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Abstract. The contribution investigates the problem of estimating the size of a
population, also known as the missing cases problem. Suppose a registration sys-
tem is targeting to identify all cases having a certain characteristic such as a specific
disease (cancer, heart disease, ...), disease related condition (HIV, heroin use, ...) or
a specific behavior (driving a car without license). Every case in such a registration
system has a certain notification history in that it might have been identified several
times (at least once) which can be understood as a particular capture-recapture situ-
ation. Typically, cases are left out which have never been listed at any occasion, and
it is this frequency one wants to estimate. In this paper modelling is concentrating
on the counting distribution, e.g. the distribution of the variable that counts how of-
ten a given case has been identified by the registration system. Besides very simple
models like the binomial or Poisson distribution, finite (nonparametric) mixtures of
these are considered providing rather flexible modelling tools. Estimation is done
using maximum likelihood by means of the EM algorithm. A case study on heroin
users in Bangkok in the year 2001 is completing the contribution.

Key words: Counting Distribution Model, capture-recapture, truncated count dis-
tribution, finite mixture models

1. Introduction

1.1. The missing cases problem

The following situation is very common in medicine and public health. A given
disease registration system identifies nobs cases of a particular disease of interest
such as a specific cancer site. The question arises how many cases n are there in
total, or, in other words, how many cases have been left out? Suppose that the system
identifies a case with probability 1 − p0, so that n = np0 + n(1 − p0). Note that
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n(1 − p0) is the expected number of cases identified by the registry which simply
can be estimated by nobs. number of observed cases. This leads to the estimating
equation for n

n = np0 + nobs, (1)

which in other words states that the population size is the sum of the unobserved
and observed cases. The equation can easily be solved for n to provide the Horvitz-
Thompson estimator

n̂HTE = nobs/(1 − p0), (2)

which is the number of observed cases adjusted for the probability of being included
into the registration system.

1.2. Horvitz-Thompson approach

Yet, another more rigorous way to derive (2) is as follows: let Zi be the indi-
cator of identifying a diseased individual i in the population for i = 1, 2, ..., n
with Zi = 1 meaning individual i is identified and Zi = 0 otherwise. Then,
E(

∑n
i=1 Zi) =

∑n
i=1 P (Zi = 1) = n(1 − p0) and equating this expected value

to the observed number of cases leads to (2) again, showing that (2) is a moment
estimator. But (2) can be a maximum likelihood estimator as well. Consider the

binomial likelihood L(n) = ( n
nobs

)(1 − p0)nobspn−nobs
0 of identifying exactly

∑n
i=1 zi = nobs out of the n diseased individuals. Then, L(n) is maximized for n

being the integer part of (2). This result follows by considering the difference score
function U(n) = L(n)−L(n−1)

L(n) = nobs−n(1−p0)
np0

which is positive for integers n

smaller than nobs/(1 − p0) and negative for integers n larger than nobs/(1 − p0).
For details see Lindsay and Roeder (1987) or Bishop et al. (1975, Ch. 6).

If p0 were known, then the problem is solved and the total of the population of
cases could be simply estimated as (2), namely nobs/n̂HTE . Unfortunately, p0 is
unknown for most applications and must be estimated. To accomplish this task the
data collected by the identification mechanism are assumed to have a structure that
can be used for modelling and predicting p0. Frequently, two types of structures
are used.

In the first type, a case is identified at prespecified occasions, times or sources
of identification. This type of data is called capture-recapture data with different
sources. The name stems from animal sampling designs in which a sample of an-
imals is drawn (caught), tagged and released. This procedure is repeated several
times, say m, and the m repetitions often assumed to be independent, so that at the
end of the procedure a series of data for each animal is available representing the
capture-recapture history of each individual animal. Usually, the capture-recapture
history is provided as a m-vector consisting of 0s and 1s, where a 1 at the j-th
position indicates presence in the jth recapture sample. The frequency of the vec-
tor (0, 0, ..., 0)T , indicating a case which has been never identified, is not observed
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and is the crucial part of the modelling and estimation. Frequently, log-linear mod-
elling is used to model the arising m-dimensional frequency table. Recently, these
approaches have been used for modelling completeness of a disease registry. In
this case, different identification sources could be physicians, hospitals, or labora-
tories. See Chao (1998, 2001), Wittes and Sidel (1968), LaPorte et al. (1992), Hook
and Regal (1995), IWGDMF (1995a,b), Comiskey and Barry (2001), Nannan and
White (1997), Tilling (2001) or Schouten et al. (1994). for further details, and Sekar
and Deming (1949) for an early public health application of the method.

In the second type, a case is identified at several occasions, but only this repeated
counting information is known. For example, the city police records how often
a drug dealer has been caught dealing drugs, or a surveillance systems counts
how many times a heroin user went into a treatment institution. We call this type
of capture-recapture data repeated counting data. For each case, acount can be
provided, on how often this case was identified by the identification mechanism.
The repeated counting data provide a frequency n1 for observing exactly 1 count,
n2 for observing exactly 2 repeated counts, ..., nm for observing exactly m repeated
counts where m is the largest observed repeated count. The frequency of 0 counts,
those cases which have never been identified, is missing information and need to
be estimated. See Mao and Lindsay (2003), van der Heijden, Bustami et al. (2003),
van der Heijden, Cruy et al. (2003), Scollnik (1997), Meng (1997) or Wilson and
Collins (1992) for further details.

Clearly, from data structures of capture-recapture with different sources type the
data structures of repeated counting type can be constructed, but not vice versa. Both
data structures leave n0 unknown, though different methods are used to estimate it.

1.3. The occurrence of the counting distribution

The counting distribution simply occurs when counting the number of notifications
for a given case. Again, there will be no frequency n0 of zeros observed, where, in
general, ni is the frequency of exactly i notifications from m possible occurrences.
In statistical terms, we are dealing with a zero-truncated count distribution.

To illustrate the situation we will first discuss a historic example, the cholera
epidemic in India. The example stems from Mao and Lindsay (2003) and has
been discussed previously in Blumenthal et al. (1978), Scollnik (1997), and others.
A cholera epidemic affected a village with 223 households in India. Let ni be
the number of households with exactly i cases. The data are: n1 = 32, n2 =
16, n3 = 6, n4 = 1, so that nobs = 55. Originally, the data were presented
by McKendrick (1926) in his paper presentation to the Edinburgh Mathematical
Society. It can be assumed that McKendrick was confronted with the data of the
cholera epidemic during the period of his service in India. It is interesting to note that
there is also a number n0 = 168 reported, the frequency of houses with no cholera
cases. However, McKendrick knew that some unknown percentage of these houses
were affected by the cholera epidemic, though no cases were observed in these
houses. It should be recalled that cholera is a water-borne disease. In this case,
the epidemic was caused by a specific, contaminated well, and houses supplied
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Fig. 1. Observed (circle) and fitted (asterisk) counting distribution

with drinking water from that contaminated well were exposed to developing the
disease. McKendrick was interested in modelling the count Y of cholera cases
in a cholera-affected household. For any case count Yi > 0 the associated i-th
household is clearly cholera affected. If Yi = 0 the household might be affected or
not, so McKendrick ignored the 168 households with zero cases since they are not
helpful in determining the number of affected houses with no cases, and developed
a (moment) estimator for the number n0 of affected households with no cases from
the distribution of non-zero case-counts.

We will concentrate here on modelling the distribution of case notification
counts. Suppose f(y, θ) is a suitable distributional model for the counting distri-
bution of the number of times Y that a particular case has been identified by the
surveillance system. In the case of the cholera epidemic, Y is the number of cholera
cases in a particular household that has been registered by the village health worker.
To estimate p0, one could simply replace p0 by f(0, θ) (see also Fig. 1) and, from
(2), one is lead to

n̂ =
nobs

1 − f(0, θ)
. (3)

2. Simple models: Binomial and Poisson

Suppose the identification mechanism can identify a case with a maximum of m
times, then one could think of a suitable distribution for Y as the Binomial given
as

f(y, θ) =
(

m
y

)

θy(1 − θ)m−y, y = 0, 1, ..., m (4)
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with specifically, p0 = f(0, θ) = (1 − θ)m, or, when m is large or unknown, the
Poisson

f(y, λ) = λye−λ/y!, y = 0, 1, ... (5)

with specifically, p0 = f(0, λ) = e−λ. We have denoted in the Poisson case the
parameter by λ, while for the binomial case the parameter is denoted by θ. Note
that both parameters are connected via λ = mθ = E(Y ).

2.1. Maximum likelihood estimation

Suppose that f(y, θ) is a model for which the maximum likelihood estimator is
readily available if n0 the frequencies of zeros is given. On the other hand, if θ is
given, then also n̂ is provided by (2), or n̂0 = n̂ − nobs. Thus, one could construct
an algorithm as follows:

Algorithm 1

Step 0. Choose some initial value for θ̂(0).
Step 1. Compute n̂(j+1) = nobs

1−f(0,θ̂(j))
, and n̂

(j+1)
0 = n̂(j+1) − nobs.

Step 2. Use the complete frequency table n̂
(j+1)
0 , n1, ..., nm to compute a new

maximum likelihood estimator θ̂(j+1), and go back to Step 1.

Algorithm 1 is a version of the EM algorithm (Dempster et al. 1977, see also
Meng (1997) for historical review and Dietz and Böhning (2000) for a general
approach to zero-modified models). It should be noted that Algorithm 1 provides
an estimate which seeks to maximize the following likelihood of truncated densities:

m∏

i=1

(
f(i, θ)

1 − f(0, θ)

)ni

.

In the EM-terminology, this is called the observed, incomplete data likelihood. The
corresponding unobserved, complete data likelihood is

f(0, θ)n0

m∏

i=1

f(i, θ)ni

which is maximized in Step 2 of Algorithm 1 with n0 = n̂
(j+1)
0 , the expected value

of n0 conditional upon the previous value of θ.

2.2. Special cases

These steps of Algorithm 1 take specific versions for the binomial and the Poisson.
We consider now two simple, special cases of this algorithm.
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Algorithm 1 for the binomial

Step 1. Compute n̂(j+1) = nobs

1−(1−θ̂(j))m
.

Step 2. Use the complete frequency table n̂
(j+1)
0 , n1, ..., nm to compute θ̂(j+1) =

[0n̂
(j+1)
0 + 1n1 + 2n2 + ... + mnm]/(n̂(j+1)m), and go back to Step 1.

The steps are very similar in the Poisson case.

Algorithm 1 for the Poisson

Step 1. Compute n̂(j+1) = nobs

1−exp(−λ̂(j))
.

Step 2. Use the complete frequency table n̂
(j+1)
0 , n1, ..., nm to compute λ̂(j+1) =

[0n̂
(j+1)
0 + 1n1 + 2n2 + ... + mnm]/n̂(j+1), and go back to Step 1.

Note that for both, the binomial and the Poisson, the Step 2 is very simple, the
arithmetic mean of the observed proportions and the arithmetic mean of the observed
counts, respectively. Note also that in the mean computation only the denominator
changes during iteration, the numerator is always 1n1 + 2n2 + ... + mnm. For
both cases, moment estimators are also available in closed form which might be
used instead, or alternatively, as initial values for Step 0. For details, see also Meng
(1997). We point out here that any sequence generated by Algorithm 1 for the
Binomial or Poisson case converges to the unique MLE.

3. Allowing heterogeneity: Mixtures of Poissons and Binomials

We generalize now the concepts of the previous section to a more flexible frame-
work. Let f(y, θ) denote some simple, parametric density such as the binomial or
Poisson. Then, the (finite) mixture distribution

f(y, Q) =
k∑

j=1

f(y, θj)qj (6)

arises as the marginal distribution with respect to some latent variable Z having
distribution Q, where the discrete mass distribution Q, the mixing distribution,
gives non-negative weights qj (

∑k
j=1 qj = 1) to θj . The finite mixture model

is sometimes named latent class model in the capture-recapture setting and has
the characteristic that the heterogeneity distribution is discrete. This is in contrast
to continuous models for the heterogeneity distribution like the beta-binomial or
normal-logits distribution. For a recent review on parametric mixture models for
the beta-binomial capture-recapture situation see Dorazio and Royle (2003). In
the discussion section we will briefly compare the nonparametic Poisson mixture
approach to the Poisson-Gamma model.

The mixing distribution can be interpreted as the heterogeneity distribution of
the listing parameter in the population. Whereas the simple Binomial- or Poisson-
model requires specific assumptions such as independence of observations and
homogeneity of the listing parameter, mixture models are more flexible models
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in capturing these phenomena. Suppose that the listing parameter varies in the
population according to some unobserved variable. Then, the associated marginal
distribution will be a mixture of the component densities where the component
membership is described by the latent variable. But also positive dependencies be-
tween recaptures (several identifications in the listing system) will be adjusted for,
since autocorrelation of repeated identifications will lead to overdispersion which
can be explained by means of a mixture model. This shows that mixture models pro-
vide not only a richer class of possible distributions, but also can be well motivated.
The nonparametric binomial and Poisson mixture has been discussed perviously
including Norris and Pollock (1996, 1998) though their approach is different in that
for every value of n the associated nonparametric maximum likehood estimate is
found (see Laird 1978, Lindsay 1983, or Böhning 2000 for details) and the resulting
profile likelihood then maximized in n.

3.1. Maximum likelihood estimation for mixtures

As before, if Q is given, then n can be estimated as nobs/(1−f(0, Q)), and if n0 is
provided Q is estimated by maximum likelihood. The latter step is particular easy,
when f(y, θ) is the binomial or Poisson. For the binomial the mixture (4) takes the
form

f(y, Q) =
k∑

j=1

qj

(
m
y

)

θy
j (1 − θj)m−y

and for the Poisson

f(y, Q) =
k∑

j=1

qjλ
y
j e−λj /y!

and the predicted population sizes are
∑k

j=1 qj(1 − θj)m and
∑k

j=1 qje
−λj , re-

spectively.

Algorithm 2

Step 0. Choose some initial value for the mixing distribution, Q(0).
Step 1. Compute n̂(j+1) = nobs

1−f(0,Q(j)) , and n̂
(j+1)
0 = n̂(j+1) − nobs.

Step 2. Use the complete frequency table n̂
(j+1)
0 , n1, ..., nm to compute a new

maximum likelihood estimator Q(j+1), set j = j + 1 and go back to
Step 1.

In Step 2 of Algorithm 2 the NPMLE of the mixing distribution Q needs to
be calculated algorithmically itself. This can be done by one of the algorithms
discussed in Böhning (2000) or using the popular EM algorithmic framework for
mixtures of distributions (McLachlan and Peel 2000), in which case we have a
nested EM algorithm. The EM-steps for mixtures are well-known. Define e

(j)
il =

f(i, θ(j)
l )q(j)

l /f(i, Q(j)) and let n0 = n̂
(j+1)
0 . Then:
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Step 2.1 q
(j+1)
l = 1

n̂(j+1)

∑m
i=0 nie

(j)
il

Step 2.2 Find solution θ
(j+1)
l for l-th component scoring equation in θl

m∑

i=0

nie
(j)
il

∂

∂θl
f(i, θl)

for l = 1, 2, ..., k. For simple component densities, the solution of the scoring
equation in Step 2.2 is available in closed form, for the binomial density it is

θ
(j+1)
l =

m∑

i=0

i nie
(j)
il /

m∑

i=0

nim e
(j)
il

and for the Poisson we have

λ
(j+1)
l =

m∑

i=0

i nie
(j)
il /

m∑

i=0

nie
(j)
il .

To execute the EM algorithm for mixtures in Step 2, two ways can be followed:
either one iterates as long as the maximum likelihood estimator is approximated
closely enough for the n̂

(j+1)
0 at hand, or we just do exactly one E- and M-step and

go back to Step 1. This is a form of GEM algorithm as discussed in McLachlan
and Krishnan (1997). Both versions of the EM algorithm have the monotonicity
property though the second version appears computationally more efficient.

3.2. Confidence interval estimation

Confidence interval estimation is not an easy task for capture-recapture studies as
pointed out by several authors including Chao (1989) and Cormack (1992). For the
modelling approach using Poisson mixtures, Bootstrap resampling techniques were
used as described in van der Heijden, Bustami et al. (2003). If p0 in (2) were known,
the only source of variation in the estimator n̂HTE would arise from sampling the
nobs out of n. If p0 is estimated using the truncated Poisson mixture model, there
is a second source of random variation arising. To mimic both sources of variation
the Bootstrap is realized in the following fashion. Firstly, n

(b)
obs is sampled from a

Binomial distribution with success parameter p = nobs/n̂ and sample size param-
eter n̂, where n̂ as well as the parameters in the truncated mixture are estimated
from the original data set. Secondly, frequencies n

(b)
1 , n

(b)
2 , ... are sampled from the

truncated Poisson mixture model with parameters as estimated in the original data
set, namely Y

(b)
l ∼ (

∑
j q̂jPo(λ̂j))/(1−∑

j q̂j exp(−λ̂j)) for l = 1, ...,
∑

i n
(b)
obs.

As before, n
(b)
i = #{Y

(b)
l = i|l = 1, ..., n

(b)
obs}. For each of these B resamples,

n
(b)
0 is estimated using the EM algorithm for the truncated mixture model, and

these resample data are used to compute standard errors and confidence intervals.
It was found that the statistics of interest stabilized beyond B = 1, 000, so that
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B = 5, 000 was considered to be sufficient in all Bootstrap calculations. Follow-
ing van der Heijden, Bustami et al. (2003) confidence intervals were calculated as
asymptotic normal intervals.

Van der Heijden, Bustami et al. (2003) compared coverage properties based
upon the Bootstrap approach with the desired confidence levels for the homoge-
neous Poisson case and found that the Bootstrap confidence intervals achieved good
coverage probabilities.

4. An application for estimating the number of heroin users in Bangkok 2001

4.1. Data sources and characteristics

In a surveillance study on drug use in Bangkok (Thailand) data were analyzed for
the year 2001 (Böhning, Suppawattanabodee, Kusolvisitkul, and Viwatwongkasem
2004). The study used all data on drug use from 61 health treatment centers in
the Bangkok Metropolitan region collected by the Office of the Narcotics Control
Board (ONCB), Ministry of Prime Minister, which occurred from October 1 to
December 31, 2001. All private and public health treatment centers in the Bangkok
Metropolitan region licensed by the Ministry of Public Health to treat drug depen-
dence were included in the study. Each patient entering the surveillance system
receives a unique identification number that is used to enter information about the
patient every time the patient initialized a new treatment episode. From the avail-
able data source it was possible to construct the information on the frequency of
episodes for each patient in the sampling period which will serve as the key element
in the modelling process.

4.2. Estimating the number of heroin users

Here, the modelling of the distribution of the counts of the treatment episodes is
considered. Figure 2 shows three curves for the group of heroin users: the distribu-
tion of observed counts, the distribution of predicted counts under the homogeneous
Poisson model and under the mixed Poisson model. The homogeneous Poisson has
a bad goodness-of-fit value χ2 = 3245.20 with 13 df (p-value = 0.0000). The
Poisson mixture gives an acceptable goodness-of-fit value with χ2 = 5.65 and 2
df (p-value = 0.0593).

The estimate of the unobserved number of heroin users is provided by a four-
component Poisson mixture model as 10, 219 with 95% CI: (7,046 − 13,392),
(see Table 1). The count distribution of treatment episodes changes with age, so
that also an age-adjusted estimate of the unobserved number of heroin users is
computed leading to 11, 296 with 95% CI: (8,964 − 13,628), (see Table 1 again).
Together with the observed number of 7, 048 the total number of heroin users in
B k Metropolis is estimated as 18, 344 with 95% CI: (16,006 − 20,710). It should
be pointed out that incorporating covariates into some form of generalized linear
modelling – as suggested by Pledger (2000) – could further improve the model
building, in particular, when sample sizes are small. Here, we believe that the
stratified approach is acceptable, given the size of the observed data.
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Table 1. Number of unobserved heroin users with 95% CI estimated using the Poisson mixture model

Discrete mixture

Age group n̂0(95%CI) λ̂j p̂j k

unstratified 10,219 0.214 0.705 4
(7,046 − 13,392) 2.130 0.187

5.850 0.105
12.200 0.003

I 754 0.384 0.736 4
(0 − 1,530) 2.967 0.173

7.008 0.089
14.563 0.003

II 3,685 0.157 0.704 4
(2,493 − 4,877) 1.975 0.184

5.755 0.106
11.631 0.005

III 4,607 0.122 0.766 4
(3,360 − 5,854) 2.084 0.156

5.719 0.074
11.524 0.004

IV 2,250 0.362 0.701 3
(886 − 3,614) 2.459 0.182

5.936 0.117

Age-stratified 11,296♠
(8,964 − 13,628)

♠ sum of estimates of n0 for the four age groups.

5. Discussion

5.1. Model evaluation

Given a parametric class of models, which model should be selected? Several
selection criteria have been suggested. McLachlan and Peel (2000, p. 202–219)
provide an overview in the context of mixture models. The criteria are constructed in
the way that the log-likelihood is penalized with a function of the model complexity,
and criteria differ in the way they measure model complexity. We consider Akaike’s
information criterion

AICα = 2L(Q̂k) − α(2k − 1),

with α = 2. Miloslavsky and van der Laan (2003) suggest to consider values of α
other than 2 to steer the penalizing effect. Here, we just look at α = 2. A further
criterion is the Bayesian Information Criterion defined as

BIC = 2L(Q̂k) − (2k − 1) log(nobs),
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Fig. 2. Count distribution of treatment episodes for heroin users

Table 2. Number of unobserved heroin users with 95% CI estimated using the poisson mixture model

k λ̂j q̂j log-likelihood AIC BIC

1 2.75 1.00 −15,462 −30,927 −30,934

2 0.88 0.75 −13,214 −26,434 −26,455
5.40 0.25

3 0.41 0.69 −13,134 −26,279 −26,313
2.97 0.22
6.80 0.09

4 0.21 0.70 −13,120 −26,255 −26,303
2.13 0.19
5.84 0.10
12.20 0.01

which is known to penalize complex models more strongly than the Akaike-type
criteria. For the heroin data, Table 2 provides clear and consistent evidence that
four components are required. No further components are possible since the four-
component estimate is already the nonparametric maximum likelihood estimate,
so that no further increase in the likelihood is possible.

5.2. Continuous mixing distribution

As alternative to finite, discrete mixture models to model unobserved heterogene-
ity it is sometimes suggested to use a continuous, parametric mixing distribution.
In the situation that the largest number of possible identifications of a particular
case is known, the beta-binomial model is a potential candidate (see Dorazio and
Royle 2003 for details). In the light of the particular application discussed here
we will consider the Poisson-Gamma mixture in more detail. For this model the
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Fig. 3. Count distribution models of treatment episodes for heroin users based upon the Poisson-Gamma.
Top: with simple Poisson. Bottom without simple Poisson

heterogeneity is modelled via a Gamma-distribution leading to the marginal

f(y|θ, κ) =
∫ ∞

0
e−λλy/y!q(λ|θ, κ)dλ, (7)

where q(λ|θ, κ) = θ−κλκ−1e−λ/θ/Γ (κ) is the Gamma density. The mean and the
variance of the Gamma are µ = κθ and τ2 = κθ2 = µθ = µ2/κ, respectively, so
that different, equivalent reparameterizations are possible. (7) can be simplified to

f(y|µ, κ) =
Γ (y + κ)

Γ (y + 1)Γ (κ)
ακ(1 − α)y, (8)

with α = κ
κ+µ , showing in particular that (7) is a negative binomial density.

Because of the Gamma-function involved in (8), maximum likelihood estimation
for κ is not trivial, even in the untruncated situation. The MLE for µ is the sample
mean y, and the moment estimator for τ2 is S2 − y, where S2 is the sample
variance. This suggests to approximate the M-step in the EM algorithm using the
maximum likelihood/moment – estimators µ = ȳ and τ̂2 = S2 − y where it
is assumed that n0 is given. In the E-step, n̂0 is simply worked out as α̂κ̂ with
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α̂ = y/S2 and κ̂ = µ̂2/τ̂2. Again, the algorithm toggles between M- and E-step
until convergence. We call this procedure PG-1. Alternatively, we might construct
maximum likelihood estimates of µ and τ2 from the maximum likelihood estimates
λ̂1, ..., λ̂k and q̂1, ..., q̂k of the finite mixture model leading to

µ̂ =
k∑

j=1

q̂j λ̂j and τ̂2 =
k∑

j=1

q̂j(λ̂j − µ̂)2.

We call this procedure PG-2. Note that PG-2 is non-iterative, but based upon the
results of the nonparametric maximum likelihood procedure. It is mainly included
here for comparison. For the Bangkok heroin data, PG-1 delivers an estimate of
n̂0 = 4, 938 which is only half the size of the estimate of 10,219 from the nonpara-
metric procedure. Here, the goodness-of-fit value is χ2 = 283.06 (p-value=0.0000).
It is not surprising that the estimate of n̂0 = 7, 364 delivered by PG-2 is closer to the
one of the nonparametric procedure since the parameter estimates are constructed
from the mixing distribution. In this case, the goodness-of-fit value is χ2 = 234.74
(p-value=0.0000). A graphical representation of both models is presented in Figure
3. Although the fit is much improved upon the fit for the simple Poisson (see Figure
3, top), both models, PG-1 and PG-2, experience lack-of-fit at various data points.
This becomes clear when the simple Poisson fit is removed (see Figure 3, bottom).
In addition, the figure shows the superior fit of the nonparamteric mixture model.

5.3. Unconditional and conditional likelihood

For capture-recapture modelling two likelihood methods are possible. One is based
upon the full, unconditional likelihood

L(n, θ) =
n!

(n − nobs)!n1! × ... × nm!
f(0, θ)n−nobs

m∏

i=1

f(i, θ)ni , (9)

where f(i, θ) represents again the distributional model for count i. The likelihood
(9) can be factored into two other likelihoods such that

L(n, θ) = Lb(n, θ) × Lc(θ)

where

Lb(n, θ) =
(

n
nobs

)

(1 − f(θ))nobs f(0, θ)n−nobs (10)

and

Lc(θ) =
nobs!

n1! × ... × nm!

m∏

i=1

(
f(i, θ)

1 − f(0, θ)

)ni

. (11)

The conditional likelihood does not involve the unknown population size pa-
rameter and is conceptually easier to treat. This approach was used here. The jus-
tification of the conditional procedure uses the fact that if θ is given, the binomial
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likelihood (10) is maximized as discussed in Sect. 1.2. For various cases it could be
shown that conditional and unconditional MLE coincide (see Bishop et al. 1975;
Sanathanan 1972, 1977; Chao and Bunge 2002), though they need not to be iden-
tical. Norris and Pollock (1996, 1998) use a profile likelihood method aiming to
maximize the full likelihood. The algorithm developed in this paper – to motoni-
cally maximimize the conditional likelihood – will also monotonically increase the
full likelihood. For the homogenuous Poisson case, a straight-forward argument
shows that conditional and unconditional MLE for the population size agree.
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