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Summary. The paper discusses population size estimation on the basis of a frequency distri-
bution of zero-truncated counts and is motivated by a study on the geographical distribution of
hidden scrapie in Great Britain. Aggregation of scrapie cases is considered at the county level
and results in sparse zero-truncated count distributions which make the application of con-
ventional capture–recapture procedures for estimating the hidden part of the scrapie-affected
population difficult. We suggest a smoothed generalization of Zelterman’s estimator of popula-
tion size which overcomes the overestimation bias of the conventional Zelterman estimator and
instead produces a lower bound, which is typically larger than Chao’s lower bound estimator.
The estimator uses an empirical Bayes approach with various choices for the prior distribution
including a parametric choice of the gamma distribution as well as various non-parametric dis-
tributions. A simulation study investigates the performance of the new estimators, and also in
comparison with conventional estimators.The empirical Bayes estimator with a non-parametric
mixture model as prior performs well and the boundary problem of the conventional non-para-
metric discrete mixture model estimator leading to spurious population size is avoided. In the
application to hidden scrapie in Great Britain the new estimators lead to maps of scrapie of
observed–hidden ratios as well as completeness of the current surveillance system.

Keywords: Capture–recapture; Empirical Bayes methods; Geographical analysis; Non-
parametric mixture model

1. Introduction

For integer N , we consider a sample of counts x1,x2, . . . , xN ∈{0, 1, 2, . . . , } arising from a count
random variable X having a mixture probability density function

px =
∫ ∞

0
p.x|λ/ q.λ/dλ .1/

with unspecified mixing density q.λ/ and a mixture kernel p.x|λ/ which needs to be specified.
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In this paper, a typical choice for the mixture kernel is the Poisson kernel p.x|λ/ = Po.x|λ/ =
exp.−λ/λx=x! though other choices are possible as well. Whenever xi =0 unit i remains unob-
served, so only a zero-truncated sample of size n=Σm

j=1fj is observed, where fj is the frequency
of counts with value x = j and m is the largest observed count. Hence, f0 and consequently
N are unknown. The purpose is to find an estimate of the size N. Since frequently the count
variable X represents repeated identifications of an individual in an observational period, the
problem at hand is a special form of the capture–recapture problem (see Bunge and Fitzpatrick
(1993) and Collins and Wilson (1992) for a review on the topic).

The sample of counts x1,x2,. . . ,xN can occur in several ways. A target population which
might be difficult to count consists of N units. This population might be a wildlife population, a
population of homeless people, drug addicts, software errors or animals with a specific disease.
Furthermore, let an identification device (a trap, a register or a screening test) be available that
identifies unit i at occasion t where t =1, . . . , T . Let the binary result be xit where xit =1 means
that unit i has been identified at occasion t and xit =0 means that unit i has not been identified
at occasion t. The indicators xit might be observed or not, but it is assumed that xi =ΣT

t=1 xit

is observed if at least one xit > 0 for t = 1, . . . , T . Only if xi1 = xi2 =. . .= xiT = 0 and, conse-
quently xi =0, does the unit i remain unobserved. In this kind of situation the clustering occurs
by repeated identifications of the same unit.

In another setting, which is also the basis for this work, the clustering occurs by means of
a grouping variable such as herds, holdings, households or villages. In this case, xit denotes
whether the tth element in cluster i is identified (xit = 1) or not (xit = 0). In the example that is
given in Section 2 the clusters are holdings of sheep and xit informs about the disease status of
the tth animal in holding i. Note that xi =Σt xit is observed only if it is positive. In other exam-
ples the cluster corresponds to villages or households; one of the earliest applications of this
kind is the cholera outbreak in a community in India that was studied by McKendrick (1926)
in which the cluster corresponds to households in a village. A more recent example involves the
occurrence of cholera in rural East Pakistan where the cluster structure consists of villages (see
also Mosley et al. (1972)).

The paper is organized as follows. Section 2 introduces the data on scrapie in Great Britain.
In Section 3 we review some of the existing approaches in the capture–recapture methodology
for the setting of interest. Section 4 describes the development of a new set of empirical Bayes
estimators which are then further evaluated by means of a simulation study. The application
of the empirical Bayes estimator to the spatial data on scrapie in Great Britain, including the
development of maps at county level of completeness and the observed–hidden ratio, ends the
paper in Section 5.

The data that are analysed in the paper can be obtained from

http://www.blackwellpublishing.com/rss

2. Scrapie data in Great Britain

We now consider as a specific case-study the spatial distribution of scrapie in Great Britain.
Classical scrapie, which is a fatal neurological disease of small ruminants, is endemic in Great
Britain (see Del Rio Vilas et al. (2006) for more details). There is ample evidence to support the
occurrence of under-reporting affecting the clinical notification of scrapie cases (Hoinville et al.,
2000; Del Rio Vilas et al., 2005; Böhning and Del Rio Vilas, 2008). Although not established to
date, there is reason to believe that, reflecting population and surveillance-related heterogene-
ities, under-reporting presents an uneven distribution across Great Britain. The spatial analysis
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that is presented in what follows uses county-specific disease data from the scrapie notifications
database (SND) (see Del Rio Vilas et al. (2006) for more details): more specifically the num-
ber of confirmed clinical cases per scrapie-affected holding. Table 1 shows the frequency fx of
the number of holdings with confirmed clinical cases x for x=1, 2, 3, . . . by county. The entire
data set is provided in the on-line supporting information. Evidently, there is a considerable
range in the number of scrapie-affected holdings per county, ranging from counties with only
one affected holding to counties with a large number of affected holdings, the largest number
occurring in county 37 with 75 affected holdings.

Our main interest in the following analysis is to investigate the performance of the SND
surveillance stream as measured in the observed–hidden ratio (the larger the ratio the better
the system) as well as in the completeness rate, which is defined as the proportion of observed
affected holdings among observed and hidden scrapie-affected holdings. If the case count per
holding is collapsed over all counties we find the distribution as given at the bottom of Table 1.
With f1 = 298, f2 = 89 and f3 = 42 most of the distribution is concentrated on counts of one,
two and three cases with the largest count occurring at 29.

3. Background on capture–recapture estimation

Before we go into the details of the suggested novel approach we give a brief review of the
existing capture–recapture methodology for the setting of interest.

3.1. Heterogeneity
The importance of the mixture px =∫ ∞

0 p.x|λ/q.λ/ dλ can be seen in the fact that it is a natural
model for the population heterogeneity. There appears to be consensus (see for example Pledger
(2005) for the discrete mixture model approach and Dorazio and Royle (2005) for the continu-
ous mixture model approach) that a simple model p.x|λ/ is not sufficiently flexible to capture
the variation in the recapture probability for the different members of most real life popula-
tions. There has also recently been a debate on the identifiability of the binomial mixture model
(see Link (2003, 2006) and Holzmann et al. (2006)). Furthermore, using the non-parametric
maximum likelihood estimator (NPMLE) q̂.λ/ of the mixing density q.λ/ in constructing an
estimate of the population size

N̂ =n

/{
1−

∫ ∞

0
exp.−λ/ q̂.λ/dλ

}

leads to the boundary problem. This results in often unrealistic high values for the estimate of the
population size (Wang and Lindsay, 2005, 2008). Hence, renewed interest has re-emerged in the
lower bound approach for population size estimation suggested by Chao (1987). In this approach
neither is there need to specify a mixing distribution, nor is there need to estimate it. In this sense
it is completely non-parametric. To give some details of the lower bound approach consider the
Poisson mixture kernel exp.−λ/λx=x!. It follows from the Cauchy–Schwarz inequality that

{∫ ∞

0
exp.−λ/λq.λ/dλ

}2

�
∫ ∞

0
exp.−λ/q.λ/dλ

∫ ∞

0
exp.−λ/λ2 q.λ/dλ,

or, equivalently, p2
1 �p0.2p2/. Replacing the theoretical probabilities pj by their sample esti-

mates fj=N for j =0, 1, 2, the Chao lower bound estimate f 2
1 =2f2 for f0 follows (see Chao (1987,

1989)) since the unknown denominator N cancels out. The estimate for the population size N
is N̂C =n+f 2

1 =2f2. Since the Chao estimator uses only frequencies with counts of 1 and 2, a
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Table 1. Distribution of confirmed scrapie-affected holdings from the SND 2002–2006 by county

County f1 f2 f3 f4 f5 f6 f7 f8 f9 f10+ n

1 2 1 1 0 0 0 0 0 0 0 4
2 1 1 1 0 1 0 0 0 0 0 4
3 1 0 0 0 0 0 0 0 0 0 1
4 1 0 0 0 0 0 0 0 0 0 1
5 2 0 0 0 1 0 0 1 0 3 7
6 4 1 0 1 0 1 0 1 0 3 11
7 12 1 0 2 3 0 0 0 0 1 19
8 7 2 2 0 0 0 0 0 0 0 11
9 25 8 5 1 1 1 2 0 0 2 45

10 4 1 0 0 0 0 0 0 0 0 5
11 1 0 0 0 0 0 0 0 0 0 1
12 0 0 1 0 0 0 0 0 0 0 1
13 2 0 0 1 0 0 0 0 0 0 3
14 1 2 0 0 0 0 0 0 0 0 3
15 0 1 0 0 0 0 0 0 0 0 1
16 5 2 1 1 0 0 0 1 0 0 10
17 1 0 0 0 0 0 0 0 0 0 1
18 5 0 0 0 0 0 0 0 0 0 5
19 1 1 0 0 0 0 0 0 0 0 2
20 1 0 0 0 0 0 0 0 0 0 1
21 2 1 1 0 0 0 0 0 0 0 4
22 3 3 0 0 1 0 1 0 1 0 9
23 5 0 1 0 0 0 0 0 0 1 7
24 2 0 0 0 0 0 0 0 0 0 2
25 1 1 0 0 0 0 0 0 1 0 3
26 6 2 0 0 0 0 0 0 0 0 8
27 5 1 0 0 1 0 0 0 0 0 7
28 1 0 0 0 0 0 0 0 0 2 3
29 2 0 1 0 1 0 0 0 0 0 4
30 1 0 0 0 0 0 0 0 0 0 1
31 2 1 0 0 0 0 0 0 0 0 3
32 1 0 0 0 0 0 0 0 0 0 1
33 1 0 1 0 0 0 0 0 0 0 2
34 14 10 3 1 3 0 2 1 0 3 37
35 2 0 0 0 0 0 0 0 0 0 2
36 2 0 0 0 0 0 0 0 0 0 2
37 51 11 5 5 0 1 1 1 0 0 75
38 6 3 1 0 0 0 0 0 1 0 11
39 24 9 1 1 3 1 2 1 0 2 44
40 6 4 4 1 2 1 2 1 0 4 25
41 3 5 2 0 1 0 0 0 0 0 11
42 6 1 3 1 0 0 0 0 0 0 11
43 1 1 0 0 0 0 0 0 0 0 2
44 4 0 1 0 0 1 0 0 0 1 7
45 1 0 0 0 0 0 0 0 0 0 1
46 3 0 0 0 0 0 0 0 0 0 3
47 1 0 0 0 1 0 0 0 0 0 2
48 0 0 1 0 0 0 0 0 0 0 1
49 1 0 0 0 0 0 0 0 0 0 1
50 2 0 0 0 0 0 0 0 0 0 2
51 1 0 0 0 0 0 0 0 0 0 1
52 13 2 1 0 0 0 1 0 0 0 17
53 0 0 0 0 1 0 0 0 0 0 1
54 1 0 0 0 0 0 0 0 0 0 1
55 47 10 5 2 0 1 0 0 0 0 65
56 1 3 0 0 0 0 0 0 0 0 4
All 298 89 42 17 20 7 11 7 3 22 516
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truncated sample consisting only of counts of 1s and 2s might be considered. This truncated
sample leads to a binomial log-likelihood f1log.p1/+f2 log.p2/ which is uniquely maximized
for p̂2 =1− p̂1 =f2=.f1 +f2/. Since p2 =λ=.λ+2/ and p1 =2=.λ+2/ is a Poisson kernel that
truncates all counts except 1s and 2s, the estimate λ̂=2f2=f1 for the Poisson parameter λ that
was suggested by Zelterman (1988) arises. In the approach of Zelterman the homogeneous
Poisson model serves only as a working model and it was suggested by Zelterman that the esti-
mate N̂Z =n=.1− p̂0/=n={1− exp.−λ̂/} is more robust against misspecifications of the Poisson
model than the usual maximum likelihood estimate.

3.2. A reanalysis of Zelterman estimation
We are interested in developing a generalization of the Zelterman estimator. Consider the
Horvitz–Thompson-type estimate of the population size that was suggested by Zelterman
(1988):

N̂Z = n

1− exp.−2f2=f1/
: .2/

Although estimator (2) is popular among practitioners it has two disadvantages:

(a) it uses only the frequencies f1 and f2 and ignores f3–fm;
(b) it can experience severe overestimation bias.

The first issue is evident and results in large variance. The second issue is less evident but becomes
clear in what follows where we consider a discrete version of equation (1), namely a two-com-
ponent mixture px =qp.x|λ/+ .1−q/p.x|μ/. Note that we can think of the second component
p.x|μ/ as the contaminating part in this model. These contaminated models have a tradition
in robust statistics (see Hampel et al. (1986)) since the mean E.X/ = qλ+ .1 − q/μ is sensitive
to contaminating observations which are generated by a large value of μ. Note that this model
generates positive frequencies of counts of 0s, 1s and 2s even for small N as long as q is bounded
away from 0 and λ in a reasonable range (0.1–2, say). Under this contamination model the
Zelterman estimator can experience infinite overestimation bias if μ becomes large.

Theorem 1. Let px = qp.x|λ/ + .1 − q/p.x|μ/ be a discrete, two-component mixture with
p.x|θ/=Po.x|θ/ being the Poisson kernel and 0 <q< 1. Then,

E.N̂Z/≈

N[1−{q exp.−λ/+ .1−q/ exp.−μ/}]
/[

1− exp
{

− q exp.−λ/λ2 + .1−q/ exp.−μ/μ2

q exp.−λ/λ+ .1−q/ exp.−μ/μ

}]

→μ→∞ N
1−q exp.−λ/

1− exp.−λ/
�N:

Theorem 1 is proved by replacing sample frequencies by their theoretical values. Note that
the biasing factor {1 − q exp.−λ/}={1 − exp.−λ/} can become arbitrarily large since it is a
monotone decreasing function of q and λ (see also Fig. 1). But even for realistic values of
q and λ the factor can be considerably larger than 1. For example if q = 0:5 and λ � 0:4
the factor is larger than 2, so the Zelterman estimate would overestimate severely. The ques-
tion arises about what is the source of this overestimation bias. We approach this question in
the next theorem which states that the Zelterman estimator uses the wrong expected value in
predicting f0.

Suppose that all counts are truncated except counts of 1 and 2. The associated truncated
probabilities are
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p1 = exp.−λ/λ={exp.−λ/λ+ exp.−λ/λ2=2}=2=.λ+2/

and

p2 = exp.−λ/λ2=2
exp.−λ/λ+ exp.−λ/λ2=2

= λ

λ+2
:

Hence, the associated likelihood is a binomial likelihood L=p
f1
1 p

f2
2 which is maximized for

p̂2 =f2=.f1 +f2/ and the maximum likelihood estimator is found from the invariance principle
for maximum likelihood estimators as λ̂=2p̂2=.1− p̂2/.

Theorem 2.

(a) Let log{L.λ/} = f1 log.p1/ + f2 log.p2/ with p2 = λ=.λ + 2/ and p1 = 1 − p2. Then
log{L.λ/} is maximized for λ̂=2f2=f1.

(b) E.f0|f1, f2; λ̂/=f 2
1 =2f2, for λ̂=2f2=f1 and n+E.f0|f1, f2; λ̂/=n+f1

2=2f2 =NC.

A proof of theorem 2 is provided in Appendix A. Theorem 2 establishes a close connection
between the approach by Zelterman and Chao’s estimator. It shows that Zelterman’s estimator
of the Poisson parameter λ arises when all counts are truncated except counts of 1s and 2s and
when the resulting likelihood is maximized. If the correct prediction for f0 is used, namely the
conditional expectation for the truncated Poisson model, the Chao estimator arises. Hence the
strong overestimation of the original Zelterman estimator stems from using a wrong conditional
expectation.

3.3. Comparing some conventional estimators in a simulation
Before we continue developing the generalized adjusted version of the Zelterman estimator, we
consider the performance of Chao and Zelterman estimators in a small simulation study. In the
case of a homogeneous Poisson model the maximum likelihood estimate is found by maximizing
the likelihood of zero-truncated Poisson observations in λ:

m∏
j=1

(
pj

1−p0

)fj

=
m∏

j=1

{
1

1− exp.−λ/
exp.−λ/

λj

j!

}fj

,
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Fig. 1. Biasing factor {1�q exp.�λ/}={1�exp.�λ/} as a function of q and λ for μ!1
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or, equivalently, in solving the following equation in N̂hom:

N̂hom =n

{
1− exp

(
− S

N̂hom

)}−1

,

where S =Σm
x=1xfx. We must maximize the zero-truncated Poisson mixture likelihood in Q to

find the non-parametric maximum likelihood of the mixing distribution

L.Q/=
m∏

j=1

(
pj

1−p0

)fj

=
m∏

j=1

{
k∑

l=1

Po.j|λl/ql

1−∑
i

exp.−λi/qi

}fj

where Q is the discrete mixing distribution giving k weights qj to Poisson parameters λj:

Q=
(

λ1 λ2 ::: λk

q1 q2 ::: qk

)
:

Note that we must maximize L(Q) in terms of λ1, . . . , λk and q1, . . . , qk but also in k to find
the NPMLE. The NPMLE maximizes the likelihood globally and has a finite number of com-
ponents (Lindsay, 1983). Maximizing the likelihood is typically done in a stepwise manner by
fixing k to be 1, 2, 3, . . . , and conditionally on k using a gradient-function-modified version of
the EM algorithm for finding the maximum likelihood estimate. For details see Böhning (2003)
and Böhning and Kuhnert (2006). If k is fixed we denote the associated maximum likelihood
estimator by NPMLE(k). Only a finite number of mixture models in the sequence k=1, 2, . . . , kÅ

need to be considered since for some k = kÅ the global maximum will be achieved. The latter
case we shall simply denote with NPMLE. Occasionally, we might be interested in comparing
mixture models with different numbers of components k by means of the Bayesian information
criterion BIC defined as −log{L.Q/} + .2k − 1/ log.n/. After the NPMLE Q̂ of Q has been
identified, we can define

N̂NPMLE.k/ = n

1−
k∑

j=1
exp.−λ̂j/q̂j

, .3/

where NPMLE(k) denotes that the maximum likelihood estimator of the mixing distribution
with k components is used. If the global maximum likelihood estimator is used we simply write
N̂NPMLE.

To illustrate the performance of these estimators we consider the following simulation exper-
iments. Samples of counts X1, . . . , XN were drawn from a two-component mixture of Poisson
densities: X∼0:5Po.1/+0:5Po.λ/, evidently with equal weights q1 =q2 =0:5. The population
size was set to N = 100 and 10000 replications were used. Ignoring zero counts the estimators
of Chao N̂C =n+f 2

1 =2f2 and Zelterman N̂Z =n={1− exp.−2f2=f1/} were determined as well
as the maximum likelihood estimator under homogeneity N̂hom and the NPMLE under het-
erogeneity N̂NPMLE. The results can be found in Table 2. When heterogeneity increases, the
Zelterman estimator overestimates whereas the maximum likelihood estimator under homo-
geneity underestimates—both as expected. The Chao lower bound estimator does well under
heterogeneity—again as expected. Most dominant in Table 2 is the drastic failure of the NPMLE
which leads to spurious overestimate values.

4. New empirical Bayes estimator of population size

Although it is clear that 2f2=f1 estimates the Poisson parameter in the case that px =Po.x|λ/, it
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Table 2. Simulation using X �0:5Po.1/C0:5Po.λ/ and
N D100†

λ Estimator Mean SD RMSE

1 MLE-hom 102 13 13
NPMLE 484 12098 20028
Chao 104 19 19
Zelterman 105 21 22
EB-NPMLE 105 15 15
EB-Robbins 108 21 22

2 MLE-hom 94 7 9
NPMLE 4599 35 21328
Chao 99 12 12
Zelterman 101 16 16
EB-NPMLE 98 8 9
EB-Robbins 102 12 12

3 MLE-hom 88 5 13
NPMLE 12517 52425 23955
Chao 97 10 11
Zelterman 102 15 16
EB-NPMLE 93 7 10
EB-Robbins 96 9 10

4 MLE-hom 85 4 16
NPMLE 11715 54501 23114
Chao 97 10 10
Zelterman 108 20 20
EB-NPMLE 92 7 11
EB-Robbins 95 9 10

5 MLE-hom 84 4 17
NPMLE 4657 33069 17373
Chao 98 10 10
Zelterman 115 23 27
EB-NPMLE 92 8 11
EB-Robbins 95 9 10

†Provided are estimates of E.N̂/, var.N̂/1=2 and {E.N̂ −
N/2}1=2 as the mean, standard deviation SD and root-
mean-squared error RMSE.

is not clear what it estimates when there is a mixing distribution instead of Poisson homogene-
ity. Here, a Bayesian perspective is helpful. We think of the mixing distribution q.λ/ as a prior
distribution on λ so that

E.λ|x/=
∫ ∞

0
λ

Po.x|λ/q.λ/∫ ∞

0
Po.x|θ/q.θ/dθ

dλ .4/

is the posterior mean with respect to the prior q.λ/ and Poisson likelihood for observation x.
Note that equation (4) can be further simplified to

λx =E.λ|x/=

∫ ∞

0
λPo.x|λ/q.λ/dλ

∫ ∞

0
Po.x|λ/q.λ/dλ
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= .x+1/

∫ ∞

0
Po.x+1|λ/q.λ/dλ

∫ ∞

0
Po.x|λ/q.λ/dλ

= .x+1/
px+1

px
,

where px is the marginal density (1). We note here in passing the similarity of equation (4) to
Good–Turing frequency estimation (Good, 1953) which is commonly used in linguistics and
text analysis (Gale and Sampson, 1995). Before we continue on the ways to estimate the ratio
of marginals we point out an important monotonicity property.

Theorem 3.

λ1 �λ2 � . . . �λm:

A proof of theorem 3 is found in Appendix A. Theorem 3 has an important application.
Since under heterogeneity we have that λ1 �λ2 � . . . �λm, we expect that the graph x → λ̂x =
.x+1/fx+1=fx shows a monotone increasing pattern if heterogeneity is present. Hence we can
develop a diagnostic device for the presence of heterogeneity by plotting .x+1/fx+1=fx against
x, which we call the ratio plot. The ratio plot for the SND data for the years 2002–2006 is pre-
sented in Fig. 2. There is clear evidence for a monotone increasing trend; hence a mixture model
coping with the presence of heterogeneity appears appropriate.

Since 1={1−exp.−λ/} is monotone non-increasing in λ we have the following corollary which
we state without further proof.

Corollary 1.

m∑
x=1

fx

1− exp.−λx/
�

m∑
x=1

fx

1− exp.−λ1/
= n

1− exp.−2p2=p1/
: .5/
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Fig. 2. Ratio plot for the SND data 2002–2006, unstratified by county, for the Robbins estimate of the
posterior mean as well as the discrete-mixture- (four components) based EB estimate of the posterior mean
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Note that the Zelterman estimator occurs on the right-hand side of expression (5) if p2=p1 is
replaced by its sample version f2=f1. Hence we expect that the overestimation bias of the Zel-
terman estimate is reduced if λx on the left-hand side of expression (5) is appropriately estimated.
Furthermore, if

f1

1− exp.−λ1/
=f1 + f1

exp.λ1/−1
,

the first element in the sum on the left-hand side of expression (5), is replaced by its first-order
Taylor series expansion f1 +f1=λ1 and again λ1 =2p2=p1 estimated by 2f2=f1, we find that

f1 + f1

exp.λ̂1/−1
≈f1 + f1

λ̂1
=f1 + f 2

1

2f2
,

where f 2
1 =2f2 is the lower bound estimator of Chao (1987, 1989) for f0. Hence we expect that the

left-hand side of expression (5) provides an improved lower bound estimator if λx is estimated
appropriately since

m∑
x=2

fx

1− exp.−λx/
�

m∑
x=2

fx:

We now consider estimation of λx.
The marginal density px can be estimated by the relative empirical frequency fx=N so

̂E.λ|x/= λ̂x = .x+1/
fx+1

fx

provides an estimate of the posterior mean E.λ|x/=λx, using the fact that the unknown denom-
inators N cancel out. Hence, the Zelterman estimate occurs as a special case of the non-para-
metric, empirical Bayes estimator for observation x (Robbins, 1955; Carlin and Louis, 1997).

The understanding of Zelterman’s original estimator of λ as λ̂1 = 2f2=f1 as an empirical
Bayes estimator for observation x=1 is useful, since it helps to find ways to eliminate the over-
estimation bias. We need to define a Horvitz–Thompson estimator that takes into account the
different counts x=1, 2, . . . separately. This can be accomplished by defining

N̂ = f1

1− exp.−λ̂1/
+ f2

1− exp.−λ̂2/
+ . . . + fm

1− exp.−λ̂m/
: .6/

The question arises about which way the estimator λ̂x should be constructed. A naive estimator
would follow Robbins-type estimation to arrive at

N̂EB-Robbins = f1

1− exp.−2f2=f1/
+ f2

1− exp.−3f3=f2/
+. . .+ fm−1

1− exp.−mfm=fm−1/
+fm, .7/

where we define

fj

1− exp{−.j +1/fj+1=fj} =
{

0, if fj =0,
fj, if fj+1 =0:

Although estimator (7) is intuitively attractive, it has some considerable difficulties. Not only is
it unclear what to do with the largest count m (in equation (7) it is not upweighted), but also var-
ious counts could have frequencies 0 which would leave some of the frequencies fx unweighted.
More importantly, most of the observed count data will lie on the lower counts, resulting in
highly unstable estimates for larger counts.
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It is more attractive to consider a smoothed version of the Bayes estimator. This can be accom-
plished by constructing an estimate of the marginal distribution px =∫ ∞

0 p.x|λ/q.λ/dλ by using
a discrete finite mixture px = Σk

j=1Po.x|λj/qj, where λj > 0 and the non-negative weights qj

sum to 1. Estimates of the mixing distribution can be constructed as described in Section 3.3
although their usage here is entirely different in the sense that the mixing distribution is only used
to construct a smooth estimate of px. We arrive at some estimate of the marginal distribution

p̂x =
k∑

j=1
Po.x|λ̂j/q̂j .8/

leading to smoothed estimates of the population size

N̂EB-NPMLE =
m∑

l=1

fl

1− exp
{−.l+1/p̂l+1=p̂l

} , .9/

where we attach a subscript EB to the population size estimate NNPMLE in equation (9) to point
out that a smoothed estimate p̂x of the marginal distribution is used to construct an estimate
of N.

Other ways of estimating the mixing distribution q.λ/ in
∫ ∞

0 Po.x|λ/q.λ/dλ are possible as
well. For example, we could use the empirical distribution itself as an estimator of the mixing
distribution. Alternatively, we could think of a parametric mixing distribution such as a gamma
distribution for q.λ/. We do not follow up on this here since our simulation work has indicated
that these approaches perform less satisfactorily than the purely non-parametric N̂EB-Robbins
and the smoothed non-parametric N̂EB-NPMLE.

In what follows we continue the simulation study and provide evidence that the suggested
empirical Bayes estimator performs better than the conventionally used estimators N̂C and, in
particular, N̂Z. Besides these two conventional estimators we shall consider the non-paramet-
ric estimator N̂EB-Robbins and the smoothed mixture model version N̂EB-NPMLE. The design of
the simulation corresponds to that used previously. Samples of counts X1, . . . , XN were drawn
from a two-component mixture of Poisson densities: X∼ 0:5 Po.1/+ 0:5 Po.λ/, evidently with
equal weights q1 =q2 =0:5. The population size was set to N =100 and 1000 replications were
used. Here, we shall concentrate on the main findings. More details are available in the on-line
supporting information. We see from Table 2 that both empirical Bayes estimators perform bet-
ter with respect to their standard error and root-mean-square error than the other estimators
adjusting for heterogeneity. If we compare the two empirical Bayes estimators it appears that
the estimator that is based on the non-parametric mixture model has smaller variance, which is
reflected also in a better mean-squared error.

5. Application to spatial analysis of scrapie in Great Britain

Following the results of the previous section we shall concentrate on using the NPMLE of the
mixing distribution as the smoothed empirical Bayes estimate of the prior distribution for fur-
ther analysis, in particular p̂x =Σk

j=1Po.x|λ̂j/q̂j, as derived in equation (8). In the first step, this
will be done using the entire SND data, unstratified by county. Once an estimate for the mixing
distribution has been achieved, a smoothed county-specific estimate of the population size can
be developed as follows:

N̂EB-NPMLE,i =
m∑

l=1

fl,i

1− exp{−.l+1/p̂l+1=p̂l}
, .10/
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Table 3. Estimated mixture models for k equal to 1, 2, 3, 4 and 5 (NPMLE)
components with associated estimator of the size of the scrapie–affected popula-
tion of holdings from the unstratified SND database 2002–2006†

k λ̂j q̂j log{L(Q̂)} BIC Discrete mixture model based results

N̂EB-NPMLE.k/ N̂NPMLE.k/

1 2.33 1.00 −1279.0 2561.4 572 (9.4) 572 (9.4)
2 0.97 0.88 −865.4 1740.8 776 (32.4) 793 (34.6)

9.80 0.12
3 0.67 0.80 −807.8 1632.4 869 (44.8) 946 (65.8)

5.46 0.17
19.10 0.03

4 0.56 0.75 −802.3 1628.2 896 (48.0) 1036 (60102)
4.03 0.19

10.35 0.05
23.58 0.01

5 0.01 0.27 −801.2 1632.7 916 (25.5) 528694 (419663)
1.08 0.54
5.13 0.14

11.76 0.03
23.98 0.01

†Standard errors are given in parentheses.

where fl,i is the frequency of holdings with l cases in the ith county and p̂l is taken from equation
(8).

5.1. Determining the non-parametric maximum likelihood estimate for the scrapie
notification database data
We have seen in Section 4 by using the ratio plot that there is strong evidence for heterogeneity
captured by a mixing distribution. We consider the marginal distribution over all counties as
available from Table 1: f1 = 298, f2 = 89, f3 = 42, . . . , f29 = 2. We use this (truncated) count
distribution to determine the maximum likelihood estimators for the various possible mixture
models. The results are provided in Table 3. For each number of components k, starting with the
homogeneous case k = 1, the estimated mixture model Q̂ is provided, the Poisson parameters
λ̂j and associated component weights q̂j. This is followed by the log-likelihood log{L.Q̂/} and
the BIC-value −2 log{L.Q̂/}+ .2k − 1/ log.n/. Note that two estimates of the population size
of scrapie-affected holdings are given. One is based on the direct computation using the mixture
model estimated as provided in equation (3); the other is the empirical Bayes estimate by using
the estimated mixture as prior distribution (8). It is evident from the last two columns in Table 3
that the empirical Bayes estimate of the population size is less sensitive to the choice of the
number of components. Furthermore, the empirical Bayes estimate is not prone to spurious
estimates as is the conventional mixture-model-based estimator. We have already mentioned
that Fig. 2 supports that there is considerable evidence for a monotone increasing pattern. In
addition, the estimate of the posterior mean based on the estimated mixture model with four
components (this is what BIC suggests) shows that this monotone pattern is met. Note that
the last two columns in Table 3 contain also (in parentheses) an estimate of the standard error
of the respective population size estimate. This was achieved by applying the non-paramet-
ric bootstrap as adapted to capture–recapture situations by van der Heijden et al. (2003) and
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Böhning (2008). It is evident from the last column in Table 3 that the conventional mixture-
model-based estimator is prone to extreme variance inflation when the number of components
becomes large.

5.2. Estimating the number of hidden scrapie-affected holdings per county
We now apply these results to the individual counties by using equation (10). Note that we
are using the same mixture distribution in equation (10) estimated from the entire SND data.
This is necessary since the county-specific case distributions are frequently very sparse. Take for
example county 1 in Table 1: we find f1,1 = 2, f2,1 = 1 and f3,1 = 1, so n1 = 4. It is clear that a
reliable estimation of a mixing distribution is not possible from this count distribution. Hence
we use the mixing distribution that is estimated from the entire data set and assume that the
heterogeneity found for the entire data set is also valid in each county. Then we compute the pre-
dicted number of scrapie-affected holdings by applying the weight [1−exp{−.l+1/p̂l+1=p̂l}]−1

to the frequency fl,i of count l in the ith county and summing over all observed frequencies fl,i,
leading to equation (10). This process is very similar to indirect standardization that is used in
epidemiologic methodology (see Waller and Gotway (2004), page 17). The results are provided
in Table 4. Details on the computations of standard errors for the estimated population size are
found in Appendix B. Note that in a county i with all fl,i = 0 except one, say fl,j > 0, there is
no variation in the count distribution and, hence, there is no estimated standard error (at least
not without making further assumptions). In addition, two further measures are computed.
The observed–hidden ratio defined as ni=.N̂i − ni/ and the completeness measure defined as
ni=N̂i, provided as the last two columns in Table 4. The completeness ranges between 48%
and 99%. Fig. 3 shows a scatter plot of the completeness against the observed count (on the
log-scale) of scrapie-affected holdings. There is no evidence for a specific pattern, though the
variation of completeness seems to decrease with increasing observed count of scrapie-affected
holdings. The median observed–hidden ratio is 1.29 with 95% non-parametric confidence inter-
val (1.11, 1.43) and the completeness is 56.36 with 95% non-parametric confidence interval
(52.62%, 58.83%).
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Fig. 3. Scatterplot of completeness of the surveillance stream per county against the observed count of
scrapie-affected holdings per county
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Table 4. Sizes of observed scrapie-affected holdings (n), estimates of
the total population size of scrapie-affected holdings (N̂), observed–hid-
den ratio o=h and completeness of the SND by county, 2002–2006

County n N̂ Confidence interval o=h Completeness (%)
for N

1 4 7 5.3–8.3 1.4 59
2 4 6 4.3–7.1 2.3 70
3 1 2 —† 0.9 48
4 1 2 —† 0.9 48
5 7 9 7.1–11.4 3.1 76
6 11 16 13.2–18.7 2.2 69
7 19 33 29.2–36.5 1.4 58
8 11 20 17.5–22.3 1.2 55
9 45 77 71.8–82.5 1.4 58

10 5 10 8.8–11.1 1.0 50
11 1 2 —† 0.9 48
12 1 1 —† 11.8 92
13 3 5 3.8–6.7 1.3 57
14 3 5 4.1–6.2 1.4 59
15 1 2 —† 2.0 66
16 10 17 14.1–19.2 1.5 60
17 1 2 —† 0.9 48
18 5 11 —† 0.9 48
19 2 4 2.7–4.5 1.2 55
20 1 2 —† 0.9 48
21 4 7 5.3–8.3 1.4 59
22 9 14 11.6–16.1 1.9 65
23 7 13 10.5–14.7 1.2 56
24 2 4 —† 0.9 48
25 3 5 3.3–5.9 1.9 65
26 8 16 14.1–17.2 1.0 51

(continued)

Finally, note that the map is based on an estimated size of the scrapie population in county
i, given as N̂EB-NPMLE,i =Σm

l=1ŵlfl,i, where the estimated weights

ŵl = 1
1− exp{−.l+1/p̂l+1=p̂l}

do not depend on the county index i. Hence, we have that

∑
N̂i =

∑
i

m∑
l=1

ŵlfl,i =
m∑

l=1
ŵl

∑
i

f̂ l,i =
m∑

l=1
ŵlfl = N̂,

where fl =Σifl,i, so the margin (over counties) of the county-specific estimates of the size of
the scrapie population and the estimate of the size of the scrapie population, unstratified by
county, coincide.

Fig. 4 shows the geographical distribution of county-specific completeness. The completeness
is fairly stable with most counties in the 50–59% category and fewer counties in the upper com-
pleteness categories. Note that, as well as providing completeness and observed–hidden ratios,
we can also estimate adjusted measures of occurrence of disease for each county. However, for
our particular case, this would not have a clear biological interpretation as annual data were
pooled to increase the power of our analyses.
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Table 4 (continued )

County n N̂ Confidence interval o=h Completeness (%)
for N

27 7 13 11.2–14.9 1.2 54
28 3 4 2.6–5.6 2.7 73
29 4 6 4.6–8.1 1.7 63
30 1 2 —† 0.9 48
31 3 6 4.7–6.8 1.1 52
32 1 2 —† 0.9 48
33 2 3 2.0–4.4 1.7 63
34 37 58 53.1–62.6 1.8 64
35 2 4 —† 0.9 48
36 2 4 —† 0.9 48
37 75 137 131.1–143.8 1.2 55
38 11 19 16.7–21.7 1.3 57
39 44 75 70.0–80.5 1.4 58
40 25 34 30.4–37.7 2.8 73
41 11 17 14.8–19.3 1.8 65
42 11 18 15.7–21.1 1.5 60
43 2 4 2.7–4.5 1.2 55
44 7 12 9.2–13.8 1.6 61
45 1 2 —† 0.9 48
46 3 6 —† 0.9 48
47 2 3 1.9–4.4 1.8 64
48 1 1 —† 11.8 92
49 1 2 —† 0.9 48
50 2 4 —† 0.9 48
51 1 2 —† 0.9 48
52 17 32 29.8–35.2 1.1 52
53 1 1 —† 71.6 99
54 1 2 —† 0.9 48
55 65 122 117.0–127.9 1.1 53
56 4 7 5.5–7.7 1.5 60

†No estimated standard error available.

6. Discussion

We have developed an estimator here with lower bound properties similar to those of Chao’s
estimator but with potential gains in precision. In addition, the estimator is very suitable for
dealing with highly stratified data such as in our application. However, the approach requires
assumptions and one of them is that the heterogeneity in the strata is similar to the heterogeneity
observed and estimated in the unstratified population. This assumption seems reasonable for
the application that was discussed here. It would be desirable to investigate possible extensions
of the model, including the incorporation of covariates in the model.

In addition the estimator can be used in other applications where estimates of population size
for a large number of strata are of interest. This was the motivation behind the application to
the scrapie data where county-specific estimates of completeness of surveillance are of interest.
We note that different spatially specific stratifications are possible, provided that our simplified
assumption of homogeneity across the units of interest remains generally valid or extensions
to the model to account for heterogeneity are incorporated, for scrapie or other conditions.
One application would be to assess the completeness of surveillance by geographical catchment
areas representing the organizational units of a surveillance system.
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Fig. 4. Map of estimated completeness at the county level for the SND data, 2002–2006
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Appendix A: Proofs of theorems 2 and 3

A.1. Proof of theorem 2
For the first part, it is clear that f1 log.p1/+f2 log.p2/ is maximal for p̂1 =f1=.f1 +f2/, which is attained
for λ̂=2f2=f1. For the second part, we see that, with ex =E.fx|f1, f2;λ/=Po.x|λ/N,

ex =Po.x|λ/N =Po.x|λ/

(
e0 +f1 +f2 +

∞∑
j=3

ej

)
so that

e0 + e+
3 ={1−Po.1|λ/−Po.2|λ/} .e0 + e+

3 /+{1−Po.1|λ/−Po.2|λ/} .f1 +f2/

with e+
3 =Σ∞

j=3 ex. Hence

e0 + e+
3 = 1−Po.1|λ/−Po.2|λ/

Po.1|λ/+Po.2|λ/
.f1 +f2/

and

e0 =Po.0|λ/.f1 +f2 + e0 + e+
3 /=Po.0|λ/.f1 +f2/+Po.0|λ/

1−Po.1|λ/−Po.2|λ/

Po.1|λ/+Po.2|λ/
.f1 +f2/

= Po.0|λ/

Po.1|λ/+Po.2|λ/
.f1 +f2/= f1 +f2

λ+λ2=2
:

Plugging in the maximum likelihood estimate λ̂=2f2=f1 for λ yields the desired result.

A.2. Proof of theorem 3
Consider

pj =
∫ ∞

0
exp.−λ/λj=j! q.λ/dλ

with unknown q.λ/ for λ> 0. Then, by means of the Cauchy–Schwarz inequality for random variables X
and Y ,

E.XY/2 �E.X2/E.Y 2/

we have that {∫ ∞

0

X︷ ︸︸ ︷√
exp.−λ/λ.j−1/=2

Y︷ ︸︸ ︷√
exp.−λ/λ.j+1/=2 dλ

}2

�
∫ ∞

0

X2︷ ︸︸ ︷
exp.−λ/λ.j−1/ dλ

∫ ∞

0

Y2︷ ︸︸ ︷
exp.−λ/λ.j+1/ dλ,

or

.j! pj/
2 � .j −1/! pj−1.j +1/! pj+1

or, finally, jpj=pj−1 � .j +1/pj+1=pj .

Appendix B: Standard error estimates of county-specific population size estimates

It is also possible to derive estimates for the standard errors of N̂EB-NPMLE,i =Σm
l=1 ŵlfl, i = ŵTfi. Here the

estimated weight wl is given by ŵl =1={1−exp.−.l+1/p̂l+1=p̂l/}. The variance conditional on ŵ is simply
ŵTcov.fi/ŵ with cov.fi/=Λfi − fifT

i =ni, where ni =Σm
l=1 fl, i and Λfi the diagonal matrix with elements fl, i,

l=1, . . . , m, on the diagonal. This variance estimate is dependent on the vector fi and will be different for
each county, but it is conditional on

ŵl = 1
1− exp{−.l+1/p̂l+1=p̂l}
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for l=1, . . . , m, which is identical for each county. Although a conditional variance estimate seems appro-
priate for comparison of variation within the county strata, it might sometimes be desirable to provide
an unconditional variance estimate. This can be achieved by adding an additional variance component
due to the random error involved in the estimate ŵ (for more details on variance computations in the
capture–recapture setting see Böhning (2008)), so that the unconditional variance estimate becomes

̂var.N̂EB-NPMLE, i/= ŵT cov.fi/ŵ + fT
i cov.ŵ/f̂ i,

where cov.ŵ/ is the covariance matrix for the vector w. This needs to be determined only once for the entire
data set but will depend on the estimator that is used to estimate p̂l in

ŵl = 1
1− exp{−.l+1/p̂l+1=p̂l}

and it is best done by using the non-parametric bootstrap that was mentioned in Section 4.
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