Modeling Cumulative Evidence for Freedom from Disease with Applications to BSE Surveillance Trials

Dankmar Böhning

Applied Statistics
School of Biological Sciences
University of Reading

Presentation at:

Statistics Research Seminar Series School of Mathematics University of Southampton

May 04, 2006 Organizer: Dave Woods

- Joint work with Matthias Greiner (Head: Intenational EpiLab, Danish Institute for Food and Veterinary Research, DK)
- Work done while visiting International EpiLab in 2004

- Published details available:
 - Böhning & Greiner (2006, EUJE) (study part)
 - Böhning & Greiner (2006, JABES) (theoretical part)

www.reading.ac.uk/~sns05dab/

Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

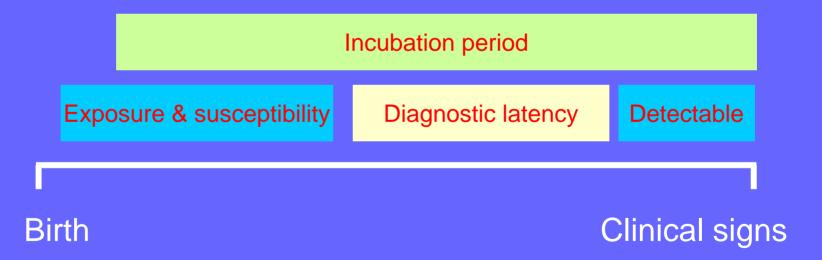
Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

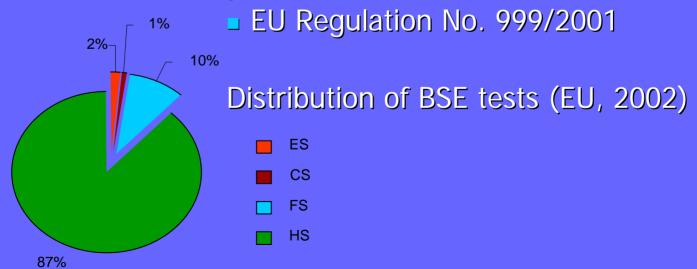
BSE risk mitigation

- prevent specific risk materials from entering the food chain
- restrict import of food with BSE risk
- safe processing of food
- detect BSE before beef enters food chain
- remove specific risk materials from animal feed
- restrict import of cattle with BSE risk
- ban meat-and-bone-meal for ruminants
- destroy BSE infected bovines
- BSE surveillance in cattle

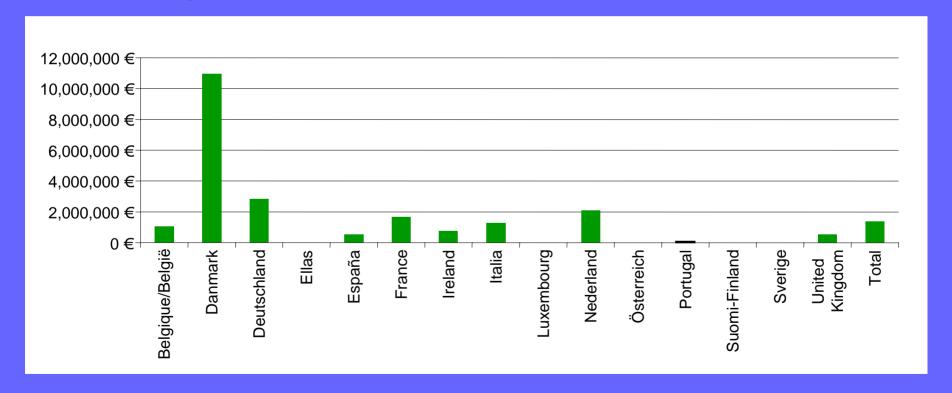
- BSE is a slow disease
 - BSE cases reflect exposure in the past
 - animals in early incubation phase cannot be diagnosed



- BSE surveillance in the EU
 - all fallen stock (FS) >24 months
 - all emergency slaughtered (ES) cattle >24 months
 - all healthy slaughters (HS) > (24) 30 months
 - all clinical suspects (CS) > 24 months



Testing for BSE is expensive



Number of Danish BSE cases by birth cohort (month)

Data source: http://www.clfvf.dk/Default.asp?ID=9827

Objectives

- To develop a statistical approach suitable for documenting freedom from BSE, stratified for birth cohorts, which
 - will account for the longitudinal data flow from distinct surveillance streams
 - allow adaptive up-scaling and down-scaling of the sampling coverage and optimal allocation of testing resources to birth cohorts based on prior risk estimates
 - contribute to a critical review of the current zero prevalence policy for BSE surveillance

Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

Idea of Project

- birth cohorts of animals (in different surveillance streams) are monitored for occurence of BSE
- in particular, prevalence is small, potentially cohort is disease-free
- in contrast to estimating prevalence, this project wants to answer the question:
- When can a particular cohort considered to be disease free?

··

Idea of Project Basic Principle of the Sequential Trial

interest is in a prevalence parameter π and associated null hypothesis

$$H_0: \pi = 0$$

(implying, birth cohort is disease-free)

sequential trial (ST): animals are tested in discrete calendar or sequential time Y_t result of testing animal t $(y_t = 1 \text{ test positive}, y_t = 0 \text{ test negative})$:

 H_0 : $Y_t = 0$ for all times t = 1, 2, 3, ... clearly, $\Pr(Y_t > 0 \mid H_0) = 0$, for all times t in other words, there is no type-I error

 Y_1, Y_2, Y_3 ... series of BSE-tests:

waiting time T for first animal testing positive:

$$Pr(T = t \mid \pi) = \pi (1 - \pi)^{t-1}$$

has geometric distribution

T	sequence of tests	probability
1	1	π
2	01	$(1-\pi)\pi$
3	001	$(1-\pi)^2\pi$
4	0001	$(1-\pi)^3\pi$

16

Rationale of the ST:

since

$$\Pr(T > 0 \mid \pi) = \sum_{t=1}^{\infty} \pi (1 - \pi)^{t-1} = 1$$

unless $\pi = 0$, there exists some positive time waiting time s > 0 such that

$$\Pr(0 < T \le s \mid \pi) = 1 - \beta$$

for given arbitrary small $\beta > 0$

Rationale of the ST:

instead of waiting for all times $(T = \infty)$ to conclude with $\pi = 0$,

we wait until time $s < \infty$ such that

$$\Pr(0 < T \le s \mid \pi) = \sum_{t=1}^{s} \pi (1 - \pi)^{t-1} = 1 - \beta$$

to conclude with $\pi = 0$, necessarily.

now,

$$\Pr(0 < T \le s \mid \pi) = \sum_{t=1}^{s} \pi (1 - \pi)^{t-1} = 1 - (1 - \pi)^{s}$$

and equating

$$1 - (1 - \pi)^s = 1 - \beta$$

leads to

$$(1-\pi)^s = \beta$$

Idea of Project: Solution

$$(1-\pi)^s = \beta$$

from where the stopping time s

$$s = \frac{\log(\beta)}{\log(1-\pi)}$$

is deduced

Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

Preliminary Results

project will focus on

power function:

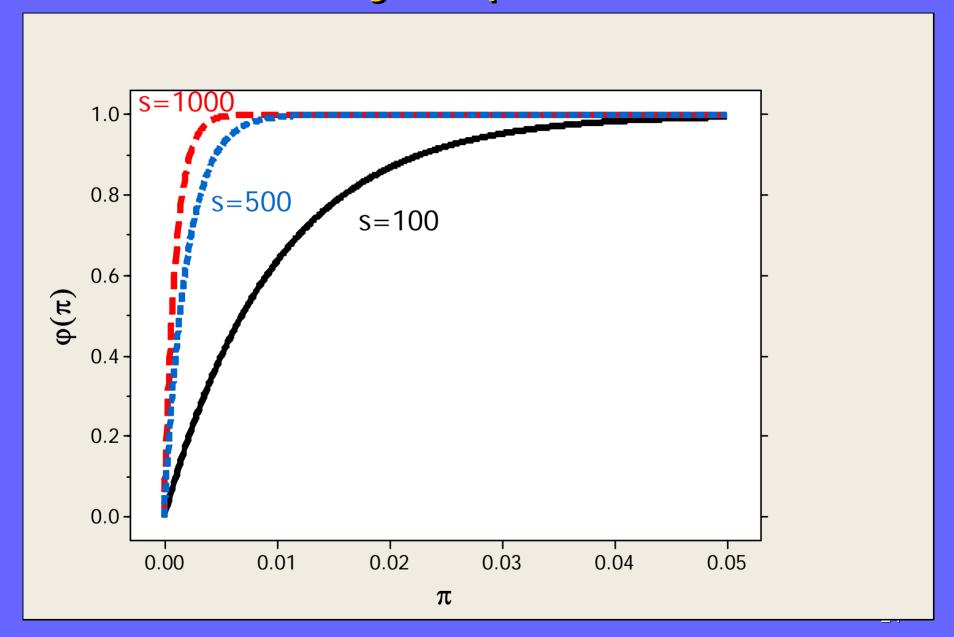
$$\varphi(\pi) = 1 - (1 - \pi)^s$$

Result: power function is monotone increasing

$$\pi_1 \leq \pi_2$$

$$\Rightarrow \varphi(\pi_1) \leq \varphi(\pi_2)$$

Monotonicity of power function



Important consequence

since true prevalence π is unknown, only minimum detectable prevalence (design prevalence) π_0 needs to be specified: it follows

$$\varphi(\pi_0) \le \varphi(\pi)$$

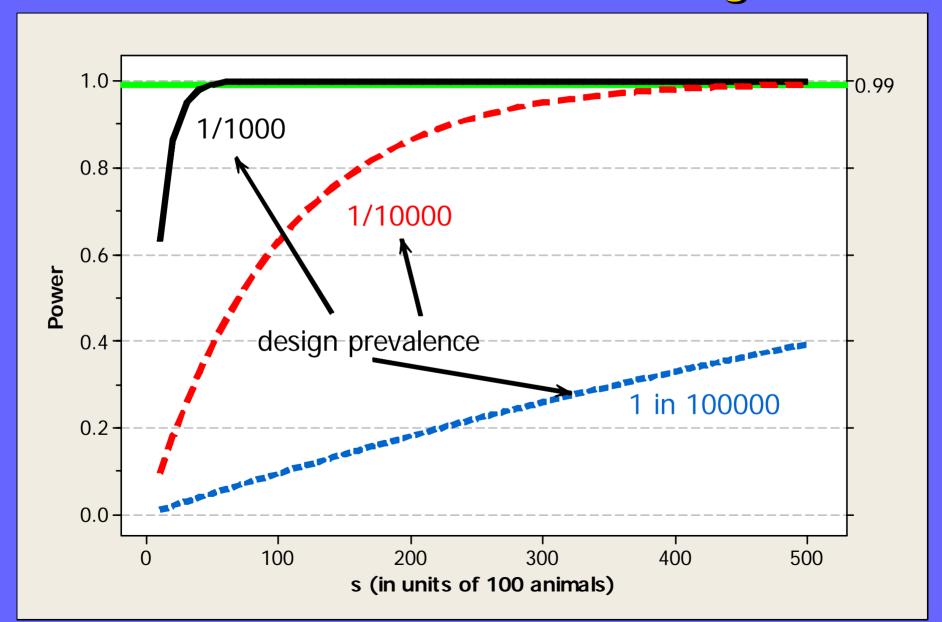
Power is also monotone in the waiting time s

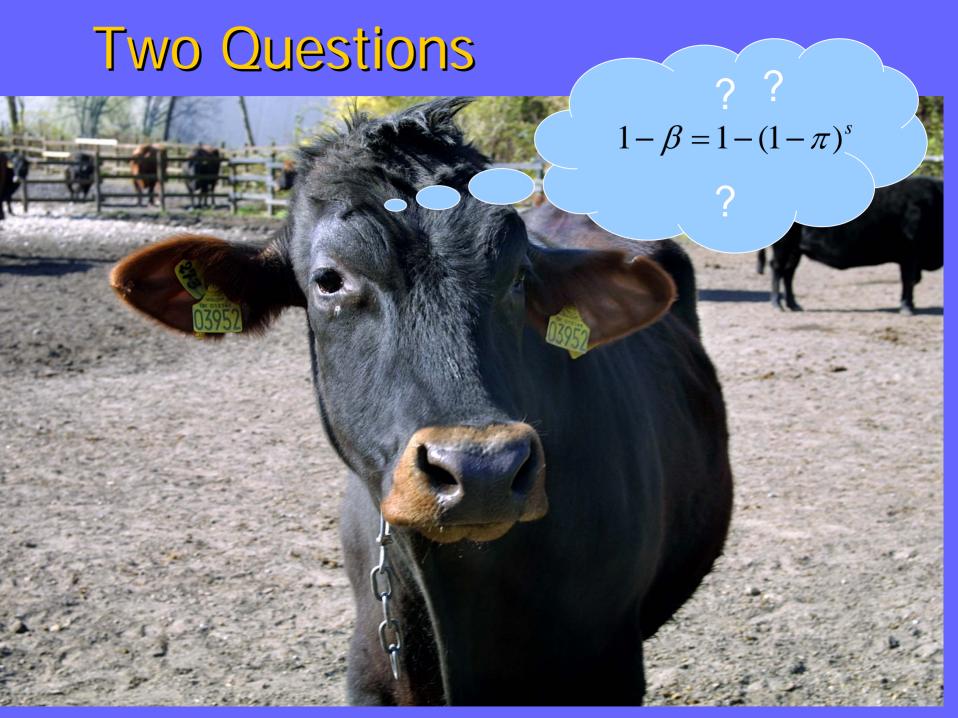
power function

$$\varphi(s) = 1 - (1 - \pi)^{s}$$

(now as function of s)

Power as function of waiting time





What is the waiting time s to reach power of ...

$$1 - \beta = 1 - (1 - \pi)^s$$
?

from where the stopping time solution

$$s = \frac{\log(\beta)}{\log(1-\pi)}$$

is found

What is the waiting time s to reach power of ...

Design prevalence: 1 in	Power=0.99	Power=0.999
1000	4603	6904
10000*	46049	69074
100000*	460515	690772

^{*} EC: Opinion in requirements for BSE/TSE Surveys, 2001

Which power have we reached given waiting time s?

$$\varphi(\pi) = 1 - (1 - \pi)^s$$

What power is reached given waiting time s?

Design prevalence: 1 in	<i>s</i> =10000	<i>S</i> =100000
1000	0.999955	1.00000
10000*	0.632139	0.99995
100000*	0.095163	0.63212

^{*} EC: Opinion in requirements for BSE/TSE Surveys, 2001

Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

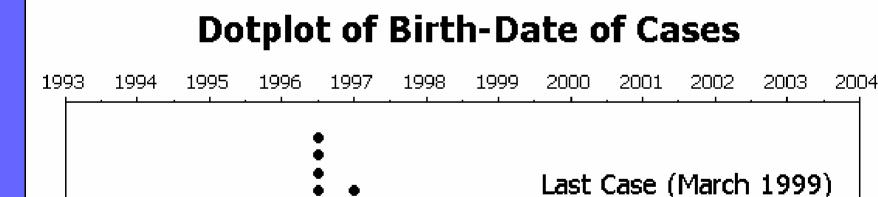
Situation in Denmark

- TSE Database: public register for BSEtesting
 - Controlled by the Danish Veterinary and Food Administration
 - Development, service and maintenance done by private company
 - Information on all animals tested for BSE since 01-Jan-2001

Situation in Denmark

- From TSE Database the following variables were made available for project:
 - Animal Identification Number
 - Age (at death)
 - Birth- and death-date
 - Cause of submission like clinical suspect, emergency slaughter, healthy slaughter,...
 - Result of BSE-testing (+/-)

Situation in Denmark: Identification of Positive Cases



Rirth-Date

Disease-free Cohort

Situation in Denmark

Rows: BIRTHMONTH Columns: BIRTHYEAR

	1999	2000	2001	2002	AII
4	^	11151	F02/	000	10070
1	0	11154	5936	988	18078
2	0	11235	5636	692	17563
3	0	13852	6808	356	21016
4	17012	11285	6016	152	34465
5	14821	9766	4744	76	29407
6	12748	8292	3745	21	24806
7	14380	9131	3732	11	27254
8	14285	9078	3167	3	26533
9	13397	8342	2646	0	24385
10	12441	8112	2212	0	22765
11	11660	7236	1791	0	20687
12	11654	6781	1348	0	19783
All	122398	114264	47781	2299	286742

Situation in Denmark: achieved power given waiting time s=286742

Prevalence 1 in	Power	Prevalence 1 in	Power
10000*	1.0000	60000	0.9916
20000	1.0000	70000	0.9834
30000	0.9999	80000	0.9722
40000	0.9992	90000	0.9587
50000	0.9968	100000	0.9432

^{*} EC: Opinion in requirements for BSE/TSE Surveys, 2001

Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

Non-perfect diagnostic testing

Test positive/negative is not equivalent to presence/absence of disease:

$$\pi_{+}$$
=Pr (Test positive) < π
since π_{+} = Pr(T +)
= Pr(T +| D) Pr(D) + Pr(T +| ND) Pr(ND)
= $\alpha\pi$ + $(1-\delta)(1-\pi)$

and, if every healthy cattle is correctly diagnosed

$$= \alpha \pi < \pi$$

where α is the test sensitivity

 π

Non-perfect diagnostic testing

T waiting time for first animal testing positive: - as before -

$$\Pr(0 < T \le s \mid \pi, \alpha > 0) = \sum_{t=1}^{s} (1 - \pi_{+})^{t-1} \pi_{+}$$

$$=1-(1-\pi_{+})^{s}=1-(1-\alpha\pi)^{s}$$

also, $Pr(T > s \mid \pi, \alpha > 0)$

$$=1-\Pr(0 < T \le s \mid \pi, \alpha > 0) = (1-\alpha\pi)^{s}$$

 π

Non-perfect diagnostic testing

to be realistic: sensitivity will have to depend on age group:

 α_a sensitivity for age group a T_a waiting time for first animal testing positive in age group a

π

Non-perfect diagnostic testing

suppose the trial has at some given time frequencies $s_1,...,s_A$ in age group 1,...,A

Power at this time?

Pr(there is a waiting time T_a s.t. $T_a \le s_a$)

 $=1-\Pr(T_a>s_a \text{ for all age groups } a \mid \alpha_s,\pi)$

$$=1-\prod_{a=1}^{A}(1-\alpha_{a}\pi)^{s_{a}}$$

Non-perfect diagnostic testing: Situation in Denmark

Age Group	Frequency s _a	Sensitivity α_a
3	113197	0.0469
4	119439	0.2818
5	50888	0.5918
6	3218	0.8048

Situation in Denmark: achieved power incorporating sensitivity

Prevalence 1 in	Power	Prevalence 1 in	Power
10000*	0.9992	60000	0.6972
20000	0.9722	70000	0.6408
30000	0.9083	80000	0.5918
40000	0.8333	90000	0.5490
50000	0.7615	100000	0.5117

⁴⁵

π

Ferguson et al. 1997:

$$f(a) = \frac{1}{c} \left[\frac{\gamma_2 \exp(-a/\gamma_1)}{\gamma_3} \right]^{\gamma_2^2/\gamma_3}$$

$$\times \exp\left[-\frac{\gamma_2 \exp(-a/\gamma_1)}{\gamma_3} \right]$$

where $\gamma_1, \gamma_2, \gamma_3$ are unknown parameters and c is a normalizing constant

π

Ferguson et al. 1997:

 $\gamma_1, \gamma_2, \gamma_3$ are replaced by their MLEs:

$$\widehat{\gamma}_1 = 1.146$$
, $\widehat{\gamma}_2 = 0.024$, $\widehat{\gamma}_3 = 5.71 \times 10^{-4}$, and $\widehat{c} = 1.1350$

Non-perfect diagnostic testing

with these values the likelihood for disease detectability within interval a to a+1:

$$\int_{a}^{a+1} f(a')da'$$

the likelihood for disease detectability

up to age \tilde{a} :

$$\sum_{a=2}^{\tilde{a}} \int_{a}^{a+1} f(a')da'$$

giving

Non-perfect diagnostic testing

Age Group	$\int_{a-1}^{a} f(a')da'$	$\sum_{a=2}^{a^*} Sensitivity \alpha_a$ $\sum_{a=2}^{a} \int_{a-1}^{a} f(a')da'$
3	0.0469	0.0469
4	0.2349	0.2818
5	0.3100	0.5918
6	0.2130	0.8048



Overview

- Background
- Idea and Scope of the project
- Preliminary Results
- Situation in Denmark
- Non-Perfect Diagnostic Testing
- Incorporating Heterogeneity from Different Surveillance Streams

Incorporating heterogeneity: important covariate: surveillance stream

Rows: Surveillance Stream Columns: Age-Years

	3	4	5	6	All
HS	90511	107692	46161	3029	247393
Risk	22686	11747	4727	189	39349
All	113197	119439	50888	3218	286742

ıı

Incorporating heterogeneity

let s_{ar} the frequency of animals in age group a and covariate combination r,

also, let π_r denote the design prevalence in covariate combination r

... after an algebraic journey ...

$$Power = 1 - \prod_{r=1}^{R} \prod_{a=1}^{A} (1 - \alpha_a \pi_r)^{s_{ar}}$$

Situation in Denmark: achieved power incorporating surveillance stream

Prevalence 1 in HS	Power adjusting for SS	Power not adjusting for SS
10000	1.0000	0.9992
30000	0.9991	0.9083
50000	0.9853	0.7615
80000	0.9283	0.5918
100000	0.8786	0.5117

Discussion

- Statistical model (independence, homogeneity)
- Choice of statistical power
- Design prevalence
- Sensitivity
- _____,

