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Capture-Recapture Procedures based upon
Counting Distributions

= Basic objective of CR:
estimate population size

= In particular of interest in
areas where direct
counting is difficult such as|

a wildlife population
(historic genesis)

how many people drive a
car without license?

how many practicing
physicians are alcohol dep.? a

how may cases of a disease y)-
remain undetected?

= Adjustment for undercount




How many cases N In a
population?
Some mechanism identifies n cases

P, probability of being not identified by
the mechanism
Then:
N=Npg +(1-po)N
= unobserved + observed cases
=Npy+n
< N=n/(1-p,)

(Horwitz-Thompson)



Horwitz-Thompson-Approach
seems easy, but ...

inclusion probability often unknown

approaches differ in the way they
estimate the inclusion probability,

or in other words, how they
model p, @&



Two sample capture-recapture method
(historic interest)

Animal populations
Capture a sample of fish
Mark them
Release them
Recapture a sample at a later date
Look for marks
Estimate population size



Example - fish

= Unknown number of
fish In a lake




Example - fish

= Unknown number of
fish In a lake

= Catch a sample
and mark them

= Letthem loose




Example - fish

Unknown number of
fish In a lake

Catch a sample
and mark them

Let them loose

Recapture a
sample and look for
marks



Estimate population size

Ny, = number in first Sample 2
sample, but not in
second
Ny Ny

Ny, = humber in S
second sample, but dam-

total

notin first plel p,, Nog
n,; = number in both

samples |
N = total population total n,;, n,

size




Estimate population size

assume that samples are independent:
Ny3/N = (Ngy + Nyp)/N X (Ngy + Ngy)/N
= (n1+/N) (n+1/N)

— N = (N, ny)/ngg

Lincoln (1896) — Petersen (1930)



More samples (traps, sources)

ID Sample Sample Sample Counting
1 2 3 captures
001 1 0 0 1
002 0 1 1 2
003 0 1 0 1
004 1 0 1 2
005 1 1 1 3

Could use log-linear modelling of multi-way frequency
table (Chapter 6, Bishop, Holland, and Fienberg 1975)



Counts of capture-recaptures as
outcome of continous time CR-

experiments

CR of Wildlife Populations
CR in Public Health and Surveillance
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The Counting Distribution

... occurs when the mechanism can catch multiple
identifications (s.a. police identifies and expells an
illegal immigrant several times)

Count of Frequency of observed
Identificationsi countswith |
Identifications

0 No Nno
1 Ny YEs
2 N, yes
3 N3 yes
4 Ny YEs



Frequency

Distribution of Observed and Predicted Counts of Sources
for fictional data of multiple identifications
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The Counting Distribution: A
historic Example

Cholera Epidemic in an Indian
McKendrick “s cholera data Village (1915-1920)

Village in India had
households with cholera
cases n,=32, n,=16, n,=6,
n,=1

McKendrick ignored the

houses with no cases House not affected,
Constructed an estimate NO Cases

(moment) based upon a @

Poisson assumption for the House affected, no cases
counts

a House affected, m cases



Simple Distributional Count Models
Poisson (for unobservable counts)
f(y,0) = e’d/y',y=012..
truncated Poisson (for observable counts)
1

f(y,6) =T e’y ,y=12..
—e

Predicted Probability of aZero:
P = f(y,0) = €°



Simple Distributional Count Models

after @ 1sidentified ...
... probability of azero count:
p, = f(y=0,0) =¢€”
n  n
1-p, 1-e?

— N =



ML-Estimation in Zero-Truncated
Poisson Models

Step 1: suppose n. would be available

0
m

h=—1 >in

N+N_ =1

0

Step 2: suppose & would be available

-6
,\ N N ~ ~ e
N = = ~—=>No=N-n=n -

1-p, 1-€° 1-e°



EM-Algorithm

Step 1 (M-Step): suppose ﬁo would be available

A 1 m
0=——= E !
n+n0 =1

Step 2 (E-Step): suppose 6 would be available

A A p e‘g
n, =E(n,|€;n,n,..) =n——=n .
(o 18inn,..) =02 =n =




The counting distribution: a
recent example from screening

Lloyd & Frommer
(2004, Applied
Statistics) screening
for bowel cancer

38,000 men screened
in Sidney at 6
consecutive days by
means of self-tesing
for blood in stools

3,000 tested positively at
least once and cancer
status evaluated

196 were confirmed
positive to have bowel
cancer

How many of 35,000
unconfirmed negative
have bowel cancer?



38,000 men screened

3,000 tested positive
at least once

196 confirmed
positive

25" Men with cancer, but
...+ tested always negative




The counting distribution: a recent
example from screening

50  mconfirmed &

= frequency n, of those 45 positive
tested negative at all 40
6 times with bowel 35 _
cancer is unknown 30 _
= an estimate of n, 25 Rl
might be constructed 20
from the distribution 15
ny, n; N; . 10
of counts g s E R R EAEI
123456
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Application: surveillance study on
drug use in Thailand

Count distribution
(counting number of
visits) for heroin users

n = 7,048 observed
heroin users (2001, 4)
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More General Zero-Truncated Count
Distributional Models

general count distribution

f(y,0),y=0,12,..
assoc. zero-truncated distribution

1 _
1-1(0.0) f(y,0),y=12,..
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More flexible and robust
approach through mixtures

Simple counting sources distributions such
as Binomial and Poisson require
assumptions such as homogeneity of
identification probabilities that are seldom
met in reality

allowing the identification probability to
vary in unobserved sub-populations will be
more realistic



More flexible and robust
approach through mixtures

G.A.F. Seber (2001, JABES):

However, heterogeneity of capture is an ever present problem, and a natural way of
modeling heterogeneity is to use a mixture distribution for the probability of capture.
This involves asumming that there are G groups in the population, for which the
probability of capture is constant within each group.

Norris and Pollock (1996, 1998)
Pledger (2000), Link (2003)



The mixture approach in a nutshell

mixture density: (fory=0,1,2,3,....)
t(y,0) =1(y,A)q+... +1(¥,4)q,

f(y,A) Iscomponent density
Example: f(y,A)=Po(y,A)=e"AY/y!

Al EEn Ak - . . . . .
0 = IS mixing distribution
q, --- G



two ways of setting up the mixture
for the zero-truncated counts

truncated mixture of Poisson distributions
(primal modal)

or ...

mixture of truncated Poisson distributions
(dual model)



truncated Poisson mixture
(primal model)

K
Z qj PO(y1AJ )
J=1

K

1- ) q, Po(0,1,)

J=1



mixture of truncated Poissons
(dual model)

Zk:q' Po(y, 4;)
j=1 | 1_ PO(O,AJ)

K

=" q,Po, (¥, 4,)

J=1




Mixture Density

Illustration: use mixture with equal weights and
component means 1 and 4 in both models

03 —

02 —

00 —




Ratio of truncated mixture (primal) to
mixture of truncated Poissons (dual)
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truncated Poisson mixture
(Erimal model)

2.4; Po(y,A))
j=1

K
1—Z;qj Po(0,1,)
J:

close to the original problem, easy to understand and to
communicate

used in the CR-literature: Dahiya & Gross (73),
Blumenthal et al. (79), Scollnik (97), van der Heijden et

al. (03), Grogger & Carson (91) Cameron & Trivedi (98),
Winkelmann (03)

But technical difficult, because of non-concavity



mixture of truncated Poissons
(dual model)

< Po(y,A) &
. = Po, (y, A,
2,97 Po(0, /) Z:;'q’ ()

J=1 J

less close to the original problem

but convex problem with strong results
available on NPMLE and global ML

estimation



Benefit in using the dual model

K Po(y, A, ) K

291 po0a) &4 OAITLOQ

let 1(Q)=> nlogf,(i,Q) bethelog-likelihood
=1

discrete mixing distribution Q such that

Q) 2 1(Q
for al (discrete) mixing distributionsis called the
nonparametric maximumlikelihood estimator (NPMLE)



Benefit in using the dual model

Equivalence Theorem for the NPMLE;
(Bohning 82, Lindsay 83):

1(Q) =1(Q) for all discrete Q
- d(A,Q)<1forall A

whered(A,Q) =— Zm:n L, Ei A; gradient function




McKendrick s cholera data: Village in India
had households with cholera cases n,=32,
n,=16, n,=6, n,=1

homogenous Poisson: one component mixture

~ 1S 1.3,4) e’
d(A,Q)=— , where f_(1,4) = .
(1.Q) n; f (i,Q) A )1e"'
where@ puts al mass at A =0.972

eg.
d(1.0)=d(), 0972)_1i f ‘; (2)37)2)




A

0.972

1,00
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Benefit in using the dual model

Algorithms exist finding the globally the
NPMLE

VDM, VEM, ISDM
EM, EMGFU
Others



Some results

n=7,048 (observed)
N=17,278
N-n=10,230 (hidden)
Ratio: |
observed/hidden=0.69

Estimating the Number of Heroin
Users:

k

A

Aj

g;

log-likelih.

AIC  BIC

1

2.75

1.00

-15462

-30927  -30934

7943

0.88
5.40

0.75
0.25

-13214

-26434  -26455

10226

0.41
2.97
6.80

0.69
0.22
0.09

-13134

-26279  -26313

13350

0.21
2.13
5.84

0.70
0.19
0.10

12.20 0.01

-13120

~-26255 -26303

17278

AIC = 2 x log-likelihood — (2k — 1)2
BIC = 2 x log-likelihood — (2k — 1) log(n)



Gradient Function

Grdient Function Graph
for Heroin Users in BKK Drug User Study
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Some equivalence results: How are
dual and primal model related?

Both share same model spaces!
Both share the same likelihood surfaces!

MLEs can be explicitly transformed into
each other

N\ N\

N=N



Model Spaces

- K
Primal: qu PO(i,/];)
M ={(m,m,m,)T [ =)
1-> q; Po(0,1,)
i=1
Dual:

: Po(i, /)

M ={(m,memy, )T Im =20 o5 5




Model Spaces

M =M



Proof (@): M O M
Zk:qJ Po(i, A )

m'OM" with m=

1- Zk: g, Po(0, 1))

q,(1- Po(0,1))

defineq, =

k

Zq'j (1- Po(0, 1))

: Po(i, A ) .
= q —=m =>m'OM
j=1 1_ PO(O,AJ)




Proof (b): MO M"’

: Po(i, A )

mOM with m= q
JZ ' 1- Po(0, 1)

g, /(1-Po(0, A, ))

defineq, =—
> q,/ (1-Po(0,1))

> g, Po(i, A )
- —= =m =>mOM"
1-> g, Po(0, A, )
j=1




Model Spaces

M =M

= {L(M)[m'TUM = {L(m)|nd] M}
with L(m") := Zni log(m" )

— NPMLs agree for both models

Al n
— N

= K .
1-2 "
=1



Epilogue

Can we estimate something which is
hidden or unobserved?

And if, how valid is such an estimate?



Australian Screening Study for
Colon Cancer

Lloyd & Frommer
(2004, Applied
Statistics) screening
for bowel cancer

38,000 men screened
in Sidney at 6
consecutive days by
means of self-tesing
for blood in stools

3,000 tested positively at
least once and cancer
status evaluated

196 were confirmed
positive to have bowel
cancer

How many of 35,000
unconfirmed negative
have bowel cancer?



38,000 men screened

3,000 tested positive
at least once

196 confirmed
positive

25" Men with cancer, but
...+ tested always negative




The counting distribution: a recent
example from screening

50  mconfirmed &

= frequency n, of those 45 positive
tested negative at all 40
6 times with bowel 35 _
cancer is unknown 30 _
= an estimate of n, 25 Rl
might be constructed 20
from the distribution 15
ny, n; N; . 10
of counts g s E R R EAEI
123456



Results from ML

K A; d; L Ny N

1 0.6241 1 -436.72 1 197

2 0.8548 0.5664 -349.09 13 209
0.2821 0.4336

3 0.9352 0.3452 -344.18 47 243

(NPMLE) 0.5971
0.1088

0.4199
0.2349



Number missed by screening technique
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38,000 men screened

3,000 tested positive
at least once

196 confirmed
positive

» Men with cancer, but
...+ tested always negative

Subset of 122 men tested again for 6 days




Distribution of counting the number
of days testing positive for 122
men with confirmed colon cancer

35  mconfirmed

= Now frequency n, of 30 positive
those tested negative ’5
at all 6 times with _

bowel cancer is 20 |
0

known 15

= validation sample 10

5
0 -

-
N I

W

D I

J1 I

9 I



Relative number missed
by screening technique
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