s^2}\} \times \exp\{-\frac{1}{2} \frac{(\log x - \log(nu))^2}{t^2}\}$$

- ▶ with the Taylor-series variance estimates $s^2 = \frac{1}{y} - \frac{1}{m}$ and $t^2 = \frac{1}{x} - \frac{1}{n}$
- the normal approximation is justified if the sizes per study are not small and matches well with the Lehmann family
- consider now the log-likelihood for study i

$$-\frac{1}{2}\frac{(\log y - \log(mp))^2}{s^2} - \frac{1}{2}\frac{(\log x - \log(nu))^2}{t^2}$$

Inference

and further with setting brackets differently

$$-\frac{1}{2s^2}(\log y - \log m - \log p)^2 - \frac{1}{2t^2}(\log x - \log n - \log u)^2$$
$$= -\frac{1}{2s^2}(\underbrace{\log y - \log m}_{z} - \log p)^2 - \frac{1}{2t^2}(\underbrace{\log x - \log n}_{w} - \log u)^2$$

$$= -\frac{1}{2s^{2}}(z - \theta \log u)^{2} - \frac{1}{2t^{2}}(w - \log u)^{2}$$

<ロ > < 回 > < 回 > < 画 > < 画 > < 画 > < 画 > < 画 > 24/53

Inference

leading to the log-likelihood

$$\ell(\theta, u') = -\frac{1}{2s^2}(z - \theta u')^2 - \frac{1}{2t^2}(w - u')^2$$

• maximizing $\ell(\theta, u')$ in u' for **fixed** θ leads to

$$\hat{u}_{ heta}'=rac{ heta t^2z+s^2w}{t^2 heta^2+s^2}$$

▶ plugging \hat{u}_{θ}' in provides the **profile log-likelihood**

$$\ell(\theta) = \ell(\theta, \hat{u}_{\theta}') = -\frac{1}{2s^2}(z - \theta \hat{u}_{\theta}')^2 - \frac{1}{2t^2}(w - \hat{u}_{\theta}')^2$$

◆□ → < □ → < ■ → < ■ → < ■ → < ■ → < ■ 25/53</p>

Inference

▶ plugging \hat{u}_{θ}' in provides the **profile log-likelihood**

$$\ell(\theta) = \ell(\theta, \hat{u}_{\theta}') = -\frac{1}{2s^2}(z - \theta \hat{u}_{\theta}')^2 - \frac{1}{2t^2}(w - \hat{u}_{\theta}')^2$$

with
$$\hat{u}'_{\theta} = \frac{\theta t^2 z + s^2 w}{t^2 \theta^2 + s^2}$$

 \blacktriangleright ... after some work ... simplifies to

~

$$\ell(\theta) = \ell(\theta, \hat{u}_{\theta}') = -\frac{1}{2} \frac{(z - w\theta)^2}{t^2 \theta^2 + s^2}$$

a profile log-likelihood of remarkable simplicity

Why profile likelihood?

- eliminates nuisance parameter
- **two forms** of the model:

$$\log p = \theta \log u$$
 or $\log u = \frac{1}{\theta} \log p$

▶ it is invariant if *u* or *p* chosen to be the nuisance parameter

$$\ell(heta, \hat{u}_{ heta}') = \ell(heta, \hat{p}_{ heta}')$$

suitable for symmetric regression problems

Profile or Adjusted Profile Likelihood?

• $\ell(\theta)$ is almost Gaussian

$$\ell(\theta) = \ell(\theta, \hat{u}'_{\theta}) = -\frac{1}{2} \underbrace{\frac{(z - w\theta)^2}{t^2 \theta^2 + s^2}}_{\sigma^2(\theta)}$$

it differs only from

$$L(\theta) = -\frac{1}{2}\log\sigma^{2}(\theta) - \frac{1}{2}\frac{(z - w\theta)^{2}}{\sigma^{2}(\theta)}$$

by $\log \sigma^2(\theta)$

Profile or Adjusted Profile Likelihood?

- disadvantage of profile likelihood: it is not a likelihood
- hence, first and second order properties not necessarily valid
- in particular, it is thought that the curvature of the profile likelihood is **not** correct to give a valid variance estimate
- since the profile likelihood takes the estimated nuisance parameter as a true parameter value it is thought of underestimating the variance of the parameter of interest

Profile or Adjusted Profile Likelihood?

 but adjustment factor *Î*(*û*_θ)^{-1/2} available (Cox and Reed 1987; Lee, Nelder Pawitan 2006; Murphy and van der Vaart 2000)

$$\hat{I}(\hat{u}_{ heta}) = -rac{\partial^2}{\partial {u'}^2}\ell(heta,u') = rac{\partial^2}{\partial {u'}^2}\left(rac{1}{2s^2}(z- heta\hat{u}')^2+rac{1}{2t^2}(w-\hat{u}')^2
ight)$$

• where, for fixed θ , $\hat{l}(\hat{u}_{\theta})$ is the **observed Fisher information** $\hat{l}(u)$ evaluated at \hat{u}_{θ}

Profile or Adjusted Profile Likelihood?

as can be seen directly from above

$$\hat{I}(\hat{u}_{ heta}) = rac{\partial^2}{\partial {u'}^2} \left(rac{1}{2s^2} (z - heta \hat{u}')^2 + rac{1}{2t^2} (w - \hat{u}')^2
ight) = rac{t^2 heta^2 + s^2}{s^2 t^2}$$

so that

$$-\frac{1}{2}\log[\hat{I}(\theta)] + \ell(\theta) = L(\theta)$$

 providing an excellent justification of the adjusted profile likelihood

Full Sample Profile Likelihoods

for a sample of k studies

we have the full-sample profile log-likelihood

$$\ell(\theta) = -\sum_{i} \frac{1}{2} \frac{(z_i - w_i \theta)^2}{\sigma_i^2(\theta)}$$

and the full-sample adjusted profile log-likelihood

$$L(\theta) = -\sum_{i} \frac{1}{2} \log \sigma_i^2(\theta) - \sum_{i} \frac{1}{2} \frac{(z_i - w_i \theta)^2}{\sigma_i^2(\theta)}$$

where $\sigma_i^2(\theta) = t_i^2 \theta^2 + s_i^2$.

Ordinary and Adjusted Profile Likelihoods

Estimation: Maximum Profile Likelihood

score for the ordinary profile likelihood

$$egin{aligned} &rac{d}{d heta}\ell(heta) = -rac{d}{d heta}\sum_irac{1}{2}rac{(z_i-w_i heta)^2}{\sigma_i^2(heta)} \ &=\sum_irac{(z_i-w_i heta)w_i}{\sigma_i^2(heta)} + rac{1}{2}rac{(z_i-w_i heta)^2\sigma_i^2(heta)'}{\sigma_i^4(heta)} \end{aligned}$$

and the score for the adjusted profile likelihood

$$\frac{d}{d\theta}L(\theta) = \frac{d}{d\theta}\ell(\theta) - \frac{d}{d\theta}\sum_{i}\frac{1}{2}\log\sigma_{i}^{2}(\theta)$$
$$= \frac{d}{d\theta}\ell(\theta) - \frac{1}{2}\frac{\sigma_{i}^{2}(\theta)'}{\sigma_{i}^{2}(\theta)}$$

Estimating Equation Approach

• suggestion: fix θ in $\sigma_i^2(\theta)$ and maximize the Gaussian loss in θ :

$$-\sum_{i}rac{(z_i-w_i heta)^2}{\sigma_i^2(heta)}$$

or solve the estimating equation

$$\sum_{i} \frac{(z_i - w_i \theta) w_i}{\sigma_i^2(\theta)} = 0$$

leading to the iterative reweighted least-squares approach:

$$\theta = \frac{\sum_{i} z_{i} w_{i} / \sigma_{i}^{2}(\theta)}{\sum_{i} w_{i}^{2} / \sigma_{i}^{2}(\theta)}$$

<ロ > < 回 > < 直 > < 直 > < 直 > 三 35/53

Estimating Equation Approach

- neither ordinary nor adjusted profile likelihood is equivalent to IWLS
- but ... the latter is close because:
- look at the score for the adjusted profile likelihood

$$=\sum_{i} \frac{(z_{i}-w_{i}\theta)w_{i}}{\sigma_{i}^{2}(\theta)} + \frac{1}{2} \underbrace{\overbrace{(z_{i}-w_{i}\theta)^{2}}^{\sigma_{i}^{2}(\theta)} \sigma_{i}^{2}(\theta)'}_{\sigma_{i}^{4}(\theta)} - \frac{1}{2} \frac{\sigma_{i}^{2}(\theta)'}{\sigma_{i}^{2}(\theta)}$$
$$\approx \sum_{i} \frac{(z_{i}-w_{i}\theta)w_{i}}{\sigma_{i}^{2}(\theta)}$$

equals estimating equation approach

Simulation Study

- previous analysis suggests: profile and adjusted profile likelihood inference differs
- but how much? Look at Bias and variance!
- ▶ ... and
- how valid are the second derivate approximations of the true variances for both likelihoods

Fisher Information

we developed before:

$$L(\theta) = \sum_{i} L_{i}(\theta) = -\sum_{i} \frac{1}{2} \log \sigma_{i}^{2}(\theta) - \sum_{i} \frac{1}{2} \frac{(z_{i} - w_{i}\theta)^{2}}{\sigma_{i}^{2}(\theta)}$$
$$\frac{d}{d\theta} L(\theta) = \sum_{i} \frac{d}{d\theta} L_{i}(\theta)$$
$$= \sum_{i} \frac{(z_{i} - w_{i}\theta)w_{i}}{\sigma_{i}^{2}(\theta)} + \frac{1}{2} \frac{(z_{i} - w_{i}\theta)^{2}\sigma_{i}^{2}(\theta)'}{\sigma_{i}^{4}(\theta)} - \frac{1}{2} \frac{\sigma_{i}^{2}(\theta)'}{\sigma_{i}^{2}(\theta)}$$

so that

$$\widehat{\operatorname{var}(\hat{\theta})} = 1/\sum_{i} \left(\frac{d}{d\theta}L_{i}(\hat{\theta})\right)^{2}$$

Fisher Information

Recall, if

$$U(\theta) = \frac{d}{d\theta}L(\theta) = \sum_{i} \frac{d}{d\theta}L_{i}(\theta) = \sum_{i} U_{i}(\theta)$$

Fisher information

$$I(\theta) = E[U(\theta)^2] = \sum_i E[U_i(\theta)^2]$$

which leads to the plug-in estimate

$$\hat{I}(\hat{\theta}) = \sum_{i} U_{i}(\hat{\theta})^{2}$$

Simulation Study: Design

for
$$i = 1, ..., k = 10$$
:

1.
$$u_i \sim U[0.05, .5]$$

2. use model:
$$p_i = u_i^{\theta}$$
 for $\theta = 0.1, 0, 2, 0.3$

3.
$$n_i, m_i \sim Po(100)$$
 or $n_i, m_i \sim Po(10)$ (sparsity case)

4.
$$Y_i \sim Bin(p_i, m_i)$$
 and $X_i \sim Bin(u_i, n_i)$

- 5. determine various estimators of θ
- 6. replicate this process 1,000 times

Simulation Study: Results

Table: Mean and Variance for Profile (PMLE), Adjust Profile(APMLE) and Iterative Weighted Least Squares (IWLS) Estimator

estimator for $\theta = 0.1$	$E(\hat{\theta})$	$SE(\hat{ heta})$	$\widehat{SE(\hat{ heta})}$
$E(n_i) = E(m_i) = 100$			
IWLS	0.0961	0.0104	-
PMLE	0.0977	0.0104	0.0119
APMLE	0.0960	0.0101	0.0117
$E(n_i)=E(m_i)=10$			
IWLS	0.0899	0.0291	-
PMLE	0.0981	0.0313	0.0561
APMLE	0.0812	0.0260	0.0468
1			

Simulation Study: Results

Table: Mean and Variance for Profile (PMLE), Adjust Profile(APMLE) and Iterative Weighted Least Squares (IWLS) Estimator

estimator for $\theta = 0.2$	$E(\hat{ heta})$	$SE(\hat{ heta})$	$\widehat{SE(\hat{ heta})}$
$E(n_i) = E(m_i) = 100$			
IWLS	0.1959	0.0153	-
PMLE	0.1988	0.0153	0.0194
APMLE	0.1955	0.0151	0.0191
$E(n_i)=E(m_i)=10$			
IWLS	0.1722	0.0499	-
PMLE	0.1917	0.0536	0.0838
APMLE	0.1597	0.0442	0.0654
1			

Simulation Study: Results

Table: Mean and Variance for Profile (PMLE), Adjust Profile(APMLE) and Iterative Weighted Least Squares (IWLS) Estimator

estimator for $\theta = 0.3$	$E(\hat{ heta})$	$SE(\hat{\theta})$	$\widehat{SE(\hat{ heta})}$
$E(n_i) = E(m_i) = 100$			
IWLS	0.2953	0.0210	-
PMLE	0.3004	0.0211	0.0262
APMLE	0.2953	0.0208	0.0255
$E(n_i)=E(m_i)=10$			
IWLS	0.2693	0.0694	-
PMLE	0.3011	0.0742	0.1137
APMLE	0.2517	0.0622	0.0869

Simulation Study: Results for small *n* but large *k*

Table: Mean and Variance for Profile (PMLE), Adjust Profile (APMLE) and Iterative Weighted Least Squares (IWLS) Estimator k=100

estimator for $\theta = 0.3$	$E(\hat{ heta})$	$SE(\hat{ heta})$	$\widehat{SE(\hat{ heta})}$
$E(n_i)=E(m_i)=20$			
IWLS	0.2753	0.0153	-
PMLE	0.2970	0.0156	0.0189
APMLE	0.2718	0.0143	0.0164

Simulation Study: Conclusions

large n_i, m_i

- all three estimators behave similar
- minimal gain in efficiency with APMLE
- Fisher information estimate a bit conservative for variance estimation

small n_i, m_i

- ordinary PMLE less biased
- APMLE more efficient
- Fisher information estimate overestimates variance of PMLE and APMLE

<ロト < 回 ト < 臣 ト < 臣 ト 三 46/53

Application to BNP Meta-Analysis

- APMLE for $L(\theta)$ provides $\hat{\theta} = 0.1774$
- PMLE for $\ell(\theta)$ provides $\hat{\theta} = 0.1802$
- and IWLS gives $\hat{\theta} = 0.1755$

Observed and Fitted Lehmann Model

Fisher Information

► finally $\widehat{var(\hat{\theta})} = 1/\sum_{i} \left(\frac{d}{d\theta} L_{i}(\hat{\theta})\right)^{2}$ ► hence, 95% CI: $\hat{\theta} \pm 1.96\sqrt{var(\hat{\theta})}$

Incorporating SE of Estimate

Goodness-of-Fit

$$E(Z_i - \theta W_i) = 0$$

$$Var(Z_i - \theta W_i) = s_i^2 + \theta^2 t_i^2$$

so that

$$rac{Z_i - heta W_i}{\sqrt{s_i^2 + heta^2 t_i^2}} \sim N(0,1)$$

◆□ → < 団 → < 茎 → < 茎 → = 50/53</p>

Goodness-of-Fit

 χ^2- statistic

$$\chi_{k-1}^{2} = \sum_{i=1}^{k} \frac{(Z_{i} - \hat{\theta} W_{i})^{2}}{s_{i}^{2} + \hat{\theta}^{2} t_{i}^{2}}$$

BNP meta-analysis

based upon **all** 8 studies: $\chi_7^2 = 16.23$ and P = 0.0231 based upon 7 Studies (without **study 5**): $\chi_6^2 = 6.66$ and P = 0.4655 since plot of residuals:

$$rac{Z_i - \hat{ heta} W_i}{\sqrt{s_i^2 + \hat{ heta}^2 t_i^2}}$$

Signposts on the Road Map

 mixed model approach to include residual heterogeneity as a further variance component

- nonparametric mixture approach to model unobserved heterogeneity
- classification of studies into different components of homogeneous diagnostic accuracy