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Abstract

Recent developments in the area of mixture models are introduced, reviewed and discussed.
The paper introduces this special issue on mixture models, which touches upon a diversity
of developments which were the topic of a recent conference on mixture models, taken place
in Hamburg, July 2001. These developments include issues in nonparametric maximum likeli-
hood theory, the number of components problem, the non-standard distribution of the likelihood
ratio for mixture models, computational issues connected with the EM algorithm, several special
mixture models and application studies.
© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Mixture models have experienced increased interest and popularity over last decades.
A recent conference in Hamburg (Germany) in 2001 on Recent developments in mix-
ture models tried to capture contemporary issues of debate in this area and have them
discussed in a broader audience. This special issue of CSDA introduces some of these
topics and puts them together in a common context. In the following mixture modeling
is introduced in an elementary way and the various contributions to the Special Issue
(SI) of CSDA are set into perspective. Note that references to contributions in the
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SI are of the form: author(s) (Slyear), such as Bohning and Seidel, 2003(SI) which
refers to this editorial in the SI. This is in contrast to normal referencing which would
be without the prefix SI: author(s) (year).

The importance of mixture distributions, their enormous developments and their
frequent applications over recent years is due to the fact that mixture models offer
natural models for unobserved population heterogeneity. What does this mean? Suppose
that a one-parametric density f(x|A) can be assumed for the phenomenon of interest.
Here, 4 denotes the parameter of the population, whereas x is in the sample space X.
We call this the homogeneous case. However, often this model is too strict to capture
the variation of the parameter over a diversity of subpopulations. In this case, we have
that the population consists of various subpopulations, denoted by Ay, /,,..., 4, where
k denotes the number (possibly unknown) of subpopulations. We call this situation the
heterogeneous case. In contrast to the homogenous case, we have the same type of
density in each subpopulation j, but a potentially different parameter: f(x|4;) is the
density in subpopulation j.

In the sample x;,x;,...,x, it is not observed which subpopulation the observa-
tions are coming from. Therefore, we speak of unobserved heterogeneity. Let k latent,
dummy variables Z; describe the population membership for j=1,...,k, e.g. Z; =1,
means that x derives from subpopulation j. Then, the joint density f(x,z;) can be
written as f(x,z;) = f(x|z;) f(z;) = f(x|4;)p;, where f(x|z;) = f(x|4;) is the density
conditionally on membership in subpopulation z;. Therefore, the unconditional density
f(x) is the marginal density
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where the margin is taken over the latent variable Z;. Note that p; is the probability
of belonging to the jth subpopulation having parameter A;. Therefore, the p; have to
meet the constraints p; > 0, p; +---+ pr = 1. Note that (1) is a mixture distribution
with kernel f(x,A) and mixing distribution P, in which weights p,..., p; are given to
parameters Ai,...,4;. Estimation is done conventionally by maximum likelihood, that
is we have to find P which maximizes the log-likelihood /(P) = S log f(xi, P). P
is called the nonparametric maximum likelihood estimator (Laird, 1978), if it exists.
Note that also the number of subpopulations £ is treated as unknown and is estimated.
Note, in addition, that it is essential for the existence of the NPMLE that the likelihood
is bounded. For example, in the case of the Poisson, Binomial, or Exponential the
likelihood is bounded and the NPMLE exists. For the normal with common variance
parameter one has to fix the number of components to bound the likelihood, for the
normal with component-specific variances in the mixture any k > 1 will make the
likelihood unbounded (though a version of the EM algorithm exist as well for this
situation and is frequently used in practice; see Nityasuddhi and B6hning, 2003(SI).
Many applications are of the following type: Under standard assumptions the popula-
tion is homogeneous, leading to a simple, one-parametric and natural density. Examples
include the binomial, the Poisson, the geometric, the exponential, the normal distribu-
tion (with additional variance parameter). If these standard assumptions are violated
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because of population heterogeneity, mixture models can easily capture these additional
complexities. Therefore, mixture models are considered for conventional densities such
as normal (common unknown, known and unknown different variances), Poisson, Pois-
son for standardized mortality ratio data, Binomial, Binomial for rate data, Geometric,
Exponential among others. We speak of direct applications of mixture models. Incor-
porating covariates, these direct applications lead in a very natural way to an extension
of the generalized linear model: incorporating unobserved heterogeneity we are lead to
the generalized linear mixed model.

The development of mixture models is underlined by the appearance of a number of
recent books on mixtures including Lindsay (1995), Bohning (2000), McLachlan and
Peel (2000) which update previous books by Everitt and Hand (1981), Titterington
et al. (1985) and McLachlan and Basford (1988).

2. Some basic results on the NPMLE

The strong results of nonparametric mixture distributions are based on the fact that
the log-likelihood / is a concave functional on the set of all discrete probability distri-
butions Q. The NPMLE (Laird, 1978) is defined as an element in Q which maximizes
the log-likelihood (if it exists). Van de Geer, 2003(SI) reviews some asymptotic prop-
erties of the NPMLE. It is very important to distinguish between the set of all discrete
distributions and the set €2; of all distributions with a fixed number of k& support
points (subpopulations). The latter set is not convex. For details, see Lindsay (1995)
or Bohning (2000). The major tool for achieving characterizations and algorithms is
the gradient function, defined as

oy e Sld)
AOPY= 20 TPy

We have the general mixture maximum likelihood theorem (Lindsay, 1983; Bohning,

1982):

(a) P is NPMLE if and only if Ds(2) < 0 for all / or, if and only if d(4,P) < 1 for
all 2

(b) d(/,P)=0 for all support points A of P.

Secondly, the concept of the gradient function is important in developing reliable,

globally converging algorithms (for a review see Bohning, 1995; Lesperance and

Kalbfleisch, 1992). Schlattmann, 2003(SI) uses an improved version of one of these

algorithms to develop an inferential Bootstrap approach for estimating the number of

components in a mixture.

3. Mixture models and the EM algorithm

When the number of components k£ is fixed in advance, the set of all probability
distributions with & support points is non-convex which makes the maximization of the
log-likelihood a lot more difficult, and multiple local maxima might exist. However,
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the advantage of this restricted situation lies in the fact that parameter estimation can
be treated with the EM algorithm (Dempster et al., 1977). Here, the complete data
likelihood is simply

I, (x]2)) P} 2)
and the complete data log-likelihood separates the estimation of py,..., py and esti-

mation of the parameters involved in f(x|4;). The E-step is can be executed easily as
well using Bayes theorem:

ej = E(Zj|x,P)=Pr(Z; = 1|x,P) = f(x|Z; = 1,P)
Pr(Z; =1\P)/2; f(x|Z; = 1,P)Pr(Z; = 1|P)
= Sl pi/ 2 f x4 ) by 3)
The expected complete data log-likelihood becomes

Zjelog p; + Zje;log f(x|4))

and based upon the full sample x,...,x,
2i2je;jlog pj + 2iXje;;log [ (xi|4)), (4)
where e;; = E(Z;j|x;,P). From (4) new estimates for pi,..., p; are easily determined

as X,e;j/n, whereas the estimates for the parameters involved in f(x|4;) will depend
on the form of f. The EM algorithm is one of the most frequently used algorithms for
determining maximum likelihood estimates in mixture models because of it’s numerical
stability and monotonicity property. However, recently more attention is focussed on
it’s dependence on initial values (in converging to local maxima). See Karlis and
Xekalaki, 2003(SI), Biernacki et al., 2003(SI), Seidel et al. (2000), or Bohning (2002).
In the latter contribution, the concept of the gradient function is utilized to improve
the convergence behavior of the EM algorithm.

The idea of incomplete data can be extended to incorporate missing data (Hunt
and Jorgensen, 2003(SI) or truncated data like data stemming from capture-recapture
experiments in which the counting distributions of the number of catches is modeled.
Here, the frequencies of zero-catches remains unobserved and can be imputed with an
appropriate modification of the EM algorithm. A contribution to this area is provided
by Mao and Lindsay, 2003(SI).

4. Likelihood ratio test and number of components

Although the nonparametric estimation of the heterogeneity distribution provides an
estimate of the number of components itself, it is sometimes requested to use the like-
lihood ratio test for testing whether a reduced number of components is likewise suffi-
cient. It is well known (Titterington et al., 1985; McLachlan and Basford, 1988) that
conventional asymptotic results for the null distribution of the likelihood ratio statistic
do not hold, since the null hypothesis lies on the boundary of the alternative hypothe-
sis. In some cases theoretical results are available (Bohning et al., 1994), but in other
cases simulation results must be used. In general, a parametric Bootstrap procedure can
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be used (McLachlan, 1992), and it was pointed out recently that this approach leads to
valid statistical inference (Feng and McCulloch, 1996). Recent papers focussing on the
likelihood ratio include Schlattmann, 2003(SI) or Pons and Lemdani, 2003(SI); Pavlic
and van der Laan, 2003(SI) consider a distance estimation approach. Other approaches
are based upon the Akaike information criterion, Bayesian information criterion and
alike; for details, see McLachlan and Peel (2000).

5. Mixture models and covariates

In many application areas the analysis of additional covariates is often desirable.
Mixture modeling with covariates leads to the area of mixed generalized linear models.
Consider again the basic mixture model (1): Zj;l f(x,4;)p;. Suppose that a number
covariates ui,...,u, is given. These are then related to the component mean by means
of a linear model A;=u'f; = Po;+u1 1+ - +u,p,; or by means of generalized linear
model A;=h~!(u'B;), where h is the link function like 4(.)=log(.) for a Poisson model.
Mixing can be done on all or only on part of the covariates, or solely on the intercept.
Also, the multi-level structure of the data might be taken into account. Various authors
have contributed developments in this area including Aitkin (1996, 1999) or Dietz
(1992), Dietz and Bohning (1996). Sometimes, also the weights p; = p;(u) in the
mixture (2) are modeled in dependency of the covariates. In an application study,
models of this kind are used for modeling length of stay in a hospital (Yau et al.,
2003(SI).

6. Special mixture models

One class of special mixture models arises when certain component parameters are
fixed to specific values. An example is the zero inflated Poisson which is a two
component mixture with the first component fixed at 0 which makes this compo-
nent distribution singular (one-point distribution). The zero-inflated Poisson model is:
(1= p)Po(0]|A)+ pPo(x|1) where Po(x|1)=exp(—4)A*/x!. Note that Po(0|1)=0, unless
A =0 in which case Po(0|1) = 1. Models of this kind are considered in Dalrymple et
al., 2003(SI), Lambert (1992), Bohning (1998); see also Mooney et al., 2003(SI) for
modeling count data in their time dependency. Similarly in survival analysis, when a
certain part of the (treated) population remains disease free, we are lead to cure mod-
els. Cure models are also special mixture models, namely (two-component) mixtures of
survival time distributions in which one component is a singular one-point distribution
(survival guaranteed). Contributions to this area are from Pons and Lemdani, 2003(SI),
Peng, 2003(SI) and Morbiducci et al., 2003(SI).

7. Application of mixture models and connection to Bayesian methods

Mixture models do have many application areas of their own dimension, depth and
value—to mention just two: disease mapping and meta analysis. In these areas interest
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is often in a stabilized estimate of the quantity of interest in the spatial unit (disease
mapping) or the study (meta analysis). These can be provided by the empirical Bayes
estimators which are developed from the posterior distribution (3) like a mean mea-
sure such as the expected value with respect to the posterior. The key idea is to think
of the heterogeneity distribution P as a prior distribution on the unknown parame-
ter A. Then (3) establishes the posterior distribution. The mixture model comes in by
providing a tool to replace the unknown prior (mixing) distribution by an appropriate
estimate. A classical paper on this is from Clayton and Kaldor (1987). For applications
in meta-analysis see also Bohning (2000). Full Bayesian procedures arise when fur-
ther prior distributions (hyperpriors) are assumed for modeling all parameters involved
in the prior. Aitkin (2002) has reviewed full Bayesian approaches to cope with the
number of components problem. He could demonstrate a rather strong dependence on
the posterior from the assumed hyperprior for the number of components. This is not
surprising since mixture likelihoods can be extremely flat, bringing out the influence
of the hyperprior model. A contribution to these areas is from Biggeri et al., 2003(SI).
Other applications include texture modeling by mixtures (Grim and Haindl, 2003(SI))
and distance-based modeling of ranking data (Murphy and Martin, 2003(SI)).

8. Multivariate mixtures

Developments in the area of multivariate mixtures are few and mostly concentrated
on mixtures of multivariate normals. Contributions are given here by McLachlan et al.,
2003(SI) as well as Biernacki et al., 2003(SI). A further special multivariate mixture
model is provided by the latent class approach and associated developments in which
a multidimensional contingency table is analyzed with respect to a latent, discrete
variable. The ideas go back originally to Lazarsfeld and Henry (1968) and has been
further developed by several authors including Clogg (1979) and Formann (1982), to
mention only a few. Contributions here are from Croft and Smith, 2003(SI), Formann,
2003(SI), and Vermunt, 2003(SI). Finally, Berchtold, 2003(SI) considers mixture mod-
eling of heteroscedastic times series.

9. Diagnostics, testing, and adjusting for heterogeneity

Before one enters into the cumbersome task of fitting a mixture model it might be
of value to know about the presence of heterogeneity. If there is none, there is also no
need to go into mixture modeling. This is the area of diagnostics and testing for het-
erogeneity (mixing). Susko, 2003(SI) contributes to this area as well as Mao and Lind-
say, 2003(SI), the latter in combination with a very interesting application of truncated
Poisson distributions arising from capture-recapture data which are considered more
and more in many areas including biology/ecology, but also epidemiology. Recently,
a major contribution in the American Journal of Epidemiology (IWGDMF, 1995a, b)
pointed out the importance of these techniques for determining the completeness of dis-
ease incidence registries. Sometimes one considers the occurrence of heterogeneity as a
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nuisance that needs to be adjusted for. Viwatwongkasem and Bohning, 2003(SI) con-
sider such a situation, namely the risk difference in multi-center studies under baseline
heterogeneity, and study a number of estimators adjusting for heterogeneity.

Acknowledgements

This research is under support of the German Research Foundation. In addition, the
guest editors are most grateful to the German Research Foundation for funding a con-
ference on mixture models which took place in Hamburg, Germany, 2001. This Special
Issue of CSDA was initiated from contributions to this conference. The guest editors
would also acknowledge the help of the Associate Editors H. Friedl (Graz, Austria),
B. Lindsay (Penn State, USA), G. McLachlan (Brisbane, Australia), A. Raftery (Seat-
tle, USA) dealing with the quite numerous submissions for this Special Issue. Special
thanks go to several referees. Without their continuous efforts the reviewing could not
have been done. They are (in alphabetical order):

M. Aitkin A. Formann M. Markatou E. Stampfer

F. Bartolucci H. Grossmann R. Pilla E. Susko

H. Bensmail P. Hoff V. Patilea S. van de Geer

A. Berchtold D. Karlis K. Roeder G. Verbeke

A. Biggeri G. Kauermann B. Rossi J. Vermunt

G. Celeux L. Knorr-Held T. Rudas Chukiat Viwatwongkasem
E. Dietz E. Lessaffre J. Rost K. Yau

E. Dreassi M. Lesperance J. Sarol X. Zhou

L. Fahrmeir J. Marden P. Schlattmann

Finally, the guest editors would express their sincerest thanks to the co-editors Peter
Naeve and Erricos John Kontoghiorghes.

References

Aitkin, M.A., 1996. NPML estimation of the mixing distribution in general statistical models with unobserved
random variation. In: Seeber, G.U.H., Francis, B.J., Hatzinger, R., Steckel-Berger, G. (Eds.), Statistical
Modeling. Springer, Berlin, pp. 1-9.

Aitkin, M.A., 1999. A general maximum likelihood analysis of variance. Biometrics 55, 117-128.

Aitkin, M.A., 2002. Likelihood and Bayes approaches to the number of mixture components. Volume of
Abstracts, Conference on Recent Developments in Mixture Models, Hamburg, 2001.

Berchtold, A., 2003. Mixture transition distribution (MTD) modeling of heteroscedastic time series. Special
issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Biernacki, C., Celeux, G., Govaert, G., 2003. Choosing starting values for the EM algorithm for getting the
highest likelihood in multivariate Gaussian mixture models. Special issue on mixtures. Comput. Statist.
Data Anal., 41 (this Vol.).

Biggeri, A., Dreassi, E., Lagazio, C., Bohning, D., 2003. A transitional non-parametric maximum
pseudo-likelihood estimator for disease mapping. Special issue on mixtures. Comput. Statist. Data Anal.,
41 (this Vol.).

Bohning, D., 1982. Convergence of Simar’s algorithm for finding the maximum likelihood estimate of a
compound Poisson process. Ann. Statist. 10, 1006—1008.



356 D. Bohning, W. Seidel| Computational Statistics & Data Analysis 41 (2003) 349-357

Bohning, D., 1995. A review of reliable maximum likelihood algorithms for the semi-parametric mixture
maximum likelihood estimator. J. Statist. Plann. Inference 47, 5-28.

Bohning, D., 1998. Zero-inflated poisson models and C.A.MAN: a tutorial collection of evidence Biometrical
J. 7, 833-843.

Bohning, D., 2000. Computer-Assisted Analysis of Mixtures and Applications. Meta-Analysis, Disease
Mapping and Others. Chapman & Hall /CRC, Boca Raton.

Bohning, D., 2002. A globally-convergent adjustment of the EM algorithm for mixture models with fixed
number of components. submitted for publication.

Bohning, D., Dietz, E., Schaub, R., Schlattmann, P., Lindsay, B.G., 1994. The distribution of the likelihood
ratio for mixtures of densities from the one-parametric exponential family. Ann. Inst. Statist. Math. 46,
373-388.

Clayton, D., Kaldor, J., 1987. Empirical Bayes estimates for age-standardized relative risks. Biometrics 43,
671-681.

Clogg, C.C., 1979. Some latent structure models for the analysis of Likert-type data. Soc. Sci. Res. 8,
287-301.

Croft, J., Smith, J.Q., 2003. Discrete mixtures in Bayesian networks with hidden variables: a latent time
budget example. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Dalrymple, M.L., Hudson, L.L., Ford, R.P.K., 2003. Finite Mixture, Zero-inflated Poisson and Hurdle Models
with Application to SIDS. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Dempster, A.P., Laird, N.M., Rubin, D.B., 1977. Maximum likelihood estimation from incomplete data via
the EM algorithm (with discussion). J. Roy. Statist. Soc. B 39, 1-38.

Dietz, E., 1992. Estimation of heterogeneity—a GLM-approach. In: Fahrmeir, L., Francis, F., Gilchrist, R.,
Tutz, G. (Eds.), Advances in GLIM and Statistical Modeling. Lecture Notes in Statistics, Springer, Berlin,
pp. 66-72.

Dietz, E., Bohning, D., 1996. Statistical inference based on a general model of unobserved heterogeneity.
In: Fahrmeir, L., Francis, F., Gilchrist, R., Tutz, G. (Eds.), Advances in GLIM and Statistical Modeling.
Lecture Notes in Statistics, Springer, Berlin, pp. 75-82.

Feng, Z.D., McCulloch, C.E., 1996. Using Bootstrap likelihood ratios in finite mixture models. J. Roy. Statist.
Soc. B 58, 609-617.

Formann, A.K., 1982. Linear logistic latent class analysis. Biometrical J. 24, 171-190.

Formann, A.K., 2003. Latent class model diagnostics—a review and some proposals. Special issue on
mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Grim, J., Haindl, M., 2003. Texture modelling by discrete distribution mixtures. Special issue on mixtures.
Comput. Statist. Data Anal., 41 (this Vol.).

Hunt, L., Jorgensen, M., 2003. Mixture model clustering for mixed data with missing information. Special
issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

International Working Group for Disease Monitoring and Forecasting, 1995a. Capture—recapture and multiple
record systems estimation I: history and theoretical development Amer. J. Epidemiol. 142, 1047-1058.
International Working Group for Disease Monitoring and Forecasting, 1995b. Capture—recapture and multiple

record systems estimation II: Applications in human diseases Amer. J. Epidemiol. 142, 1059-1068.

Karlis, D., Xekalaki, E., 2003. Choosing initial values for the EM algorithm for finite mixtures. Special issue
on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Laird, N.M., 1978. Nonparametric maximum likelihood estimation of a mixing distribution. J. Amer. Statist.
Assoc. 73, 805-811.

Lazarsfeld, P.F., Henry, N.-W., 1968. Latent Structure Analysis. Houghton Mifflin, Boston.

Lesperance, M., Kalbfleisch, J.D., 1992. An algorithm for computing the nonparametric MLE of a mixing
distribution. J. Amer. Statist. Assoc. 87, 120-126.

Lindsay, B.G., 1983. The geometry of mixture likelihoods, Part I: a general theory Ann. Statist. 11, 783-792.
Lindsay, B.G., 1995. Mixture Models: Theory, Geometry, and Applications. . NSF-CBMS Regional
Conference Series in Probability and Statistics, Vol. 5. Institute of Mathematical Statistics, Hayward.
Mao, C.X., Lindsay, B.G., 2003. Tests and diagnostics for heterogeneity in the species problem. Special

issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

McLachlan, G.J., 1992. Cluster analysis and related techniques in medical research. Statist. Meth. Med. Res.
1, 27-49.



D. Bohning, W. Seidel| Computational Statistics & Data Analysis 41 (2003) 349-357 357

McLachlan, G.J., Basford, K.E., 1988. Mixture Models. Inference and Applications to Clustering. Marcel
Dekker, New York.

McLachlan, G.J., Peel, D., 2000. Finite Mixture Models. Wiley, New York.

McLachlan, G.J., Peel, D., Bean, R.W., 2003. Modelling high-dimensional data by mixtures of factor
analyzers. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Mooney, J.A., Helms, P.J., Jolliffe, I.T., 2003. Fitting mixtures of von Mises distributions: a case study
involving Sudden Infant Death Syndrome. Special issue on mixtures. Comput. Statist. Data Anal., 41
(this Vol.).

Morbiducci, M., Nardi, A., Rossi, C., 2003. Classification of cured individuals in survival analysis: the
mixture approach to the diagnostic-prognostic problem. Special issue on mixtures. Comput. Statist. Data
Anal., 41 (this Vol.).

Murphy, T.B., Martin, D., 2003. Mixtures of distance-based models for ranking data. Special issue on
mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Nityasuddhi, D., Bohning, D., 2003. Asymptotic properties of the EM algorithm estimate for normal mixture
models with component specific variances. Special issue on mixtures. Comput. Statist. Data Anal., 41
(this Vol.).

Pavlic, M., van der Laan, M.J., 2003. Fitting of mixtures with unspecified number of components using
cross validation distance estimate. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Peng, Y., 2003. Fitting semiparametric cure models. Special issue on mixtures. Comput. Statist. Data Anal.,
41 (this Vol.).

Pons, O., Lemdani, M., 2003. Estimation and test in long-term survival mixture models. Special issue on
mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Schlattmann, P., 2003. Estimating the number of components in a finite mixture model: The special case of
homogeneity. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Seidel, W., Mosler, K., Alker, M., 2000. A cautionary note on likelihood ratio tests in mixture models. Ann.
Instit. Statist. Math. 52, 481-487.

Susko, E., 2003. Weighted tests of homogeneity for testing the number of components in a mixture. Special
issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Titterington, D.M., Smith, A.F.M., Makov, U.E., 1985. Statistical Analysis of Finite Mixture Distributions.
Wiley, New York.

Van de Geer, S., 2003. Maximum likelihood for nonparametric mixture models. Special issue on mixtures.
Comput. Statist. Data Anal., 41 (this Vol.).

Vermunt, J.K., 2003. Latent class models for classification. Special issue on mixtures. Comput. Statist. Data
Anal., 41 (this Vol.).

Viwatwongkasem, C., Bohning, W., 2003. A comparison of risk difference estimators in multi-center studies
under baseline-risk heterogeneity. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).

Yau, K.K.W., Lee, A.H., Ng, A.S.K., 2003. Finite mixture regression model with random effects: Application
to neonatal hospital length of stay. Special issue on mixtures. Comput. Statist. Data Anal., 41 (this Vol.).



	Editorial: recent developments in mixture models
	Introduction
	Some basic results on the NPMLE
	Mixture models and the EM algorithm
	Likelihood ratio test and number of components
	Mixture models and covariates
	Special mixture models
	Application of mixture models and connection to Bayesian methods
	Multivariate mixtures
	Diagnostics, testing, and adjusting for heterogeneity
	Acknowledgements
	References


