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ABSTRACT. The problem of estimating the individual probabilities of a discrete distribution is

considered. The true distribution of the independent observations is a mixture of a family of power

series distributions. First, we ensure identifiability of the mixing distribution assuming mild con-

ditions. Next, the mixing distribution is estimated by non-parametric maximum likelihood and an

estimator for individual probabilities is obtained from the corresponding marginal mixture density.

We establish asymptotic normality for the estimator of individual probabilities by showing that,

under certain conditions, the difference between this estimator and the empirical proportions is

asymptotically negligible. Our framework includes Poisson, negative binomial and logarithmic

series as well as binomial mixture models. Simulations highlight the benefit in achieving normality

when using the proposed marginal mixture density approach instead of the empirical one, especially

for small sample sizes and/or when interest is in the tail areas. A real data example is given to

illustrate the use of the methodology.

Key words: asymptotic normality, identifiability, mixture models, non-parametric maximum

likelihood, power series distributions

1. Introduction

Mixtures of distributions are commonly used in a wide range of applications, see Titterington

et al. (1985), Lindsay (1995) and McLachlan & Peel (2000) for comprehensive descriptions of

the mixture landscape. In particular, mixtures of discrete distributions represent a popular tool

for analysing count data. Herein, the interest is focused on mixtures of power series dis-

tributions, also called linear exponential distributions. To estimate such mixtures we consider

the non-parametric maximum likelihood approach, which is known to be appropriate for

applications where only a little information about the true mixing distribution is available.

Consider X a discrete random variable distributed according to pQ0
, a mixture of a given

family fph, h 2 Hg of discrete distributions with unknown mixing distribution Q0, that is

pQ0
¼
R
HphQ0(dh). Suppose that we observe an i.i.d. sample distributed according to pQ0

. We

are interested in estimating probabilities like

pQ0;J ¼
X
k2J

pQ0;k ¼ P ðX 2 JÞ; ð1Þ

where J is any finite subset of the support of the observed variable and pQ0,k
¼ P(X ¼ k).

Let Q̂ and p̂ denote the non-parametric maximum likelihood estimator of Q0 and the

corresponding mixture, respectively. We investigate the asymptotic distribution of p̂J ; the
estimator of pQ0,J

yielded by the estimated mixture p̂. This problem has been analysed by

Lambert & Tierney (1984) in the case of Poisson mixtures. Their main result shows that the

difference between p̂J and the proportion of observations belonging to J is asymptotically

negligible, that is of order oP(n
�1/2) where n is the sample size. If Zn, n � 1, is a sequence of
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random variables, we say that Zn is of order oP(kn) if Zn/kn converges to zero, in probability.

Next, the asymptotic normality of p̂J follows from a classical central limit theorem. Lambert &

Tierney assumed that the support of the true mixing distribution is contained in [0, M], a

known compact interval, and that the non-parametric maximum likelihood estimation is

restricted to mixing distributions with the support contained in this interval. Below, we show

that their proof does not apply to power series distributions with a finite radius of conver-

gence, except for the case where M is the upper limit of the support of Q0.

Here, we extend the results of Lambert & Tierney (1984) on the asymptotic equivalence

between p̂ and the empirical proportions to more general power series distributions (PSDs)

compound families. Our results apply also to families with finite radius of convergence such as

negative binomial, geometric and logarithmic series distributions. The case of compound

families with finite support (e.g. binomial laws) is also studied. The estimator of pQ0,J
that we

study in this paper is the one given by the unrestricted non-parametric maximum likelihood,

that is the maximum is taken over all mixing probability measures.

To obtain our results for the case of compound families with infinite support we assume that

Q0 is concentrated on some unknown compact interval [0,M]. Moreover, the support of Q0 has

to be an infinite set. It is also shown that, in general, the difference between p̂ and the empirical

proportions is no longer negligible if Q0 has a finite support, that is when the law of the

observations is a finite mixture. Whether the quantities p̂J with J finite still have normal

asymptotic behaviour is not known. Simulation results indicate that, even if Q0 is discrete, p̂J
is still asymptotically normal, at least for some sets J.

In the case of PSD compound families with finite support, almost surely, p̂ is equal to the

empirical proportions provided that the true mixture is an interior point of the set of all

mixtures of the model and the sample size is sufficiently large. If pQ0
is on the boundary of the

set of all mixtures, the difference between p̂ and the empirical proportions is no longer neg-

ligible.

The assumptions on Q0 we impose for the asymptotic normality results ensure that the

empirical proportions represent an efficient estimator for the theoretical probabilities, see e.g.

van der Vaart (1998, section 25.5.2). From our results it follows that the probability mass

estimators obtained from p̂ are also efficient. Even if the estimated mixture is asymptotically

equivalent to the naive empirical distribution, this latter probability distribution is not a

mixture and thus it is useless for the interpretation of the latent structure underlying the

model. Moreover, whereas the simple estimator of P(X 2 J) based upon the empirical pro-

portions is frequently difficult to use (not to say useless) when the sample sizes are small and/

or interest is in the tail areas, the estimator based upon the marginal mixture density p̂ is of

considerable practical value.

The paper is organized as follows. We end this section with a list of possible applications for

the mixtures we consider herein and where the probabilities P(X 2 J), J finite or some of their

transformations represent quantities of interest. In section 2, some definitions and basic facts

on the families of power series distributions are recalled. Moreover, a mixture identification

result is proved under mild conditions. Section 3 recalls some results on the non-parametric

maximum likelihood estimator and contains the orders of some v2-type norms as introduced

by Lambert & Tierney (1984). The asymptotic normality results are proved in section 4.

Section 5 contains the output of a simulation experiment using mixtures of Poisson and

geometric distributions. The behaviour of non-parametric maximum likelihood and empirical

estimators are analysed and compared. There is considerable evidence that the normal

approximation is improved when using the proposed marginal mixture density approach in

comparison with the conventional empirical one. Finally, a real data example is considered

that demonstrates the practical value of the proposed method.
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1.1. Examples of application areas

Non-life insurance. A rating model in insurance computes risk premiums, which are esti-

mations of risk levels. These levels depend crucially on the number of claims. A usual

assumption is that each individual has its own Poisson distribution for the number of claims.

The heterogeneity of the population of policy holders makes the distribution of the observed

frequency of claims to be a Poisson mixture (Simar, 1976). The probabilities of observing k

claims, k ¼ 0, 1,..., represent quantities of interest for risk management.

Biology and medicine. Most countries are collecting records that allow the provision of

nationwide vital statistics, counting births and deaths, and categorizing deaths according to

cause of death. Hasselblad (1969) mentions the famous Times-Count-Data set in which the

daily death notices of the London newspaper The Times were collected over the 3-year period

1910–12 (see also Titterington et al., 1985). Böhning et al. (1992) study the incidence data in a

population of pre-school children in north-east Thailand for which the frequency of acute

respiratory infection is counted over a 3-year period. For all, these kinds of count data

mixtures of Poisson distributions are often used for modelling the count distribution. Specific

count data arise in fertility studies providing interest in the geometric distribution and mix-

tures thereof (e.g. Böhning, 2000).

Capture–recapture studies. In ecology, the size of an animal population is frequently

modelled using a truncated count distribution where the counts represent the capture–

recapture history of each of the animals. Here, the probability for a zero-count (e.g. the

probability of an animal never being captured in any of the capture samples) is of intrinsic

interest, as this probability allows the adjustment of the observed sample size by the

inverse of the probability of not observing a zero-count to achieve the Horvitz–Thompson

estimator of the size of the population (e.g. Kendall & Stuart, 1991). Clearly, the simple

proportions are not able to provide a solution to this prediction problem. Simple count

distributions such as the Poisson or the binomial provide a starting point for modelling.

Mixtures of truncated count distributions such as truncated Poisson or binomial dis-

tributions represent a more flexible tool for coping with population heterogeneity (e.g. Mao

& Lindsay, 2002b).

Reliability. In most settings involving failure data, the population under study is not

homogenous. Mixture models provide a natural answer to this problem, in particular for

discrete failure observations. Discrete failure data arise in various common situations in

reliability where chronological time is not the best scale on which to describe lifetime, see

Gupta et al. (1997) and Shaked et al. (1994). For example, when a piece of equipment operates

on demand, the number of operations successfully completed might be more important than

the age at failure. Quantities of interest in such a framework are the survivor function

P(X > k) and the hazard rate function

kðkÞ ¼ P ðX ¼ kÞ
P ðX � kÞ

computed at a point k in the support of a lifetime X.

Another situation where discrete data appear in reliability is when a device can be monit-

ored only once per time period. In such a case the observation consists of the number of time

periods completed prior to failure. Consider, for instance, that the true distribution of the

lifetime Y is a mixture of exponentials, that is the density of Y is

f~QðtÞ ¼
Z
ð0;1Þ

ke�kt ~QðdkÞ; t � 0;

Scand J Statist 32 Asymptotic normality in mixtures 117

� Board of the Foundation of the Scandinavian Journal of Statistics 2005.



with ~Q kð Þ the mixing distribution. In this case, by Fubini’s theorem we obtain

P Y 2 ½k; k þ 1Þð Þ ¼
Z
½k;kþ1Þ

f ~Q
ðtÞdt ¼

Z
ð0;1Þ

1� hð ÞhkQ0ðdhÞ; k ¼ 0; 1; . . . ;

where Q0 is the distribution obtained from ~Q after the change of variable h ¼ e�k. In other

words, observing Y at times k ¼ 0,1,... is like observing a variable with distribution as a

mixture of negative binomials.

Empirical Bayes. The Bayesian approach to inference requires a prior distribution for the

model parameters. If this distribution, say Q, is given, the best mean-squared error estimator is

the posterior mean. In the case of a Poisson model we have

E h j X ¼ k½ � ¼ ðk þ 1ÞpQ;kþ1

pQ;k
; k ¼ 0; 1; . . . ; ð2Þ

that is, the Bayes rule can be written in terms of the marginal distribution pQ and the value

taken by X. Note that this property is shared by all the discrete power series distributions

mixture models. If Q is not known, one may estimate pQ,ks from the observed data. This is the

empirical Bayes (EB) approach (e.g. Carlin & Louis, 1996). In the parametric version of the

EB methodology, the prior Q is assumed to belong to a specified family indexed by unknown

parameters. These parameters are estimated from the observed data through the marginal

distribution, for example, by maximum likelihood. See, for instance, Martz et al. (1996) for

some applications of the parametric EB method for binomial, geometric and Poisson sampling

models commonly used for studying the reliability of the nuclear plant equipment. Robbins

(1955) proposed the purely non-parametric approach where the marginal probabilities pQ,k are

estimated by the corresponding empirical frequencies. An appealing compromise between

parametric and purely non-parametric approaches for EB is obtained when Q is estimated by

non-parametric maximum likelihood from data (see Carlin & Louis, 1996, section 3.2.3, for a

comparison of various EB estimators). For instance, Mao & Lindsay (2002a) use the EB

estimator (2) with Q estimated by non-parametric maximum likelihood in a Poisson sampling

model in order to estimate a conditional prediction function for the number of expressed genes

that have not been observed in the initial sample but can be identified in an additional sample.

2. Identifiability of mixtures of power series distributions

Consider a power series a(h) ¼
P

k�0akh
k, ak � 0, k ¼ 0,1,. . ., and let R be its radius of

convergence. Denote by H its domain of convergence on the non-negative half-line, that is

H ¼ [0, R] if a(R) is finite and H ¼ [0, R) otherwise. Let K ¼ fk:ak > 0g and

ph;k ¼ akh
kaðhÞ�1; k 2 K; h 2 H;

be the compound PSD with support K. Such distributions are also called discrete linear

exponential distributions. Two types of compound families can be distinguished depending on

whether the support K is finite or not. Some common examples of PSDs with infinite support

are Poisson [a(h) ¼ exp (h), R ¼ 1], zero-truncated Poisson [a(h) ¼ exp (h)�1, R ¼ 1],

Hermite [a(h) ¼ exp (ah þ h2/2) with a > 0 fixed, R ¼ 1], logarithmic series [a(h) ¼
�log (1�h), R ¼ 1], negative binomial [a(h) ¼ (1�h)�v with v > 0 fixed, R ¼ 1] and geometric

[a(h) ¼ h(1�h)�1, R ¼ 1].

The binomial distribution is the common example of the linear exponential law with finite

support. If Y is distributed according to B(N, p) a binomial distribution with number of trials

N and success parameter p, the probability of the event fY ¼ kg can be written
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N
k

� �
pkð1� pÞN�k ¼ N

k

� �
hk

1þ hð ÞN
¼ pH;k ; k ¼ 0; 1; . . . ;N ; ð3Þ

with h ¼ p/(1�p). Below, we shall use both parameterizations to define the binomial law. Note

that in the case of finite K the radius R is infinity and the probabilities ph,k, k 2 K with h ¼ R

can be defined by continuity. This means that in the binomial case we shall suppose p 2 [0, 1]

or, equivalently, h 2 [0, 1]. Other examples of families of PSD with finite support can be

obtained by (right-)truncation of the PSD with infinite K. For the sake of brevity, in the case

of finite K we shall reduce our attention to binomial laws, extensions to other linear

exponential distributions with finite support being obvious.

A mixture of PSDs is a probability measure pQ ¼ fpQ,kgk2K where

pQ;k ¼
Z
H
pH;kQðdhÞ ¼

Z
H

akh
k

aðhÞQðdhÞ;

with Q the mixing distribution, that is a probability measure on H endowed with the

Borel r-field. Consider that the observations are distributed according to a mixture pQ0
.

The true mixing distribution Q0 is unknown and it is supposed that Q0(f0g) < 1. When K

is finite the set H can be replaced by [0, 1] and in this case it is assumed that

Q0((0,1)) > 0.

In the case of infinite K, we shall assume only that the support of Q0 is contained in

some compact [0, M] � [0, R), but M is unknown. It is easy to see that, when R is finite,

Q0([0, M]) ¼ 1, M < R if and only if the moment generating function
P

KpQ0,k
etk is finite for

some t > 0. When R is infinite, the compact support condition implies that the moment

generating function is finite for any t > 0.

Several results on the identifiability of Q0 have been proved (e.g. Sapatinas, 1995). Let

us recall a simple identifiability result applicable when the support of the mixing distribution

Q0 is contained in a compact interval [0, M] � [0, R). The following proposition was proved

in the unpublished report of Milhaud & Mounime (1995). We reproduce the proof here for

completeness.

Proposition 1

Assume that the support of the mixing distribution Q0 is contained in a compact interval

[0, M] � [0, R). If
P

k2K, k>0k
�1 ¼ 1, then Q0 is identifiable.

Proof. Note that if
P

k2K, k>0k
�1 ¼ 1, then K is necessarily an infinite set. First, we show

that it suffices to prove that Q0 is identifiable in the PSD mixture model with the mixing

distributions concentrated on a subset of [0, M]. Indeed, assume that there exists Q1 such that

pQ1
¼ pQ0

and Q1((M þ a, R)) > 0 for some a > 0. Then, there exists C0 > 0 such that

pQ1;k � C0akðM þ aÞk ; for all k 2 K:

Meanwhile, as Q0([0, M]) ¼ 1,

pQ0;k � C00akMk ; for all k 2 K;

for some C0 0 > 0, and thus we contradict the equality between pQ1
and pQ0

. Consequently,

Q1([0, M]) ¼ 1. Let k0 ¼ inf K. If pQ1
¼ pQ0

with Q1([0, M]) ¼ 1, we writeZ
½0;M �

hk�k0 ~Q0ðdhÞ ¼
Z
½0;M �

hk�k0 ~Q1ðdhÞ; for all k 2 K;
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where

~QiðdhÞ ¼ l�1
k0 h

k0aðhÞ�1QiðdhÞ; i ¼ 0; 1

and

lk0 ¼
Z
½0;M �

hk0aðhÞ�1Q0ðdhÞ ¼
Z
½0;M �

hk0aðhÞ�1Q1ðdhÞ:

By the Müntz–Szasz theorem (Rudin, 1987), the linear space spanned by the power functions

fhk�k0, k 2 Kg is dense in the space of continuous functions on [0, M] endowed with the

supremum norm iff
P

k2K,k>k0(k�k0)
�1 ¼ 1, that is iff

P
k2K,k>0k

�1 ¼ 1. We deduceZ
½0;M �

f ðhÞ~Q0ðdhÞ ¼
Z
½0;M �

f ðhÞ~Q1ðdhÞ

for all continuous function on [0, M]. This implies Q1 ¼ Q0.

The identifiability of the mixtures of binomials is studied in Lindsay (1995, Chapter 2). Let

B(N, p), p 2 [0, 1] denote the RNþ1 vector of the binomial probabilities defined in (3).

Basically, only the mixtures on the boundary of the convex hull M ¼ cofB(N, p), p 2 [0, 1]g
are identifiable (see also Wood, 1999). Such mixtures are necessarily finite with at most

(N þ 2)/2 components. More precisely, the index of the mixing distribution should be at most

N, where the index is the number of support points of the mixing distribution with the special

rule that a support point equal to 0 or 1 be counted as 1/2.

3. ML estimation and rates of convergence

Let X1,..., Xn 2 K be an i.i.d. sample distributed according to pQ0
, a mixture of PSDs as

defined in section 2. For simpler notation, we replace pQ0
¼ fpQ0,k

gk2K by q0 ¼ fq0,kgk2K.
Define the log-likelihood function

lnðQÞ ¼
X
K

an;k log pQ;k ;

where an ¼ fan,kgk2K is the vector of observed proportions. Let Q̂ be the non-parametric

maximum likelihood estimator (NPMLE), that is

lnðQ̂Þ ¼ sup
Q

lnðQÞ; ð4Þ

where the maximum is taken over all probability measures on H. For the models we consider,

the NPMLE Q̂ always exists because the log-likelihood ln can be reconsidered as a strictly

concave function defined on a compact and convex set of an Euclidean space (e.g. Lindsay,

1995, Chapter 5). Moreover, the corresponding estimator of the mixture, that is p̂ ¼ pQ̂, is
unique. Let us call p̂ the NPMLE of the true mixture q0.

When K is infinite, the support size, uniqueness and other finite sample properties of Q̂ can

be deduced using the same arguments as Simar (1976) and Lindsay (1995, Chapter 5).

In the case of non-parametric binomial mixtures, the uniqueness of Q̂ depends on whether

the empirical frequencies vector an is inside or outside the convex hull M defined above. If an
does not belong to M, the NPMLE Q̂ is unique and quite easily computable, see Wood (1999,

section 3). When an is inside M it means that the empirical distribution is a mixture of

binomials and thus it maximizes the log-likelihood. In this case, in general, Q̂ is no longer

unique. Wood (1999) pointed out that finding a mixing distribution corresponding to an 2 M

may be a delicate matter. However, he showed that, in practice, it is very likely that an will lie
outside M for values of N greater than 10.
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Let us point out that as the interest in this paper is to estimate the probabilities q0,k, k 2 K,

the fact that Q̂ may not be unique is harmless as long as p̂ is well-defined.

Concerning the asymptotic properties, using for instance the Hellinger distance and

empirical process results, it can be proved that, almost surely, p̂k ! q0;k ; k 2 K (e.g. Patilea,

2001). This result can be obtained without imposing either the uniqueness of Q̂ or the iden-

tifiability of Q0. Moreover, no particular assumption on K is required. If Q0 is identifiable,

almost surely, Q̂ ! Q0 weakly.

In order to derive our asymptotic results we shall use the inner products and the v2-type
norms introduced by Lambert & Tierney (1984). If x 2 RK and p is a probability measure

supported on K, define kxkp ¼ ð
P

K x2k=pkÞ
1=2. Moreover, the inner product between x and y

is defined by hx,yip ¼
P

Kxkyk/pk if kxkp,kykp < 1. In the following result and for the rest of

this section we consider K unbounded.

Lemma 1

Assume that Q0 has a support included in a compact interval [0, M] � [0, R) and that Q0 is

identifiable. Then, for any e > 0, the quantities kan�q0kq0, kan � q0kp̂ and kp̂� q0kp̂ are of order
oP(n

�(1/2�e)).

The rates of the three quantities abovewill be used toprove that, in some sense andunder certain

conditions, the difference between p̂ and an is asymptotically negligible. The proof of the lemma

above is identical to the one given in Lambert & Tierney (1984), proposition 3.1 (i), (ii) and (iv).

In addition to the three orders above, Lambert and Tierney also provided the order of

kp̂� q0kq0 , a key quantity for their proof of asymptotic normality. To prove that this last

quantity is of order oP(n
�(1/2�e)), they used the rate of kp̂� q0kp̂ and a suitable bound for p̂=q0.

This bound is in fact a (non-random) vector fckgk2K such that, almost surely and for n large

enough, p̂k=q0;k � ck, k 2 K andX
K

q0;kcdk < 1 ð5Þ

for some d > 1/e. In the case of a PSD mixture with an infinite radius of convergence R, one

can follow Lambert & Tierney (1984) assuming a known upper boundM for the support of Q0

and restricting the maximum likelihood estimation to mixing distributions with the support in

[0, M]. Then a bound for p̂=q0 that satisfies (5) is given by ck ¼ C(M/m)k, k 2 K, with

0 < m < M such that Q0((m, M]) > 0 and C is a positive constant.

Obtaining the rate of kp̂� q0kq0 becomes a delicate task when the radius of convergence of

the power series is finite. Indeed, even if the support of Q0 is included in a known compact

subset [0, M] of [0, R) and the maximum likelihood estimation is restricted correspondingly,

one needs to take m in the support of Q0 arbitrarily close toM in order to ensure condition (5).

In other words, when R is finite one has to know the upper limit of the support of Q0 or at least

one has to define, say M̂ , a suitable estimator of it. Milhaud & Mounime (1995) proposed such

an estimator of M. In both situations, the maximum likelihood estimation has to be restricted

to a compact interval subset of [0, R), that is to [0, M] or to ½0; M̂ �.
Below, we show that the asymptotic normality of the estimated individual probabilities can

be obtained without using the order of kp̂� q0kq0 . Moreover, the estimates are obtained from

unrestricted non-parametric maximum likelihood as defined in (4).

4. Asymptotic normality

As in Lambert & Tierney (1984), a key step is to show that under certain conditions on x 2 RK,ffiffiffi
n

p
hp̂� an; xiq0 ! 0; ð6Þ
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in probability. A classical central limit theorem then shows thatffiffiffi
n

p
hp̂� q0; xiq0 ) Nð0; r2ðxÞÞ;

where ) stands for the convergence in law and r2ðxÞ ¼ xk k2q0�hq0; xi2q0 :
Note that the set of xs satisfying (6) is a linear subspace of RK and that q0 belongs to this set.

The main interest is to show that the unit vectors ei ¼ fei,kgk2K where ei,k ¼ 1 if k ¼ i and 0

otherwise, satisfy (6). From this we deduce the same property for any vector x obtained as a

linear combination of q0 and the unit vectors. Other vectors with the desired property are also

exhibited in this section.

Let �p ¼ ðp̂ þ q0Þ=2: The reason for showing (6) for the unit vectors is first to proveffiffiffi
n

p
hp̂� an; xip ! 0;

in probability, for a class of xs including the unit vectors and next to use the almost certain

convergence of p̂. First, consider the case of K unbounded. The case where K is finite will be

examined at the end of the section.

Denote by C1 the set of x such that there exists a sequence fgjg of real-valued measurable

bounded functions defined on H with (i) sup H|gj(h)| � Kjd for some K,d > 0 and (ii)

||x�x(gj)||q0 ¼ O(j�b) for some b > 0, where

xkðgjÞ ¼
Z
H

akh
k

aðhÞ gj hð ÞQ0ðdhÞ: ð7Þ

Proposition 2

Assume Q0 as in lemma 1. If x 2 C1, then
ffiffiffi
n

p
hp̂� an; xip ! 0; in probability.

Proof. Fix x 2 C1 and let fx(gj)g, K, d and b be as in the definition of C1. Writeffiffiffi
n

p hp̂� an; xip ¼ An þ Bn with

An ¼
ffiffiffi
n

p
hp̂� an; x� xðgjðnÞÞip; Bn ¼

ffiffiffi
n

p
hp̂� an; xðgjðnÞÞip

and j(n) � n(1/2�e)/d, e 2 (0,1/2). Use the triangle inequality, Hölder’s inequality and the fact

that pk=
ffiffiffiffiffiffiffi
q0;k

p �
ffiffiffiffiffi
p̂k

p
to deduce that

jAnj �
ffiffiffi
n

p X
K

jp̂k � q0;k j þ jq0;k � an;k j
pk=

ffiffiffiffiffiffiffi
q0;k

p
jxk � xkðgjðnÞÞjffiffiffiffiffiffiffi

q0;k
p

�
ffiffiffi
n

p
kp̂k � q0;kkp̂ þ kq0;k � an;kkp̂
� �

kx� xðgjðnÞÞkq0 :

As kx � x(gj(n))kq0 ¼ O(n�b(1/2�e)/d) and in view of lemma 1, An ! 0 in probability. On the

other hand, write Bn ¼ B1n þ B2n with

jB1nj ¼
ffiffiffi
n

p
hp̂� an; xðgjðnÞÞip̂
�� ��

�
ffiffiffi
n

p Z
H

X
K

p̂k � an;k
p̂k

ph;kgjðnÞðhÞ
�����

�����Q0ðdhÞ

� K
ffiffiffi
n

p
jðnÞd

Z
H

X
K

p̂k � an;k
p̂k

ph;k

�����
�����Q0ðdhÞ:

By the gradient characterization of the non-parametric maximum likelihood (Lindsay, 1995,

p.115), the absolute value in the last integral can be omitted and thus
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jB1nj � Kn1�e
X
K

p̂k � an;k
p̂k

q0;k ¼ Kn1�e
X
K

ðp̂k � an;kÞðq0;k � p̂kÞ
p̂k

:

Use Hölder inequality and lemma 1 and deduce B1n ! 0, in probability. Finally,

jB2nj ¼
ffiffiffi
n

p
hp̂� an; xðgjðnÞÞip � hp̂� an; xðgjðnÞÞip̂
�� ��

� K
ffiffiffi
n

p
jðnÞd

X
K

jp̂k � an;kj
p̂k

jp̂k � q0;k j
p̂k þ q0;k

q0;k

� Kn1�e
X
K

ðjp̂k � q0;k j þ jq0;k � an;k jÞjp̂k � q0;kj
p̂k

and thus B2n ! 0, in probability. Now, the proof is complete.

Lambert & Tierney (1984) showed that in the case of Poisson mixtures the unit vectors

belong to class C1, provided that the true mixing distribution function grows faster than some

power of h in a neighbourhood of the origin. The same result remains true in the more general

framework of PSD mixtures.

Assumption 1

There exist positive constants d, c, � such that Q0((h, h þ s]) � dsc for all h, s 2 (0,�).

Lemma 2

If assumption 1 holds, then for any i 2 K the unit vector ei belongs to C1.
The proof of this lemma is given in the appendix. Now, we can state the asymptotic

normality for the estimated individual probabilities.

Corollary 1

Assume Q0 as in lemma 1 and suppose that assumption 1 holds. Let J ¼ fk1,..., kpg � K.

Then,

ð
ffiffiffi
n

p
ðp̂k1 � q0;k1Þ; . . . ;

ffiffiffi
n

p
ðp̂kp � q0;kp Þ;

ffiffiffi
n

p
ðp̂cJ � qc0;J ÞÞ)Nð0;RÞ;

where R ¼ diagðq0;k1 ; . . . ; q0;kp ; qc0;J Þ � ðq0;k1 ; . . . ; q0;kp ; qc0;J Þ
0ðq0;k1 ; . . . ; q0;kp ; qc0;J Þ and pcJ ¼

1�
P

k2J pk with p ¼ p̂ or q0.

Proof. Since
ffiffiffi
n

p
hp̂� an; eiiq0 ¼ ðpi=q0;iÞ

ffiffiffi
n

p
hp̂� an; eiip and pi/q0,i ! 1, almost surely, we

deduce that for any i 2 K the unit vector ei satisfies (6). The same remains true for the vector

x ¼ q0 �
P

J q0,kek. Finally, use a classical central limit theorem.

Let us investigate further the class of vectors x satisfying (6). The following result, an

extension of corollary 5.1 in Lambert & Tierney (1984), is proved in the appendix without

using assumption 1.

Corollary 2

Assume Q0 as in lemma 1. Let h > 0 such that Q0([h, R)) > 0 and Q0((h�s, h þ s])�1 ¼ O(s�d)

for some d > 0. Then,ffiffiffi
n

p
hp̂� an; phiq0 ! 0; ð8Þ
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and
ffiffiffi
n

p
hp̂� an; p0hiq0 ! 0, in probability, where p0h ¼ fp0h;kgk2K and p0h;k denotes the derivative of

the map h ! ph,k. Moreover, if the origin is an isolated point in the support of Q0, then (8) holds

also for h ¼ 0.

In the case where Q0 has a finite support, in general, the conclusion of corollary 1 is no

longer valid. Indeed, let x be a vector with
P

Kxk ¼ 1, xk � 0 and xk ¼ 0 except for a finite set

of indices J � K. The vector x plays the role of the observed proportions and it is supposed to

be such that q0 maximizes the corresponding likelihood, that is
P

Jxk log pQ,k. The gradient

characterization of the non-parametric maximum likelihood ensures that for any h 2 H,P
J xkph,k/q0,k � 1. As a consequence, for any sample sizeX

k2J

xk
q0;k

p̂k � q0;k
� �

� 0; ð9Þ

which shows that the finite-dimensional vector
ffiffiffi
n

p
p̂k � q0;k
� �� �

k2J cannot have a non-

degenerate normal limit (see also Lambert & Tierney, 1984, p. 1398). However, the conclusion

of corollary 2 is still true for the points in the support of Q0.

4.1. The case of finite support K

When the true distribution of the observations is a mixture of binomials in the interior of the

convex hull M, the empirical distribution an almost certainly belongs to M, for n sufficiently

large. In this case an ¼ p̂ and the asymptotic normality becomes obvious.

When q0 is on the boundary ofM we can invoke the same type of arguments as were used to

obtain (9). We deduce that the NPMLE p̂ is no longer asymptotically equivalent to the

empirical process. Nevertheless, the conclusion of corollary 2 remains valid. Indeed, as K is

finite we have, almost certainly, p̂k ! q0;k uniformly in k, and this makes n1=2kan � q0kp̂ and

n1=2kp̂� q0kp̂ bounded, in probability. The arguments used for proposition 2 again apply and

thus corollary 2 can be proved. However, there will be at most N linearly independent vectors

x satisfying (6).

5. Empirical evidence

5.1. Simulation experiments

We conducted a simulation experiment to compare the behaviour of p̂J and an,J. We also

studied the non-parametric maximum likelihood (resp. empirical) estimator

k̂ðkÞ ¼ p̂kP
j�k p̂j

resp. knðkÞ ¼
an;kP
j�k an;j

 !

of the hazard function k0(k) ¼ P(X ¼ k)/P(X � k). The delta-method (e.g. van der Vaart,

1998) ensures that for any k 2 K,

ffiffiffi
n

p
ðknðkÞ � k0ðkÞÞ ) Nð0; V ðkÞÞ with V ðkÞ ¼ PðX � k þ 1ÞP ðX ¼ kÞ

PðX � kÞ3
:

Under the conditions of corollary 1,
ffiffiffi
n

p ðk̂ðkÞ � knðkÞÞ ! 0, in probability, and thusffiffiffi
n

p ðk̂ðkÞ � k0ðkÞÞ also converges in law to a normal N(0,V(k)).

Two types of compound families were used, namely Poisson and geometric (ph,k ¼
hk�1(1�h), k ¼ 1, 2,. . .,h 2 [0, 1)). Given a mixture q0 and a sample size n, we generated 1000

samples of size n from q0. In each sample, we computed the NPMLE of the mixing distribution

using the EM algorithm (e.g. Böhning, 2000). The algorithm started from the maximum
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number of components for the NPMLE. The components with identical values or zero weights

were collapsed. The NPMLE and the empirical proportions were used to compute probability

mass and hazard function estimators.

For each set of 1000 estimates we used MINITAB (Minitab Inc., 2000) to build normal

probability plots. Closeness to the fitting line (based on empirical mean and standard devi-

ation) indicates good normal fit. We also report the Anderson–Darling goodness-of-fit statistic

as a measure of how far the plot points lie from the fitted line. See Thode (2002) for a

description of the Anderson–Darling test. MINITAB uses an adjusted Anderson–Darling

statistic AD�, in which points in the tails receive more weight. A smaller AD� statistic indicates

that the distribution provides a better fit to the data. Finally, note that a steeper fitted line

indicates a smaller degree of variation for the data in the plot.

Two Poisson mixtures were considered. First, we studied NPMLE and the empirical

distribution estimator (ED) of the probability P(X ¼ 0) when Q0 ¼ 0.2d0 þ 0.8U[0, 4] and

n ¼ 25; da denotes the probability measure concentrated at a and U[0, 4] denotes the uniform

distribution on [0, 4]. The true value of P(X ¼ 0) is 0.396. In Fig. 1, we present the probability

plots for the 1000 values p̂0 and an,0. The two types of estimates are quite close. The larger AD�

statistic for the empirical estimator is due to the lattice-valued nature of this estimator.

A significant difference between pJ and an,J appears when P(X 2 J) is small. Fig. 2 contains

the probability plot for the estimates of P(X ¼ 6) ¼ 0.022 when the sample size is 100. We also

considered n ¼ 25 and n ¼ 50 for which we obtained quite similar plots that are not presented

here. As expected, the empirical proportion performs badly for small to moderate sample sizes.

The law of the empirical estimator is far from normality. Meanwhile, the NPMLE of P(X ¼ 6)

benefits from its smoother nature. It has lower variance (the fitted line is steeper) and its law is

much closer to the normal approximation. It is noticeable that the same pattern remains valid

even for larger sample sizes. For n ¼ 1000 we found the AD� statistic for NPMLE and

empirical estimator of P(X ¼ 6) equal to 0.535 and 3.021, respectively (these values are also

based on 1000 replications).
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Fig. 1. NPMLE and empirical estimator of P(X ¼ 0): Poisson mixed with Q0 ¼ 0.2d0 þ 0.8U[0, 4].
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Fig. 3 shows the probability plots for NPMLE and empirical estimates of the hazard

function value k(6) ¼ 0.566 when the sample size is 100. The rule 0/0 ¼ 0 was used when

computing the empirical estimates. The plots indicate that empirical estimates are practically

useless when the quantity of interest is the hazard function k(k) with k in the tails. The

empirical estimates are concentrated at 0 and 1.

The second Poisson mixture considered has two components, more specifically Q0 ¼
0.85d1 þ 0.15d4. The quantities under study are P(X ¼ 6) ¼ 0.016 and k(6) ¼ 0.491 and n
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Fig. 2. NPMLE and empirical estimator of P(X ¼ 6): Poisson mixed with Q0 ¼ 0.2d0 þ 0.8U[0, 4].
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Fig. 3. NPMLE and empirical estimator of k(6): Poisson mixed with Q0 ¼ 0.2d0 þ 0.8U[0, 4].
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was taken equal to 25, 50 and 100. The results obtained are very similar to those obtained with

the first Poisson mixture considered and therefore are not presented here, but are available

from the authors. Corollary 2 does not apply for p̂k when the true mixing distribution is

discrete. However, the simulations indicate that the asymptotic normality of NPMLE for

P(X ¼ k) and k(k) also holds in this case. The behaviour of NPMLE is like in the previous

case, that is it performs much better than the empirical counterpart.

Finally, we computed the estimates of the tail probability P(X � 6) of a geometric mixture

defined by Q0 ¼ U[0, 0.8] using samples of sizes n ¼ 25 and n ¼ 100. The true probability is

0.055. (The figures are not presented but they are available upon request.) Again, the NPMLE

is characterized by less variability and its law is closer to the normal approximation (e.g. when

n ¼ 100 we obtained AD� ¼ 9.523 for the empirical proportions estimator and AD� ¼ 2.079

for the NPMLE).

5.2. Real data examples

Let us consider the Fabric Faults Data Sets analysed by Bissel (1972), see also Hinde (1982),

McLachlan & Peel (2000). The data set is the number of faults in a bolt of fabric (see Table 1).

The distribution of the counts has a remarkably long tail. We apply the non-parametric

Poisson mixture model. We compute the NPMLE of the probabilities P(X ¼ k), k ¼ 0,1,..., 28

and we compare them with the observed frequencies and the negative binomial (i.e. the

parametric Poisson–Gamma mixture) fit.

Table 1. Fabric faults data: Empirical, NPMLE and negative binomial estimates of P(X ¼ k).

Counts Observed frequency NPMLE Negative binomial

0 0 0.00655 0.01345

1 0.03125 0.01902 0.03236

2 0.03125 0.03332 0.05073

3 0.03125 0.05068 0.06534

4 0.125 0.07287 0.07503

5 0.03125 0.09574 0.07986

6 0.09375 0.11111 0.08053

7 0.125 0.1132 0.07799

8 0.09375 0.10217 0.07320

9 0.1875 0.08304 0.06700

10 0.0625 0.06209 0.06007

11 0 0.04404 0.05294

12 0 0.03093 0.04599

13 0 0.02265 0.03945

14 0.0625 0.01794 0.03348

15 0 0.01537 0.02815

16 0 0.01383 0.02347

17 0.0625 0.01266 0.01942

18 0 0.01157 0.01597

19 0 0.0105 0.01305

20 0 0.0095 0.01060

21 0 0.00859 0.00858

22 0 0.0078 0.00690

23 0.03125 0.00709 0.00554

24 0 0.00643 0.00442

25 0 0.00578 0.00352

26 0 0.00511 0.00279

27 0 0.00443 0.00221

28 0.03125 0.00375 0.00174
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Owing to the same observed frequency, the empirical estimates of P(X ¼ k) for k ¼ 1, 2, 3,

5, 23 and 28 are identical. The observed frequencies an,k are practically useless for estimating

P(X ¼ k) for any unobserved value k � 27. Moreover, the empirical distribution yields quite

bad estimators for the survivor function P(X � k) and for the hazard function k(k) ¼ P(X ¼
k)/P(X � k). The NPMLE provide smoothed and more realistic estimates of all these quan-

tities. The difference between the NPMLE and the negative binomial fit indicate a possible

misspecification of the Poisson–Gamma model.

6. Discussion and conclusions

We studied mixtures of power series distributions using the non-parametric maximum like-

lihood approach. The asymptotic normality of the non-parametric maximum likelihood

estimator of the probabilities P(X 2 J), J finite, was obtained. Our findings confirm the result

of Lambert & Tierney (1984) for Poisson mixtures. The delta-method allows the extension of

the asymptotic normality result to transformations of these probabilities, such as for instance

the hazard function.

The NPMLE of P(X 2 J) has the same theoretical asymptotic behaviour as the empirical

proportion an,J; in particular it is efficient, without being a lattice-valued estimator. This

allows the law of NPMLE of P(X 2 J) to quite quickly approach close to a normal law when

sample size increases. Moreover, when used for quantities involving small P(X 2 J), NPMLE

shows less variability than its empirical counterpart. In conclusion, due to its smooth nature,

the NPMLE performs much better than its empirical competitor estimator in applications.

The two competing estimators p̂J and an,J have the same asymptotic standard errorffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q0;J 1� q0;J
� �

=n
q

. In view of the theoretical results, two estimators can be used for this

quantity:

r̂1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂J 1� p̂Jð Þ

n

r
or r̂2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
an;J 1� an;J
� �

n

s
:

Our simulations suggest that the variances of r̂1 and r̂2 could be quite different for small to

moderate sample sizes. A consequence would be that Wald confidence intervals obtained from

the asymptotic normality of p̂J would have quite different performances when compared with

Wald or other confidence intervals for binomial proportions based on an,J. This issue will be

analysed elsewhere.

Our theoretical results on the asymptotic normality do not include the quantitiesffiffiffi
n

p
ðp̂k � q0;kÞ; k 2 K when q0 the true law of the observations is a discrete mixture. This

limitation is due to our approach based on the fact that, in some sense and under certain

conditions, p̂ and the empirical distribution are asymptotically equivalent. Equation (9) shows

that this asymptotic equivalence no longer holds when the true mixture is discrete. However,

we conjecture that for certain finite sets J including the singletons J ¼ fkg, k 2 K, the

asymptotic normality of
ffiffiffi
n

p ðp̂J � q0;J Þ also holds when the true law is a discrete mixture. Our

simulations support this theory.
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Minitab Inc. (2000). Minitab, Statistical Software, Release 13.30. Minitab Inc., State College.

Patilea, V. (2001). Convex models, MLE and misspecification. Ann. Statist. 29, 94–123.

Robbins, H. E. (1955). An empirical Bayes approach to statistics. Proceedings of the Third Berkeley

Symposium, Statistics and Probability, Vol. 1. University of California Press, Berkeley 157–163.

Rudin, W. (1987). Real and complex analysis, 3rd edn. McGraw-Hill International Editions Singapore.

Sapatinas, T. (1995). Identifiability of mixtures of power-series distributions and related characterizations.

Ann. Inst. Statist. Math. 47, 447–459.

Shaked, M., Shanthikumar, G. & Valdez-Torres, J. (1994). Discrete probability orderings in reliability

theory. Statist. Sinica 4, 567–579.

Simar, L. (1976). Maximum likelihood estimation of compound Poisson process. Ann. Statist. 4, 1200–

1209.

Titterington, D. M., Smith, A. F. M. & Makov, U. E. (1985). Statistical analysis of finite mixture

distributions. Wiley, New York.

Thode, H. C. (2002), Testing for normality. Marcel Dekker, New York.

van der Vaart, A. W. (1998). Asymptotic statistics. Cambridge University Press, Cambridge.

Wood, G. R. (1999). Binomial mixtures: geometric estimation of the mixing distribution. Ann. Statist. 27,

1706–1721.

Received October 2003, in final form July 2004

Valentin Patilea, CREST-ENSAI, Campus de Ker-Lann, Rue Blaise Pascal – BP 37203, 35172 Bruz

Cedex, France. E-mail: valentin.patilea@ensai.fr

Scand J Statist 32 Asymptotic normality in mixtures 129

� Board of the Foundation of the Scandinavian Journal of Statistics 2005.



Appendix

Proof of lemma 2.

The proof is an extension of the arguments given in theorem 4.2 of Lambert & Tierney (1984)

(see also Milhaud & Mounime, 1995). Fix i and define

kr;j ¼ ðaii!Þ�1ji i
r

� �
ð�1Þi�r r � i,

0 otherwise

	

and I(r,j) ¼ (r/j, r/j þ j�(iþ1)], for j ¼ i, i þ 1,... and r ¼ 0,1,..., i. Let

gjðhÞ ¼
Xi
r¼0

kr;j1Iðr;jÞðhÞCðr; jÞ; h 2 H;

where C(r, j)�1 ¼
R
I(r,j)a(h)

�1Q0(dh); 1A denotes the indicator function of the set A. The

functions gj are well defined for j sufficiently large. Use assumption 1 to show that gj is
bounded by a constant times jiþc(iþ1) as j grows to infinity. To calculate the order of

kei � x(gj)kq0 write

xkðgjÞ ¼
Z
H

akh
k

aðhÞ gjðhÞQ0ðdhÞ ¼ ak
Xi
r¼0

kr;j
r
j
þ nr;j;k

� �k

;

where nr,j,k 2 (0,j�(iþ1)] is defined by the mean value theorem. The fact that k 2 K is implicit

throughout this proof. First, consider the case k � i and bound ei,k � xk(gj). For some

gr,j,k 2 (0,j�(iþ1)],

xkðgjÞ ¼ ak
Xi
r¼0

kr;j
rk

jk
þ kak

Xi
r¼0

kr;jnr;j;k
r
j
þ gr;j;k

� �k�1

:

Since nr,j,k � j�(iþ1), the second term of the right is of order O(j�1). By lemma 4.2 of Lambert

& Tierney (1984), the first term equals zero if k < i and one if k ¼ i. Now, it remains to boundP
k�iþ1xk(gj)

2/q0,k. Deduce from the definition of I(r,j) that

jxkðgjÞj ¼
Xi
r¼0

kr;j

Z
Iðr;jÞ

akh
k

aðhÞCðr; jÞQ0ðdhÞ
�����

����� � ði þ 1Þkj�kak
Xi
r¼0

jkr;jj:

Note also that
P

r|kr,j| � ji2i/aii!. Moreover, there exists C, m > 0 such that q0,k � Cakm
k,

k 2 K. Therefore, for any a 2 (0,1)

X
k�iþ1

xkðgjÞ2

q0;k
� CðiÞj�2a

X
k�iþ1

aksðj; kÞk ;

where s(j, k) ¼ j�2(k�i�a)/k(i þ 1)2/m and C(i) is a constant depending only on i. Since

supk�iþ1s(j, k) ! 0 as j ! 1, it follows that once j is large enough, the power seriesP
k�iþ1aks( j, k)

k is bounded by a constant. Thus, there exists b > 0 such that kei � x(gj)kq0 ¼
O( j�b).

Proof of corollary 2.

Fix h > 0 such that Q0([h, R)) > 0 and Q0(A(s))
�1 ¼ O(s�d) for some d > 0, where A(s) ¼

(h � s, h þ s] \ suppQ0. Define gs(g) ¼ Q0(A(s))
�1
1A(s)(g) and consider the vectors x(gs) ¼
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fxk(gs)gk2K, s > 0 as in (7). By the mean value theorem, for any k 2 K, there exists gk 2 A(s)
such that xk(gs) ¼ pgk,k. Thus, again applying the mean value theorem we have

jph � xðgsÞj jj2q0 ¼
X
K

ph;k � pgk ;k
� �2

q�1
0;k � s2

X
K

p02nk ;kq
�1
0;k ; ð10Þ

for some nk 2 A(s). Since p0g;k ¼ akaðgÞ�1 kgk�1 � a0ðgÞgkaðgÞ�1
n o

, there exists C > 0 such

that kp0g;kk � Ckpg;k ; g 2 AðsÞ; provided that s is small enough. Moreover, the second order

moments of pg are uniformly bounded if g stays in a compact included in [0, R). Deduce that

the sum on the right of equation (10) is finite. Consequently, ||ph � x(gs)||q0 ¼ O(s) as s ! 0

and thus ph 2 C1. If h ¼ 0 is an isolated point in the support Q0, then p0 ¼ x(gs) 2 C1 for

sufficiently small s. Apply proposition 2 and deduce that
ffiffiffi
n

p
hp̂� an; phip ! 0; in probability.

Finally, note that since ph,kQ0([h, R)) � q0,k, k 2 K,

hp̂� an; phip � hp̂� an; phiq0
��� ��� � X

K

p̂k � an;k
�� �� p̂k � q0;k

�� ��
p̂k þ q0;k

ph;k
q0;k

� Q0ð½h;RÞÞ�1 kp̂� q0kp̂ þ kan � q0kp̂ð Þkp̂� q0kp̂:

For the convergence involving p0h deduce first that
ffiffiffi
n

p hp̂� an; phip̂ ! 0; in probability. Next,

proceed as in corollary 5.1 of Lambert & Tierney (1984). Assume that
ffiffiffi
n

p hp̂� an; p0hip̂ does

not converge to zero in probability for some h > 0 in the support of Q0. Then, there exists a

subsequence n� for which almost surely
ffiffiffiffiffi
n�

p P
p̂k � an�;k
� �

p0h;k=p̂k is bounded away from zero

but
ffiffiffiffiffi
n�

p P
p̂k � an�;k
� �

ph;k=p̂k converges to zero; here p̂ is computed from n� observations.

Then, necessarily, for any large enough n� there exists some g near h such that

hp̂� an� ; pgip̂ < 0: This contradicts the gradient characterization of the NPMLE.
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