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Ratio Plot and Ratio Regression with
Applications to Social and
Medical Sciences
Dankmar Böhning

Abstract. We consider count data modeling, in particular, the zero-truncated
case as it arises naturally in capture–recapture modeling as the marginal dis-
tribution of the count of identifications of the members of a target population.
Whereas in wildlife ecology these distributions are often of a well-defined
type, this is less the case for social and medical science applications since
study types are often entirely observational. Hence, in these applications,
violations of the assumptions underlying closed capture–recapture are more
likely to occur than in carefully designed capture–recapture experiments. As
a consequence, the marginal count distribution might be rather complex. The
purpose of this note is to sketch some of the major ideas in the recent devel-
opments in ratio plotting and ratio regression designed to explore the pattern
of the distribution underlying the capture process. Ratio plotting and ratio
regression are based upon considering the ratios of neighboring probabilities
which can be estimated by ratios of observed frequencies. Frequently, these
ratios show patterns which can be easily modeled by a regression model. The
fitted regression model is then used to predict the frequency of hidden zero
counts. Particular attention is given to regression models corresponding to
the negative binomial, multiplicative binomial and the Conway–Maxwell–
Poisson distribution.

Key words and phrases: Closed capture–recapture, Conway–Maxwell–
Poisson, mixtures, multiplicative binomial, negative binomial, zero-truncated
count distributions.

1. INTRODUCTION

We are interested in zero-truncated count distribu-
tional modeling which arises naturally in capture–
recapture experiments or studies. The size N of a target
population needs to be determined. For this purpose a
trapping experiment or study is done where members
of the target population are identified at T occasions
where T might be known or not. Furthermore, the sam-
pling occasions might be specified prior to the study
or they might occur randomly during the observational
period. For each member i the count of identifications
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Xi is returned where Xi takes values in {0,1,2, . . .} for
i = 1, . . . ,N . However, zero-identifications are not ob-
served; they remain hidden in the study. Hence, a zero-
truncated sample X1, . . . ,Xn is observed, where we
have assumed w.l.o.g. that Xn+1 = · · · = XN = 0. So,
n is the number of recorded individuals. The associ-
ated untruncated and zero-truncated densities will be
denoted as px(θ) and p+

x (θ) = px(θ)/[1 − p0(θ)], re-
spectively. The setting above has been developed pri-
marily for wildlife populations (Bunge and Fitzpatrick,
1993, Borchers, Buckland and Zucchini, 2004, Chao,
2001, Sanathanan, 1977, Wilson and Collins, 1992).
We are interested here to apply the framework to so-
cial and medical scenarios as we will illustrate in the
following three examples.
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TABLE 1
Frequency distribution of the number of nights x stayed in the
shelter per homeless person for the city of Utrecht for a period

of 14 nights in 2013

x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 n

fx 36 11 6 11 5 7 6 11 3 8 7 12 22 77 222

1.1 Homeless Population of the City of Utrecht

As illustration of the problem, we consider the ques-
tion of estimating the homeless population of Utrecht
(NL). The city of Utrecht runs a shelter where home-
less people can stay overnight. Data are available for a
period of 14 nights in 2013 and are shown in Table 1.
It can be assumed that the shelter covers only the city
of Utrecht. The table contains information on how of-
ten homeless people stayed in the shelter within this
14-nights period. For example, f1 = 36 people stayed
exactly one night, whereas f2 = 11 people stayed ex-
actly two nights, and so forth. In total, 222 different
homeless people stayed in the shelter, spending a total
of S = ∑14

x=1 xfx = 2009 nights there. For more de-
tails see van der Heijden, Cruyff and Böhning (2014a).
In this case, the number of occasions is known with
T = 14 and also the occasions are specified in the ob-
servational period. Whereas some homeless people use
the shelter frequently, others use it only occasionally
or very rarely. Hence, the register for homeless people
based on the shelter is incomplete. The city of Utrecht
is interested in the total size of its homeless popula-
tion. Hence, we are interested to find an estimate of N

or, equivalently, of f0, the size of the hidden homeless
population.

1.2 Domestic Violence in NL

In a study of domestic violence, van der Heijden,
Cruyff and Böhning (2014b) reports perpetrator of-
fense data in the Netherlands for the year 2009. The
data represent the Netherlands excluding the police re-
gion for The Hague. Here the perpetrator study is re-
ported in Table 2. In this case T is unknown and there
are no prespecified sampling occasions, as domestic vi-
olence incidents occurred at unplanned time points in
the observational period 2009.

There were 15,169 perpetrators identified as being
involved in a domestic violence incident exactly once,
1957 exactly twice and so forth. In total, there were
17,662 different perpetrators identified by the police
in the Netherlands for 2009. As not every case of do-
mestic violence is reported to the police, an unknown

TABLE 2
Frequencies of the number of times perpetrators have been
identified in a domestic violence incident in the Netherlands

in the year 2009

x 1 2 3 4 5 6 7 8 9 n

fx 15,169 1957 393 99 28 8 6 1 1 17,662

number of perpetrators remain hidden. Hence, here the
target population of interest consists of the perpetrators
in the Netherlands (excluding The Hague) in the year
2009, whether they have been identified by the police
or not.

1.3 Size of Forced Labour Worldwide

The International Labour Office (ILO) undertook a
study to estimate the size of forced labour worldwide
(ILO, 2012). Here forced labour is characterized by
provision of some form of work or service which is
done under threat of penalty and undertaken involun-
tarily. Frequently the term slave labour is used in-
stead (Bales, 2012). Due to its hidden nature, forced
labour is hard to measure. For this reason, the ILO
launched a capture–recapture study to estimate the size
of forced labour worldwide. Teams were established
and searched for reports on forced labour. Sources of
information included media, government reports, aca-
demic and trade union reports and many more. In to-
tal, about 2500 different sources have been used. The
period that was covered was the years 2002–2011.
Reports were collected from anywhere in the world
and, therefore, considerable heterogeneity should be
expected. Table 3 shows the zero-truncated frequency
distribution of the count x, the number of times a
case of forced labour has been identified in any of the
sources. There were 4069 cases of forced labour that
were exactly identified by 1 report, 1186 cases that
were identified by 2 different reports, etc. Each case
will have a certain number of persons involved. From
this an estimate of the size of forced labour (the number
of people involved) can be derived. Here we are inter-
ested in estimating the number of cases f0 that were
identified by x = 0 reports.

TABLE 3
Frequency distribution of forced labour report counts

x 1 2 3 4 5 6 7 8 9 10 11 n

fx 4069 1186 167 46 10 7 3 1 0 1 1 5491
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1.4 Screening for Bowel Cancer

Bowel cancer can develop without any early warning
signs. The Faecal Occult Blood Test (FOBT) can de-
tect small amounts of blood in the bowel motion. This
might be indicative of a problem such as cancer but
also something else such as polyps or nothing at all.
Lloyd and Frommer (2004a, 2004b, 2008) present re-
sults of a screening study for bowel cancer in Sydney
(Australia). From 1984 onward about 50000 subjects
were screened for bowel cancer using the FOBT. Self-
administered testing took place on T = 6 successive
days and at each of the 6 occasions absence or presence
of blood in faeces was recorded. If at least one of the T

tests is positive, a gold standard evaluation took place
and results could be healthy, polyps or cancer. A per-
son that tested negatively on all T tests is not further
assessed. Out of exactly 49,927 persons, 46,553 tested
negatively on all six tests (and these were not further
investigated). Out of the other 3374 subjects who tested
positively at least once, 3106 were examined and their
true disease status determined. The other 268 subjects
who tested positively were lost to the study. In Table 4
we see the frequency distribution of the 228 persons
with cancer where x is the count of positive tests in
the 6-days period. As 46,553 remained without further
assessment, the question arises of how much hidden
cancer is present among this unassessed population.

1.5 Assumptions Involved in the
Ratio-Regression Approach

The ratio-regression approach to be presented is not
assumption-free. We assume that the target population
is closed, for example, that there is no migration, no
deaths and no births. Specifically, the no-migration as-
sumption can be questionable in some of the examples
above such as the homeless study in the city of Utrecht.
Here, the size of the time window is a steering element
in satisfying the closed-population assumption. The
larger the observational period, the more likely is the
occurrence of migration. The smaller the period, the
less homeless people are observed. In this case, it was
found that 14 days established a reasonable compro-
mise, as increasing the period by one week did not add

TABLE 4
Frequency distribution of number of positive tests of those with

cancer and testing positive at least once
(Lloyd and Frommer, 2008)

x 1 2 3 4 5 6 n

fx 46 27 26 33 39 57 228

substantially more homeless people to the observed
part of the homeless population. An alternative way
to proceed would be to use open-population modeling
such as the Cormack–Jolly–Seber model (McCrea and
Morgan, 2015; see also Cormack, 1964, Jolly, 1965,
Seber, 1965 and this special issue) in which the time-
specific dependency of the data is incorporated.

In some cases it might be unclear how the target pop-
ulation is defined. Whereas in the case of the bowel
cancer study (Section 1.4) the target population is
the disease-free screened population, this is less clear
in the domestic violence study (Section 1.2) of the
Netherlands. Here, we define the target population to
be all perpetrators that actually performed acts of do-
mestic violence whether this has been identified by the
authorities or not.

2. RATIO PLOT

We aim to estimate the population size N . As N =
Np0 + N(1 − p0) where p0 is the probability of a
zero count or missing an observation, we can get an
estimate of N by using the moment estimate n for
N(1 − p0) and solving N̂ = N̂p0 + n for N̂ = n/(1 −
p0), a Horvitz–Thompson estimate of N . As p0 is
unknown in most applications (and certainly in those
of Section 1), we need to come up with some esti-
mate for p0. A natural way to proceed is to use a
parametric model px = px(θ) for x = 0,1, . . . , de-
rive some estimate θ̂ for θ on the basis of p+

x (θ) for
x = 1,2, . . . , and use θ̂ in p0(θ̂) to estimate N . See
also Sanathanan (1977). McCrea and Morgan (2015)
call N̂ = n/[1 − p0(θ̂)] a Horvitz–Thompson-like es-
timate to distinguish it from the conventional Horvitz–
Thompson estimate N̂ = n/(1 − p0).

A natural starting point for searching for an appro-
priate count distribution is the power series density

px(θ) = axθ
x/η(θ),(1)

where ax is a known, nonnegative coefficient, θ a pos-
itive parameter and x = 0,1, . . . ranges over the set
of nonnegative integers. Also, η(θ) = ∑∞

x=0 axθ
x is

the normalizing constant. The power series distribu-
tion contains the Poisson (ax = 1/x!), the binomial
[ax = (T

x

)
for x = 0, . . . , T with positive integer T and

ax = 0 for x > T ] or the geometric (ax = 1).
It is a fundamental property of the power series dis-

tribution that

rx = px+1(θ)/ax+1

px(θ)/ax

= p+
x+1(θ)/ax+1

p+
x (θ)/ax

= θ,(2)
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FIG. 1. Ratio plot for a sample of 100,000 counts from a binomial with T = 6 and event parameter p = 0.4 (left panel) and frequency
distribution (right panel). The vertical axis in the left panel shows p̂ = r̂x/(1 + r̂x ).

the ratio of neighboring probabilities multiplied by the
inverse of their respective coefficients, is a constant, in-
dependent of x, in fact, it is the parameter θ itself. This
property occurs for the untruncated as well as for the
zero-truncated distribution as the normalizing constant
(1 −p0(θ)) cancels out. The quantity rx can be used to
develop a diagnostic device for the presence of a par-
ticular distribution. As px is an unknown quantity, we
replace it by its nonparametric estimate fx/N so that
we obtain an empirical ratio

r̂x = ax

ax+1

fx+1

fx

,(3)

as the unknown quantity N cancels out. Plotting r̂x
against x provides the empirical ratio plot or, simply,
the ratio plot. If the ratio plot shows a horizontal line
pattern, we can take this as supportive evidence for the
presence of the distribution of interest. The determin-
ing quantity in (3) is the ratio ax/ax+1 of the coeffi-
cients of the power series family member. For the Pois-
son this ratio is ax/ax+1 = x + 1, for the binomial it
is ax/ax+1 = (x + 1)/(T − x), and for the geometric
it is simply ax/ax+1 = 1. As the ratio plot construc-
tion depends on the coefficient ax , we emphasize this
by mentioning the family member. For example, if we
use the concept for the binomial, we speak of the bino-
mial ratio plot, and if we use it for the geometric, we
speak of the geometric ratio plot. If there is no doubt
of which family member is used, we simply speak
about the ratio plot. The ratio plot has been developed
in its basic form in Böhning et al. (2013). We illus-
trate the concept for the binomial in Figure 1. 100,000
counts have been sampled from a binomial with size
parameter T = 6 and event parameter p = 0.4 corre-
sponding to the parameterization in the power series of

θ = p/(1 − p) = 2/3. In the left panel of Figure 1 we
see the ratio plot for the binomial on the event param-
eter scale. There is clear evidence of a horizontal line
pattern supporting the binomial distribution. The ben-
efit of the diagnostic device becomes clear when com-
paring it to the bar chart provided in the right panel of
Figure 1 where the binomial distribution is more diffi-
cult to recognize.

We now apply the binomial ratio plot to the homeless
study data of Section 1.1 and the bowel cancer data of
Section 1.4. Figure 2 shows the ratio plot for the home-
less data of Utrecht (upper left panel) and for the bowel
cancer data (lower left panel). Note that the ratio r̂x =
(x + 1)/(T − x) × fx+1/fx is plotted on the log-scale.
The associated frequency distributions are provided in
the right panels of Figure 2. There is clear evidence that
a horizontal line pattern does not hold. There could be
various reasons why a horizontal line pattern is vio-
lated in the ratio plots present in Figure 2. It could be
that the repeated visits to the homeless shelter (upper
left panel) are not independent or that homeless peo-
ple have different tendencies to visit the shelter. Simi-
lar issues might occur in the bowel cancer data (lower
left panel) where repeated testing might not be inde-
pendent or different patients might have different risks
for a positive test. An alternative approach to deal with
dependencies between occasions is the approach using
log-linear models as suggested by Fienberg (1972) and
Cormack (1989). See also Chao (2001). This approach
requires availability of the data in the form of complete
capture histories xij , where xij = 1 if unit i is identified
at occasion j and 0 otherwise. In certain applications
such as the homeless or bowel cancer data, occasion-
specific data might be available (although we did not
have access to these for the present work); in other ap-
plications such as the worldwide forced labour study
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FIG. 2. Binomial ratio plot (on the log-scale) for homeless data of Section 1.1 (upper left panel) and bowel cancer data of Section 1.4
(lower left panel) with associated frequency distributions (upper and lower respective right panel).

only, xi = ∑T
j=1 xij is available and log-linear model-

ing is not possible in these cases.
Let us now turn to the domestic violence data of

Section 1.2. The Poisson ratio plot in Figure 3 (left
panel) provides evidence for a violation of the Pois-
son assumption in this case. There is a clear pos-
itive trend visible in the ratio plot. However, there
is no reason why we can expect domestic violence
counts to follow a Poisson distribution. We might as
well consider the geometric distribution and its asso-
ciated ratio plot, implying plotting x → fx+1/fx as
provided in the right panel of Figure 3. Apparently,
there is also a positive trend visible, although this
appears more diminished in the geometric ratio plot
than in the Poisson ratio plot. We denote by T0 the
largest count considered, in this case T0 = 5. Note
that T0 ≤ T if the number of sampling occasions is
known. An inspection of the chi-square goodness-of-
fit statistic χ2 = ∑T0−1

x=1 (log r̂x − log r̄x)
2/v̂ar(log r̂x)

confirms this impression. Here, v̂ar(log r̂x) = 1/fx+1 +
1/fx (Rocchetti, Bunge and Böhning, 2011, Böhning

et al., 2013), and for estimating the parameter θ we
use the consistent and asymptotically unbiased esti-
mates r̄x = ∑T0−1

x=1 (x + 1)fx+1/fx for the Poisson ratio

plot and r̄x = ∑T0−1
x=1 fx+1/fx for the geometric Pois-

son ratio plot. We find χ2 = 382.54 for the Poisson
and χ2 = 94.86 for the geometric ratio plot, both with
T0 − 1 = 4 df. Thus, it is clear that even in the case of
the geometric, the fit is not yet acceptable, and we will
turn to ratio regression in the next section to extend the
modeling framework considerably.

3. RATIO REGRESSION

The basic idea is to extend the ratio plot to a full
regression approach. Consider r̂x = ax

ax+1

fx+1
fx

and the
regression model in count x

r̂x =
p∑

j=1

βjgj (x),(4)

where gj (x) is a known regression function of count x.
In most applications we have in mind, p = 2 or p = 3,
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FIG. 3. Poisson ratio plot (left panel) and geometric ratio plot (right panel) for the domestic violence data of the Netherlands ignoring low
frequency data x ≥ 6.

and gj (x) is of simple structure such as g1(x) = 1 and
g2(x) = x or g2(x) = log(x + 1). After estimating the
coefficients β1, . . . , βp , we can estimate f0 as

f̂0 = a0

a1

f1∑p
j=1 β̂j gj (0)

.(5)

3.1 Ratio Regression and Mixtures

We are interested in connecting the presence of un-
observed heterogeneity (which could be described by a
latent variable) with the concept of the ratio plot and
ratio regression. If the target population consists of
subpopulations and subpopulation membership is not
observed, we speak of the occurrence of unobserved
heterogeneity. For example, in the case study on forced
labour (Section 1.3), reports were collected from any-
where in the world and, therefore, considerable het-
erogeneity should be expected. Assuming that in each
subpopulation a power series distribution is valid, then
unobserved heterogeneity leads to a mixture of power
series distributions mx = ∫

θ px(θ)f (θ) dθ , where f (θ)

represents the mixing distribution, the distribution
of the subpopulation parameter θ in the population.
Hence, mixtures of parametric count distributions have
attracted some attention in capture–recapture model-
ing (Dorazio and Royle, 2003, Pledger, 2005, Norris
and Pollock, 1996, Wang and Lindsay, 2005, 2008,
Mao, 2008, Mao and You, 2009, Böhning and Kuh-
nert, 2006). We can likewise consider the ratio plot for
mixtures

rx = ax

ax+1

mx+1

mx

,(6)

where we use again the known coefficients ax associ-
ated with the mixture kernel, for example, in the case

of a Poisson kernel ax = 1/x! or the case of a geomet-
ric kernel ax = 1. The estimate of rx will not change;
however, the interpretation of the observed pattern in
the ratio plot will. This is mainly due to the following
result (Böhning and Del Rio Vilas, 2008):

THEOREM 1. Let mx = ∫
θ px(θ)f (θ) dθ , where

px(θ) is a member of the power series family and f (θ)

an arbitrary density. Then, for rx = ax

ax+1

mx+1
mx

we have
the following monotonicity:

rx ≤ rx+1

for all x = 0,1, . . . .

The result in Theorem 1 can be interpreted as say-
ing that the presence of unobserved heterogeneity will
force a monotone increasing pattern in the ratio plot. In
some special cases for the mixing distribution, stronger
results are possible.

Suppose that X|�=θ is Poisson with density px(θ)

and suppose further that the density f (θ) of � is a
gamma with parameters k and β . Then, using standard
knowledge,

mx =
∫
θ
px(θ)f (θ) dθ

= 1

�(k)βk

∫ ∞
0

exp(−θ)θx

x!
(7)

· θk−1 exp(−θ/β)dθ

= �(x + k)

�(x + 1)�(k)
β−k

(
β

β + 1

)k+x

,

which corresponds to a negative binomial with param-
eter p = 1/(β + 1) so that

mx = �(x + k)

�(x + 1)�(k)
(1 − p)xpk.(8)



THE RATIO PLOT 211

It is easy to work out that rx = ax

ax+1

mx+1
mx

= (x +
1)

mx+1
mx

= (1−p)(x + k) in this case, so that the mono-
tone pattern in the ratio plot becomes a straight line
with intercept (1 − p)k and positive slope (1 − p).

3.2 Ratio Regression and Chao Estimation

Another question is how the result in Theorem 1
connects to established estimators such as Chao’s es-
timator (Chao, 1987, 1989). Chao’s estimator of f0
has been developed as a lower bound estimator un-
der mx = ∫

θ px(θ)f (θ) dθ , where px(θ) is the Poisson
density and f (θ) an arbitrary mixing distribution. The
original estimator takes the form f̂0 = f 2

1 /(2f2) and is
one of the most frequently used estimators in capture–
recapture modeling.

We let px(θ) be any member of the power series
now. Then Theorem 1 implies

a0

a1

m1

m0
≤ ax

ax+1

mx+1

mx

for x = 0,1, . . . .(9)

For x = 1 it follows that m0 ≥ (a0a2/a
2
1)(m2

1/m2), and
replacing mx by fx/N leads to Chao’s lower bound
estimator (a0a2/a

2
1)(f 2

1 /f2) for f0 in the case of the
power series family, and in particular to f 2

1 /(2f2) in
the Poisson case. The lower bound estimator becomes
asymptotically unbiased if there is no heterogeneity
(the mixing distribution becomes a one mass point dis-
tribution). Note that the lower bound estimator is valid
for any mixing distribution on θ including a discrete
mixing distribution with point mass at zero (leading to
a zero-inflated distribution), as this is a special case of a
discrete mixing distribution. However, its bias will de-
pend on the choice of the mixture kernel. For example,
in the case of the domestic violence data of Section 1.2
we can expect, by inspecting the ratio plot in Figure 3,
that the geometric lower bound will have a smaller bias
than the Poisson lower bound, as the bias-determining
difference

a0

a1

f1

f0
− a1

a2

f2

f1
(10)

can be expected to be smaller for the geometric than
for the Poisson.

The result of Theorem 1 allows many lower bound
estimators since m0 ≥ (a0ax+1/ax) (m1mx/mx+1) for
x = 1,2, . . . . For example, (a0a3/a2)(f1f2/f3) pro-
vides a lower bound estimator for f0 if we choose
x = 2. However, none will be as sharp as Chao’s lower
bound, the one we obtain for x = 1. Nevertheless, con-
sidering the ratios rx for x > 1 can be helpful and ratio
regression can be viewed as a way of projecting to a
best lower bound.

3.3 Ratio Regression and Empirical Bayes

The ratio rx = ax

ax+1

mx+1
mx

has an interesting connec-
tion to Bayesian inference. In fact,

rx = ax

ax+1

mx+1

mx

= ax

ax+1

∫
θ ax+1θ

x+1/η(θ)f (θ) dθ∫
θ axθx/η(θ)f (θ) dθ

(11)

=
∫
θ
θ × axθ

x/η(θ)f (θ)∫
θ axθx/η(θ)f (θ) dθ

dθ

=
∫
θ
θf (θ |x)dθ

is the posterior mean w.r.t. the prior distribution f (θ)

on θ . Here f (θ |x) = axθx/η(θ)f (θ)∫
θ axθx/η(θ)f (θ) dθ

is the poste-

rior distribution. Hence, r̂x = ax

ax+1

fx+1
fx

provides an es-
timate of the posterior mean without assuming any
knowledge of the prior distribution nor is there any
requirement for estimating the prior distribution, an
idea which goes back to Robbins (1956) and is con-
sidered the origin of empirical Bayes. For more details
see Carlin and Louis (2009). In conclusion, when mod-
eling rx , we are modeling the posterior mean.

3.4 Ratio Regression and Count
Distribution Modeling

We return to the ratio regression approach (4). To
ensure positive fitted values, we need to incorporate a
link function leading to the ratio-regression model

log r̂x =
p∑

j=1

βjgj (x),(12)

where gj (x) is a known regression function of count x.
Indeed, fitting a simple straight line to r̂x in the domes-
tic violence data of Section 1.2 would lead to a nega-
tive intercept estimate (see left panel of Figure 3) and,
hence, to a nonfeasible estimate of f0. This is not a spe-
cific problem of the least-squares estimation technique
used here, but a more general deficiency of the nega-
tive binomial, as also the maximum likelihood estimate
of the shape parameter lies on the boundary of the pa-
rameter space. Invoking an appropriate link function
such as the log-link avoids this nonfeasibility, but we
are also losing the interpretation of the straight line ra-
tio regression as the negative binomial model. Instead
of working with the negative binomial, we can try the
Conway–Maxwell–Poisson distribution given by

mx = 1

C

θx

(x!)ν ,(13)
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FIG. 4. Poisson ratio regression using β1 + β2 log(x + 1) (solid
curve) and β1 +β2 log(x +1)+β3x (dashed curve) for the domes-
tic violence data of Section 1.2.

for x = 0,1, . . . and positive θ and ν. The normal-
izing constant C = ∑∞

x=0 θx/(x!)ν is not available in
closed form. For more details see Sellers and Shmueli
(2010). It is easy to see that rx = (x + 1)mx+1/mx =
θ(x + 1)1−ν , which suggests the ratio regression ap-
proach with log-link

log rx = β1 + β2 log(x + 1),(14)

where β1 = log θ and β2 = (1 − ν) and the restriction
β2 ≤ 1. Hence, working with the Conway–Maxwell–
Poisson distribution is equivalent to working with a
straight line model on the log-scale for the ratio regres-
sion. We see the log[(x + 1)fx+1/fx] and the model fit
for β1 +β2 log(x + 1) in Figure 4 for the domestic vio-
lence data of Section 1.2. While the fit of the Conway–
Maxwell–Poisson distribution is good for x = 1,2,3, it
is deteriorating for values x = 4,5. The model log rx =
β1 + β2 log(x + 1) + β3x provides an excellent fit for
all x-values as Figure 4 shows. An estimate f̂0 is sim-
ply found from the estimated regression coefficients as
f̂0 = f1 exp(−β̂1). Here as well as for the general case
of the model E(Y) = Xβ , we use the weighted least-
squares estimate

β̂ = (
XTWX

)−1XTWY,(15)

where Y = (log r1, . . . , log rT0−1)
T , X is the design

matrix containing the regression functions of the
model, and W is a diagonal matrix containing the es-
timated inverse variances of Y1, . . . , YT0−1, more pre-
cisely, wi = (1/fi + 1/fi+1)

−1. Here T0 is the largest
count considered. Note that the estimated covariance
matrix of (15) is readily available as

ĉov(β̂) = (
XTWX

)−1
.(16)

The ratio regression approach opens the door to
a huge arena of techniques. However, whatever we
choose as a regression model, we would like to make
sure to include an intercept term, as this guarantees that
the power series family is included as a special case.
For example, in the Poisson ratio regression case r̂x =
(x + 1)px+1/px = ∑p

j=1 βjgj (x), we always choose
g1(x) = 1, as this will include the Poisson model as a
special case (β2 = · · · = βp = 0).

In the search for better fitting ratio regression mod-
els, we are also moving away from known correspond-
ing probability models. In fact, the question arises does
a model such as log rx = β1 +β2 log(x + 1)+β3x cor-
respond to a probability distribution at all? The answer
to this question is given by Theorem 2 and is basically
a yes under the mild assumption that rx > 0 for all x =
0, . . . , T0 − 1 and underlines the importance of an ap-
propriate link function. [We think of rx as arising from
some regression model rx = exp[∑p

j=1 βjgj (x)].]
THEOREM 2. Let rx > 0 be given for x = 0,1, . . . ,

T0 −1. Then there exists a unique count distribution px

for x = 0, . . . , T0 with the following properties:

1.

px+1 = pxrxax+1/ax

for x = 0,1, . . . , T0 − 1.
2.

p0 = 1
/(

1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + · · ·

+
T0−1∏
x=0

rxax+1/ax

)
.

A proof of Theorem 2 is given in the Appendix. The
value of Theorem 2 lies in the fact that it guarantees the
existence of a proper probability distribution for any
valid ratio regression model. It will also allow the con-
struction of an estimator for p0 by means of

p̂0 = 1
/(

1 + ˆ̂r0a1/a0 + ( ˆ̂r0a1/a0)( ˆ̂r1a2/a1) + · · ·
(17)

+
T0−1∏
x=0

ˆ̂rxax+1/ax

)
,

where ˆ̂rx = exp[∑p
j=1 β̂j gj (x)] is the fitted regres-

sion model for x = 0,1, . . . , T0 − 1, ultimately leading
to the Horvitz–Thompson-like estimator n/(1 − p̂0).
Note that we are using here ˆ̂rx for the fitted value to
distinguish it from the empirical observed ratios r̂x and
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the theoretical model ratios rx . However, in the follow-
ing applications we will only use the simpler estima-
tor for f0, namely, f̂0 = exp[−∑p

j=1 β̂j gj (0)] × f1 =
ˆ̂r0 × f1.

3.5 Ratio Regression and Variance Estimation

Another benefit of the ratio regression approach is
that variance estimators for f̂0 can easily be developed
as variance estimators, for the estimated regression co-
efficients are easily available. We will demonstrate this
for the binomial straight line ratio regression model.
In this case, f̂0 = f1 exp(−β̂1)/T . Using conditioning
moment techniques (Böhning, 2008, van der Heijden,
Cruyff and van Houwelingen, 2003),

Var(f̂0) = E
[
Var(f̂0|f1)

] + Var
[
E(f̂0|f1)

]
(18)

≈ 1

T 2

(
f 2

1 exp(−β̂1)
2 Var(β̂1)

(19)

+ f1 exp(−β̂1)
2
(

1 − f1

n + f̂0

))

= 1

T 2 f1 exp(−β̂1)
2(

f1 Var(β̂1)

(20)
+ 1 − f1/(n + f̂0)

)
,

where we have used the δ-method for the first term on
the RHS of (18). Note that an estimate of Var(β̂1) is
readily available from (16). Hence, a prediction inter-

val for f0 can be constructed as f̂0 ±1.96
√

Var(f̂0) and

for N as n + f̂0 ± 1.96
√

Var(f̂0).

4. APPLICATIONS

We start with the data on the homeless population of
Utrecht discussed in Section 1.1. We have seen in the
binomial ratio plot (upper left panel of Figure 2) that
the model

log
(

x + 1

T − x

px+1

px

)
= β1 + β2x(21)

provides a good approximation of the observed log-
ratio log( x+1

T −x
fx+1
fx

). Hence, we use this model to pre-

dict f̂0 = exp(−β̂1)f1/T = 66, leading to a population
size estimate of N̂ = n + f̂0 = 288.

It is interesting to note the connection to the multi-
plicative binomial distribution (Altham, 1978) defined
as

px =
(

T

x

)
θx(1 − θ)T −xηx(T −x)/C,(22)

where η > 0 is an additional positive parameter and
C = ∑T

x=0
(T
x

)
θx(1 − θ)T −xηx(T −x). Clearly, if η = 1,

the multiplicative binomial reduces to the standard bi-
nomial. The parameter η catches over- as well as un-
derdispersion, although there are no simple ranges for
η representing the two forms of nonequidispersion. For
more details see Lovison (1998). The ratio regression
approach for the multiplicative binomial yields

log rx = log
(

x + 1

T − x

px+1

px

)
= β1 + β2x,(23)

with no restrictions on β1 = log[θ/(1 − θ)] + (m −
1) log(η) and β2 = −2 logη. Hence, the straight line
model for the binomial ratio regression is identical to
the multiplicative binomial.

In Table 5 we have given two additional estima-
tors. One is Chao’s estimator provided as f̂0 = (T −
1)/Tf 2

1 /(2f2) = 55 for the binomial as developed in
Section 3.2, corresponding to a population size esti-
mate of N̂ = 277. We can see that the ratio regres-
sion approach corrects the Chao estimator upward.
The other is Turing’s estimator under homogeneity.
Here the idea is to express p0 as a function of p1
and the mean. As it turns out for the binomial, p0 =
(p1/E(X))T/(T −1), where X is binomial with size pa-
rameter T . The Turing estimate N̂ = n/(1 − p̂0) with
p̂0 = (f1/S)T/(T −1) follows. Note that S = f1 +2f2 +
· · · + TfT . One can also view the Turing estimator
as a form of coverage estimator, as 1 − f1/S repre-
sents the sample coverage. For more details on Good–
Turing estimation see Good (1953), Bunge and Fitz-
patrick (1993), and Chao and Bunge (2002). In the case
of the homeless data, we find the Turing estimate of
the population size of the homeless population to be
225, considerably smaller than the other two estimates,
which is as expected.

Here we look at the bowel cancer screening data of
Section 1.4. As the lower left panel of Figure 2 sug-
gests, we can use the straight line regression model
in this case. Besides the 228 cancer cases detected by
the screening program, we estimate 71 additional un-
detected cancer cases in contrast to Chao’s estimator
with 33 additional cases. The Turing estimator pro-
vides only 7 additional cases, clearly too low. For the
details see Table 5.

We have already discussed in Section 3.4 the mod-
eling for the Poisson ratio regression of the domestic
violence data of Section 1.2 where it was found that
the model log[(x +1)fx+1/fx] = β1 +β2 log(x +1)+
β3x + εx provided an excellent fit. Note again that the
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TABLE 5
Estimates of the population size N for the various applications; RR denotes the ratio regression approach; “P” stands for Poisson, “G” for

geometric and “B” for Binomial

Estimates of N with 95% prediction intervals

Application n ax Model RR Chao Turing

Section 1.1 222 B β1 + β2x 288 277 225
(233–342) (229–324) (224–226)

Section 1.2 17,662 P β1 + β3x 131,668 76,451 64,370
(106,583–156,753) (73,363–79,538) (62,302–66,438)

Section 1.2 17,662 P β1 + β3x 328,224
+ β2 log(x + 1) (320,586–335,862)

Section 1.2 17,662 G β1 + β2x 179,979
(156,718–203,240)

Section 1.3 5491 P β1 + β2x 14,096 12,471 12,475
(10,749–17,443) (11,916–13,026) (12,016–12,934)

Section 1.4 228 B β1 + β2x 299 261 235
(269–329) (238–283) (232–238)

Golf tees 162 B β1 + β2x 218 195 172
(N = 250) (173–263) (173–217) (168–176)

Taxicabs 283 B β1 + β2x 411 395 376
(N = 420) (310–512) (353–437) (350–402)

term Poisson solely refers to the construction of the re-
sponse log[(x +1)fx+1/fx]. Using the model log[(x +
1)fx+1/fx] = β1 +β3x + εx in the ratio regression, we
find an estimate of the total number of domestic vio-
lence perpetrators in the Netherlands of 131,668. For
comparison, Chao’s estimator n + f 2

1 /(2f2) provides
an estimate of 76,451 perpetrators and Turing’s estima-
tor n/(1 − f1/S) yields 64,370 persons, only half the
size of the ratio regression estimator. Using the better
fitting model log[(x + 1)fx+1/fx] = β1 + β2 log(x +
1) + β3x + εx , we find an estimate of 328,224 perpe-
trators. The AIC for this model is −47.7, which com-
pares well with the AIC of −6.6 of the former model.
However, we have seen in Section 2 that there is evi-
dence that the geometric distribution provides a better
fit to the domestic violence data than the Poisson dis-
tribution. Note that a geometric ratio regression can be
viewed as a Poisson ratio regression with an offset term
log(x + 1). In our case, the geometric ratio regression
model log[px+1/px] = β1 + β3x is equivalent with
the Poisson ratio regression log[(x + 1)px+1/px] =
log(x + 1)+β1 +β3x. Hence, this appears to be a rea-
sonable alternative model to use. Fitting a geometric
ratio regression model log[fx+1/fx] = β1 + β3x + εx

leads to an estimate of the total number of domestic
violence perpetrators in the Netherlands of 179,979.
Based on this estimate, the sample coverage is very

low at about 10%, hence, the police database provides
only a small peak of the domestic violence iceberg in
the Netherlands. This is as expected since dark num-
ber research1 estimates the number of reported domes-
tic crimes between 10% and 20% (Summers and Hoff-
man, 2002). The details are found in Table 5.

Let us now look at the data on the magnitude of
worldwide forced labour. We see in Figure 5 that the
Poisson ratio regression model log[(x + 1)fx+1/fx] =
β1 + β2x + εx provides a reasonable approximation
of the pattern visible in the ratio plot. The ratio re-
gression estimate for worldwide number of reports on
forced labour is 14,096, almost three times as much
as has been found in the sources (n = 5491). The es-
timators of Chao and Turing are 12,471 and 12,475,
respectively. The details are again in Table 5. Note
that Turing and Chao are very close here, despite the
fact that there is considerable heterogeneity, illustrating
that Chao’s estimator is not always able to adjust for
heterogeneity satisfactorily. The ratio regression model
used here does not correspond to a known probability
density, although it can be thought of as an approxima-

1Dark number research is a social sciences term for research fo-
cusing on elusive target populations such as populations undertak-
ing illegal activities or behaviors.
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FIG. 5. Poisson ratio regression using β1 + β2x for the forced
labour data of Section 1.3.

tion of the Conway–Maxwell–Poisson distribution as
log(x + 1) ≈ x in the vicinity of 1.

We conclude this section by applying the method
to two data sets for which the true population size is
known. The first one is reported in Borchers, Buck-
land and Zucchini (2004) and goes back to a capture–
recapture experiment. Golf tees were placed in 250
clusters in a specific area on grounds of the Univer-
sity of St. Andrews (Scotland) and 8 surveyors were
used to recover them. Of the total of 250 golf tee clus-
ters, 162 could be recovered successfully. Details are
provided in Table 6. Note that here f0 = 88 is known,
but we will not use this information in the estima-
tion process. The binomial ratio plot for these data is
shown in Figure 6 (left panel). Based on this graph, we
think that a straight line regression log([(x + 1)/(T −
x)fx+1/fx]) = β1 +β2x + εx is not inappropriate. The
estimators for these data are presented in Table 5. For
the binomial ratio regression we find an estimate of
218, which improves upon Chao’s (195) and Turing’s
(172) estimate and compares favorably with the true

TABLE 6
Frequency distribution of recovery count per golf tee cluster

(Borchers, Buckland and Zucchini, 2004)

x 0 1 2 3 4 5 6 7 8 n

fx (88) 46 28 21 13 23 14 6 11 162

size of 250. In fact, the prediction interval for N (see
also Section 3.5) based on the binomial ratio regres-
sion is (173–263) with the upper interval end cover-
ing the true N = 250. The prediction interval for N

based upon Chao’s estimator is instead (173–217), not
including the true N = 250. Similarly, the prediction
interval for N based upon Turing’s estimator is (168–
176), clearly not including the true N .

The second data set is reported in McCrea and Mor-
gan (2015) and goes back to Carothers (1973). The
number of registered taxicabs in Edinburgh (Scotland)
is known to be N = 420 at the time of the experiment.
On T = 10 sighting occasions the passing taxicabs are
identified and the count of resightings per taxicab de-
termined. The details are provided in Table 7. n = 283
different taxicabs could be identified, of which 142
were seen only once, 81 twice and so forth. No taxicab
had been identified more than 6 times. For the binomial
ratio regression we also use a straight line model, as is
motivated by the right panel in Figure 6. The associ-
ated binomial ratio regression estimate of the popula-
tion size is 411, which is close to the known number of
taxicabs of 420. Chao’s and Turing’s estimates are 395
and 376, respectively (see also Table 6). In this data set
there is more variation, as the prediction intervals for N

based on the binomial ratio regression and Chao’s esti-
mator are both wide: (310–512) for the ratio regression
and (353–437) for Chao’s estimator. Both easily cover
the true N = 420. Turing’s estimator underestimates

FIG. 6. Binomial ratio plot with T = 8 for golf tees data (left panel) and binomial ratio plot with T = 10 for taxicab data (right panel).



216 D. BÖHNING

TABLE 7
Frequency distribution of count of identifications per taxicab
(Carothers, 1973); there were no counts larger than T0 = 6

x 0 1 2 3 4 5 6 n

fx (137) 142 81 49 7 3 1 283

with a prediction interval of (350–402), not including
the true N = 420.

These examples and applications show that the ratio
regression approach can be a valuable tool in estimat-
ing population size.

5. EXTENSIONS AND DISCUSSION

The question arises of what happens if part of the
target population remains undetectable. For example,
in the case study of homeless people in Utrecht (Sec-
tion 1.1), some homeless people might never visit a
shelter to stay overnight. As for any other method, the
ratio regression approach assumes that there is a pos-
itive detection probability. If this is not the case, then,
even if the observational period is chosen to be large,
some homeless people remain undetected and the ratio
regression approach will provide only a lower bound.
Hence, it is crucial to discuss with practitioners respon-
sible for the well-being of homeless people how real-
istic the assumption is that every homeless person is
likely to visit the shelter at some time.

Some guidance for the practical use of the ratio re-
gression model might be appropriate. The first impor-
tant choice is the base family, as this leads to the co-
efficients ax , for x = 0,1, . . . . For example, if there is
a finite number of trapping occasions such as in appli-
cations (Sections 1.1 and 1.4), the natural base fam-
ily is the binomial and every regression model con-
sidered should include an intercept term so that the
binomial is included as a special case. In data exam-
ples such as Sections 1.2 or 1.3, the base family is less
clear, as at least the Poisson or the geometric distri-
butions could be considered. Here ratio plotting might
help and the distribution with the least positive trend
might be chosen as the base family (and hence deter-
mine the coefficients ax ). The choice of link function is
usually not a problem as the log-link is typically suit-
able. Choosing the regression model is clearly impor-
tant and guidance can be received again from the ra-
tio plot. However, several models might appear equally
suitable and model selection criteria such as the Akaike
information criterion might be used to select models.
Finally, goodness-of-fit analysis could be provided as

TABLE 8
Frequency distribution of number of positive secondary tests of

those with confirmed cancer (Lloyd and Frommer, 2004b)

x 0 1 2 3 4 5 6 n

fx 22 8 12 16 21 12 31 122

already mentioned in Section 2. The ratio regression
approach can be widely applied, clearly also to ecolog-
ical data. However, it should be mentioned that sample
sizes should be at least moderate, as the ratios fx+1/fx

need to be constructed on the basis of frequency dis-
tribution of the count of captures X. Depending on the
spread of the distribution, our experience is that n > 50
is desirable.

The approach can be extended in several ways.
A very interesting extension is that validation infor-
mation can be easily incorporated into the ratio re-
gression modeling. To demonstrate, we again consider
the bowel cancer application of Section 1.4. For some
reason a subsample of the screened persons with con-
firmed bowel cancer took the diagnostic test a second
time for six consecutive times. The results for n = 122
persons with confirmed cancer are found in Table 8.
As we know the cancer status of all 122 persons par-
ticipating in this secondary application, we do observe
zero counts. For 22 persons with bowel cancer the di-
agnostic test was negative at all times. We call this a
validation sample, as there are no hidden cases here.

It is now possible to incorporate the information
coming from the validation sample into the modeling
as is done in (24):

log
[
(x + 1)/(T − x)fx+1/fx

]
(24)

= β1 + β2x + β3set+ β4x × set+ εx.

Here set represents a dummy variable which takes on
the value 1 if fx is from the validation sample and
0 otherwise. The model (24) allows two completely
separate lines for the positive sample (where no zero
counts are observed) and the validation sample (where
zero counts are observed), respectively. The associated
graph is given in Figure 7. If β4 = 0, the parallel line
model occurs and if β3 = 0, in addition, the two lines
become identical. Tests for these hypotheses can be
done in standard ways and, in our case, there is no ev-
idence to reject the identical lines model as also Fig-
ure 7 indicates. The resulting estimate is 298 persons
with cancer, which is not much different from the esti-
mate of 299 achieved by the positive sample only. Us-
ing a validation sample does not only lead to an in-
creased efficiency, but it also reassures that the model,
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FIG. 7. Binomial ratio regression with additional validation
sample using log[(x + 1)/(T − x)fx+1/fx ] = β1 + β2x +
β3set+β4x ×set+ εx for the bowel cancer data of Section 1.4
with additional validation information.

used for the positive sample to predict the frequency
of hidden zero counts, is also a reasonable model for
the prediction. In the parallel line model, the prediction
would still partly use the validation sample, whereas
in the separate line model the validation sample is not
used at all in predicting f0.

Ratio plotting has been proposed in Böhning et al.
(2013) and connected work has been referenced
therein. See also McCrea and Morgan (2015). Ratio
regression for the Poisson case has been suggested
in Rocchetti, Bunge and Böhning (2011) and a spe-
cial fractional polynomial model for the binomial ratio
case by Hwang and Shen (2010). This paper develops
the most general form of the ratio regression approach,
as it allows any member of the power series distribu-
tion as base distribution, a basically unlimited choice
of regression model which is connected to the ratio of
neighboring frequencies by a feasible link function.

APPENDIX

PROOF OF THEOREM 2. Let rx > 0 be given
for x = 0, . . . , T0 − 1. Any probability distribution
p0, . . . , pT0 > 0 will meet the constraint p0 + · · · +
pT0 = 1. Since the probability distribution needs also
to fulfill the recurrence relation px+1 = rxpxax+1/ax ,
we have that

1 = p0 + · · · + pT0 = p0 + p0r0a1/a0

+ (p0r0a1/a0)(r1a2/a1) + · · ·

+ p0

T0−1∏
x=0

rxax+1/ax

= p0

[
1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + · · ·

+
T0−1∏
x=0

rxax+1/ax

]
.

Hence, it follows that

p0 = 1
/[

1 + r0a1/a0 + (r0a1/a0)(r1a2/a1) + · · ·

+
T0−1∏
x=0

rxax+1/ax

]
necessarily, and 0 < p0 < 1. The remaining proba-
bilities follow uniquely from the recurrence formula.
According to the latter, px+1 = rxpx/ax implies that
0 < px+1 < 1, x = 0, . . . , T0 − 1. �
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