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We propose 2 related models for the meta-analysis of diagnostic tests. Both models are based on the
bivariate normal distribution for transformed sensitivities and false-positive rates. Instead of using the
logit as a transformation for these proportions, we employ the 7, family of transformations that contains
the log: logit and (approximately) the complementary log. A likelihood ratio test for the cutoff value
problem is developed, and summary receiver operating characteristic (SROC) curves are discussed.
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The correct diagnosis of a specific condition is of eminent and
prime interest in psychology and medicine. Diagnostic tests are
common tools to discern the presence or absence of a condition, or
to screen patients who are at risk to develop a condition. Many
diagnostic tests are based on scores derived from brief question-
naires or rely on a single biomarker. Hence they will not always
yield a correct diagnosis. When primary studies assessing the
quality of a diagnostic test are available, conducting a diagnostic
meta-analysis has become a key tool to investigate the available
information on a diagnostic test (Egger, Smith, & Altman, 2001;
Hasselblad & Hedges, 1995; Schulze, Holling, & Bohning, 2003;
Sutton, Abrams, Jones, Sheldon, & Song, 2000). In a primary
diagnostic study, the quality of a diagnostic test is often measured
in terms of the sensitivity (true-positive rate) and the specificity
(true-negative rate = 1 — false-positive rate) of the test; that is,
parallel to a gold standard procedure, which defines the presence
of a certain condition, the diagnostic test is performed and then the
sensitivity (the ratio of the number of true-positive cases identified
by the diagnostic test and the number of positive cases according
to the gold standard) and the specificity (the ratio of the number of
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true negatives identified by the test and the number of true-
negative cases) can be calculated.

Heterogeneity in Diagnostic Meta-Analysis

One can expect the observed sensitivities and specificities to
vary across primary studies. This is due to two main reasons:

1. Different authors will calibrate a test differently. Given a
score from a questionnaire or a level of a biomarker, a researcher
will have to decide which minimum value (or maximum value)
should yield a positive result of the test. This value is known as the
cutoff value. Sometimes, especially in screening tests for rare
conditions, a cutoff value will be set to achieve a certain level of
sensitivity such as 95%, often leading to small specificity, but
mostly some kind of compromise between sensitivity and speci-
ficity is found. Note that both approaches lead to a variety of cutoff
values. In general, a population-specific calibration aiming at a
certain level of sensitivity will result in different cutoff values for
different populations.

2. When a diagnostic test is applied to several populations, one
can expect different sensitivities and specificities, even if the same
cutoff value is used.

In a diagnostic meta-analysis, one evaluates the quality of a
diagnostic test by integrating over data from the primary studies,
which usually include sensitivities and specificities; some of these
primary studies might not report the cutoff value. This challenge,
dealing with inhomogeneous and typically unknown cutoff values,
is known as the cutoff value problem.

Receiver Operating Characteristic and Summary
Receiver Operating Characteristic Curves

At the primary study level, an important graphical tool for
choosing a cutoff value is the receiver operating characteristic
(ROC) curve of a test. This is the curve of sensitivity versus the
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false-positive rate as the cutoff value varies (see Pepe, 2000, 2004,
for more statistical background on ROC curves). Figure 1 shows
an example of such a curve. In many of psychology’s subfields,
ROC curves have been recognized as valuable tools. Examples
range from educational psychology (e.g., Kettler & Elliott, 2010)
to clinical psychology (e.g., Bredemeier et al., 2010; Cornell,
Peterson, & Richards, 1999; White & Grilo, 2011) and industrial
and organizational psychology (e.g., Lehr, Koch, & Hillert, 2010;
Stillman & Jackson, 2005). On the level of a primary study, ROC
curves help to understand how the diagnostic accuracy of a test
with a binary outcome depends on the cutoff value.

As information on diagnostic accuracy of various tests mounts,
summary receiver operating characteristic (SROC) curves provide
a concept on the meta-analytic level corresponding to ROC curves.
To obtain an SROC curve, typically the expectation of the sensi-
tivity is computed conditional on a given false-positive rate, a
model, and parameters. SROC curves look similar to ROC curves
(see Figure 1) and have a similar interpretation, but the difference
is as follows. Whereas the ROC curve relates the sensitivity to the
false-positive rate in a specific study, the SROC curve relates the
sensitivity to the false-positive rate in a collection of studies (Jones
& Athanasiou, 2005; Sutton et al., 2000; Walter, 2002). It should
be noted that typically meta-analytic approaches do not aim to pool
ROC curves stemming from primary studies; so even if primary
studies do not report ROC curves but merely 2 X 2 tables of
diagnostic accuracy, meta-analytic approaches that include SROC
curves are nevertheless useful for the following four reasons. First,
the majority of examples of real-world data that we reanalyzed
show a substantial amount of heterogeneity of diagnostic accuracy
data, and at least some of it is due to the variability of the
underlying cutoffs. Since one of the key aims of meta-analysis is

A B

to explain observed heterogeneity, it is crucial to include the
underlying SROC curve in any statistical approach. Second, one
can also use the SROC curve to predict the outcome of a planned
diagnostic study: Given an SROC curve, and a level of sensitivity
that the diagnostic study aims at (say, 95%), one can predict the
false-positive rate; this obviously also works the other way round.
Even when not planning a new study, one can use the SROC, at
least as a sanity check, when choosing cutoffs to obtain a certain
sensitivity or false-positive rate given the other one. Third, one can
compare tests in detail on the meta-analytic level using their
SROCs. For example, given two tests with similar pooled pairs of
sensitivity and false-positive rate, it could be that not one test is
consistently better than the other (see Figure 2); one test could be
better as an instrument for mass screening in low-risk settings
(where a high false-positive rate is unacceptable) and the other one
better suited for high-risk situations where high sensitivity is key.
Fourth, the SROC curve could be used to compute measures of
diagnostic accuracy that (in some sense) depend on an ROC
curve-like area under the curve (Pepe, 2000), Q" (Gatsonis &
Paliwal, 2006), or Youden’s index (Bohning, Bohning, & Holling,
2008; Youden, 1950); computations at the meta-analytic level then
exhibit greater validity (Gatsonis & Paliwal, 2006).

Current Models for Diagnostic Meta-Analysis

A variety of models for diagnostic meta-analysis have been
developed (see Hamza, Reitsma, & Stijnen, 2008, for a recent
comparison of many models); we only give a short account of
models with SROC curves. For a long time the recommended way
to derive an SROC curve has been the approach by Littenberg and
Moses (1993) and Moses, Shapiro, and Littenberg (1993). Since
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Figure 1. Cutoff values, receiver operating characteristic (ROC) curves, and summary receiver operating

characteristic (SROC) curves. (A) Densities of fictional populations with a condition (continuous line, standard
normal distributed) and without (dashed line, normal with mean 2 and standard deviation 1.5). On the x-axis the
(continuous) cutoff value is varied, and every test result that is smaller than the cutoff is a positive result. The
vertical line is a cutoff value that yields a sensitivity of 95%; the shaded areas are the sensitivity and specificity,
respectively. (B) The ROC curve that results from the populations on the left-hand side. Note that for discrete
cutoff values, the ROC curve would be a step function. (C) Fictional pairs of sensitivity and false-positive rate
that could stem from diagnostic studies about a test with an ROC curve as in Figure 1B. The curve is identical
to the one in Figure 1B and could serve as an SROC curve in this example.
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Two SROC curves
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Figure 2. Summary receiver operating characteristic (SROC) curves of

two tests with comparable accuracy. These two fictional SROC curves
have almost identical area under the curve, but the usefulness of the test
depends on the given situation. For mass screening, a test with the solid
line SROC curve might be suitable, since its sensitivity is acceptable for
small false-positive rate; a test with the dashed SROC curve could be used
in a high-risk situation where the identification of every positive is key and
higher false-positive rates are acceptable. Conducting a meta-analysis
without an SROC might not reveal this difference. This underlines the
usefulness of SROC curves, even when no receiver operating characteristic
curves are reported in primary studies.

the Littenberg and Moses approach has several shortcomings,
several authors have seen the need for alternative approaches
(Arends et al., 2008; Rutter & Gatsonis, 2001). Among these are
refinements of the Littenberg and Moses approach using random
intercepts (Berkey, Hoaglin, Mosteller, & Colditz, 1995; van Hou-
welingen, Arends, & Stijnen, 2002) and the proportional hazards
model (PHM; Holling, Béhning, & Bohning, 2012). The random-
intercepts approach has been shown to have large bias for small
sample size (Hamza et al., 2008). The other alternatives are the
hierarchical SROC model (HSROC) of Rutter and Gatsonis (2001;
see also Macaskill, 2004) and the bivariate normal approach of
Reitsma et al. (2005). These two alternatives have been shown to
lead to the same family of SROC curves, and in fact the models are
reparameterizations of each other if one does not use the fully
Bayesian approach of Rutter and Gatsonis (Harbord, Deeks, Egger,
Whiting, & Sterne, 2007). We will therefore refer to these two
models as the HSROC, though we will rather follow Reitsma et al.
with respect to technical details. Chu, Guo, and Zhou (2010)
extended the HSROC by studying other link functions than the
logit used in the HSROC. Many of the mentioned models can
be extended by performing meta-regression; that is, features of the
primary studies are taken as covariates for the parameters of the
model. For example, the type of the gold standard procedure might
vary and explain part of the variation in diagnostic accuracy.

The HSROC has been applied for meta-analysis and is recom-
mended in the current meta-analytic literature (Leeflang, Deeks,
Gatsonis, & Bossuyt, 2008). At the meta-analytic level, the
HSROC proposes a bivariate normal distribution of the logit-
transformed sensitivities p and false-positive rates g; a coarse
approximation to the HSROC is

(log it(p), logit (g)) ~ N(u, %), ()

for some . € R?, and a 2 X 2 covariance matrix 2. The literature
on the HSROC model offers various alternative ways to model the
level within a study. Typically, one assumes a binomial model at
the primary study level (see Hamza et al., 2008, for more details).
This leads to random effects at the within-study level, and since the
variance of a binomial variable only depends on its mean, the
variances of these random effects are assumed to be known and
derived from the observed sensitivities and false-positive rates.
One can see the model as a linear mixed model (LMM) or a
nonlinear mixed model, depending on whether one incorporates
the binomial error structure via an empirical logit transformation
(Reitsma et al., 2005) or directly (Harbord et al., 2007). In the
following presentation of the HSROC and the subsequent gener-
alization, we adopt the LMM approach.

Disadvantages of the Logit Transformation

The following three shortcomings of the HSROC motivate us to
seek generalizations. First, the choice of the logit transformation is,
up to a certain degree, arbitrary. Several authors realized this. Chu
et al. (2010) demonstrated how to generalize the HSROC by using
the complementary log-log transformation, and a proportional
hazards family of models based on the log transformation has also
been developed (Holling et al., 2012). Second, the SROC curve of
the HSROC is not identifiable if only a single pair of sensitivity
and false-positive rate is available from each study (Arends et al.,
2008; Hamza, Arends, van Houwelingen, & Stijnen, 2009; Riicker
& Schuhmacher, 2009); that is, without further (implicit) assump-
tions the SROC curve, which is a straight line on the logit space,
cannot be identified. Note that linearity on logit space is a further
(implicit) assumption. Third, in many examples, observed sensi-
tivities tend to cluster around .95, leading to situations where the
logit-transformed observed sensitivities are highly skewed (i.e.,
nonnormal), and hence the distributional assumptions of the
HSROC are doubtful. All three shortcomings are related to the
logit transformation. We aim to address these shortcomings by
studying models based on a family of transformations that varies
between the logit and the log, the 7, family of transformations
given by

t(p) = a log(p) — (2 — a) log (1 — p),

here p € [0, 1] and 0 = o = 2. Note that for o« = 1 the logit is
obtained, and for &« = O one obtains 2 log. Apart from the
degenerate cases a = 0 and o = 2, the family is unbounded and
sigmoid, and it is asymmetric apart from the case o = 1. It is this
asymmetry that qualifies the 7, transformation to serve as a gen-
eralization for the logit. For o = 1.4 a good approximation of the
complementary log transformation (modulo a constant) is ob-
tained, that is, 7, 4(x) ~ 1.42 log(—log(1 — x)) and 7, ¢(x) =~ —1.42

log(—log(x)) (see Figure 3). Since the 7, family incorporates the F3
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of the subject, resulting in inhomogeneous cutoff values even
within this primary study. Hence we expect the cutoff value
problem to be present in the dementia and the MCI part of the
MMSE data. We will reanalyze the data from Mitchell with our
models, taking into account the cutoff value problem. We will also
compute and compare the SROC curves of the dementia and MCI
data and thus answer the question whether the MMSE is better
suited to diagnose dementia or MCI.

The validity of self-reports of smoking has been questioned on
grounds of the assumption that smokers underestimate their con-
sumption (U.S. Department of Health and Human Services, 1990)
or deny smoking at all (Murray, O’Connell, Schmid, & Perry,
1987). Although biochemical tests to detect smoking are available,
they are expensive compared to questionnaires and might lead to
refusal (Velicer, Prochaska, Rossi, & Snow, 1992). The meta-
analysis of Patrick et al. (1994) examined primary studies on
self-reported measures of smoking. The primary studies are
grouped in two categories: self-administered questionnaires (SAQ)
and interviewer-administered questionnaires (IAQ). The gold stan-
dard in all the primary studies was a biochemical measure, though
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Figure 3. The ¢, family and the approximation to the complementary log.
The solid lines (from top to bottom) are ¢, = logit, #, 4, 1, g, and 1, = 2 log.
The dashed line, which almost coincides with 7, 4, is the complementary
log transformation multiplied by a constant. Since ¢, is symmetric (7, (x) =
—t,_,(1 — x)), the figure only shows examples for a = 1.

logit and log and approximates the complementary log well, the
models we are proposing generalize three models: the HSROC, its
generalization with the complementary log (Chu et al., 2010), and,
with respect to the SROC curves, the PHM that builds on the log
transformation (Holling et al., 2012).

Outline

We will develop two models for meta-analysis of diagnostic
tests based on the 7, family, discuss the SROC curves of these
models, and illuminate the cutoff value problem. As an illustration
of our methods, we reanalyze data from a meta-analysis of the
Mini-Mental State Examination (MMSE) by Mitchell (2009) and
from a meta-analysis by Patrick et al. (1994), dealing with the
accuracy of self-reports of smoking.

The MMSE, which has its origin in Folstein, Folstein, and
McHugh (1975), is a short interview that screens for cognitive
deficits and whose primary uses are the diagnosis of dementia, to
assess the severity of cognitive impairment and to assess the effect
of treatment by using the test repeatedly over time. In Mitchell
(2009) the MMSE’s ability to diagnose dementia and mild cogni-
tive impairment (MCI) is analyzed. Scores in the MMSE can range
from O to 30; scores that are 24 or less indicate some cognitive
impairment, and the lower the score, the more severe the deficit.
Numerous cutoff values are suggested in the literature (Crum,
Anthony, Bassett, & Folstein, 1993; Folstein et al., 1975; Grigo-
letto, Zappala, Anderson, & Lebowitz, 1999); the main reasons for
this are that the educational background influences the score and
that the MMSE can be used to diagnose mild conditions as well as
severe ones. The cutoff values in Mitchell span from 17 to 28; one
primary study distinguishes between the educational background

several different ones had been used across primary studies. The
original data from Patrick et al. contain much more detail about the
primary studies, but for the purpose of showcasing the developed
methodology, we focus on the question whether SAQ or IAQ is
more reliable. As in the MMSE case, the data are highly hetero-
geneous, again making it plausible that a cutoff value problem is
present.

The two models that we present in the following are closely
related and are both meant for data from diagnostic studies with
binary outcome. In the first model we assume that the ?,-
transformed sensitivities and false-positive rates follow a bivariate
normal distribution; this leads to a model generalizing the approx-
imation to the HSROC (Equation 1). There are several ways to use
the t, transformation here: One can restrict its use to one of
sensitivity and false-positive rate and use the logit for the other
one, or one can use different values of a for sensitivity and
false-positive rate. Heterogeneity among the studies is modeled
with the covariance matrix of this bivariate normal distribution, the
cutoff value problem being incorporated as well.

The second model refines the first and builds upon the obser-
vation that some variance of the sensitivities and false-positive
rates is not due to heterogeneity but due to the fact that the number
of true-positive cases and the number of false-positive cases in
each study follow a binomial distribution (i.e., it incorporates
random effects at the study level like the HSROC). The second
model needs as data, apart from sensitivities and false-positive
rates, the frequencies of people with and without the condition. For
o = 1, the second model reduces to the HSROC. We discuss
SROC curves for both models and parameter estimation.

We include the first model mainly to illustrate the idea of a
bivariate model and transformed proportion data in a simple case.
Although it is simple, we stress that inferences obtained from it
(pooled diagnostic accuracies and SROC curves) are comparable
to these of the more advanced second model. It is also noteworthy
that when sample sizes in the primary studies are large, the second
model is essentially identical to the first. In this sense the second
model asymptotically approaches the first.
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The Models

In the following let N denote the number of primary diagnostic
studies on a diagnostic test or instrument of interest. One ultimate
interest is a condition that this test is targeting to identify (e.g., in
the case of the MMSE, meta-analysis dementia or MCI). In the ith
study we have m; persons with the condition and n, persons
without the condition, of which y; persons with the condition are
diagnosed correctly by the test in question and z; persons without
the condition are diagnosed incorrectly (see Table 1). So y/m;
estimates the sensitivity p; of the test, and z/n; estimates the
false-positive rate g, of the test in the ith study. Clearly, conditional
upon the ith study, y; is binomial with mean p, and variance p,(1 —
p.)/m;, and z; is binomial with mean ¢, and variance ¢g,(1 — g,)/n,.
The meta-analytic sampling model has two levels. The first level
describes the sampling of studies with parameters (p;, ¢;), and the
second level describes the sampling within the ith study. As
described above, in the second level we assume a binomial sam-
pling model, whereas we assume for the first level a bivariate
normal model. It is well known that in these hierarchical two-level
models that the unconditional means are E[E(y/m,|p,)] = E(p,) and
E[E(z;/n;]g,)] = E(g;), whereas the unconditional variances have
two components: the variance stemming from the variation be-
tween studies and the within-study variance.

The First Model

In diagnostic problems the study sizes m; and n; fori =1, ...,
N are typically large (>100), as illustrated in the examples. Hence
in these situations it can be assumed that the estimators
p; = y/m; and §; = z/n, yield approximations of p, and ¢, of
acceptable precision, so that we assume for the first model

pi=p; and g =g (2)

This assumption implies that p;|p; and §g; have negligible vari-
ance; the second model will relax this assumption.

In a next step we concentrate on modeling the bivariate distri-
bution of the pairs (p;, ¢;). We view each pair (p,, ¢g;) as a
realization of a random variable (p, ¢). First note that if p, grows,
then g, also increases; this will often be because a large sensitivity
requires a high (or very low, depending on the poling of the test)
cutoff value, thus producing also many false-positive results.
Moreover, note that this fact still holds true if we transform p; and
g; with a monotone transformation, say, log, logit, or 7. Hence for
a,, o, € [0, 2], it is reasonable to assume that 7, (p) and 7, (g) are
(positively) correlated; this will be incorporated in our model. The
t,, transformation is motivated by the fact that in meta-analysis of
binary diagnostic tests, the relationship of p; and ¢, is usually
nonlinear. One of the HSROC’s implicit assumptions is that the
logit-transformed p; and ¢, are roughly linear; for several real-

Table 1
Data from the ith Study in a 2 X 2 Table

Test With condition Without condition
Positive Vi Z;
Negative m; —y,; n—z
Total m; n

i

world data sets we observed that the relationship of log(p;) and
log(g,) is roughly linear. Since the 7, family of transformations
includes the logit and (up to a fixed factor) the log, it mediates
between the two transformations. To cope with study heterogene-
ity, we assume that the transformed study parameters (z,(p),
1,(@)) follow a bivariate normal distribution with mean

po= (s o)’

and covariance matrix

o} o
=[G 5)

As we explained above on the within-study level, p; and ¢, are
positively correlated when the cutoff is allowed to vary (see Figure
1). On the meta-analytic level some of this variation due to the
cutoff value will still be observable, since different authors cali-
brate the test to their needs. So on the meta-analytic level o models
the (likely positive) covariation of £, (p) and t,(q) potentially
induced by a cutoff value variation, whereas o7 = 0 and o3 = 0 are
measures for the heterogeneity among studies. The parameters o,
and o, could be interpreted as shape parameters.

Let us discuss the SROC curve of the first model. The SROC
curve can be described as the relationship of the conditional mean
E(tu,,(p)|tmq(q)) to ,,(¢)- A standard result about bivariate normal
distributions shows that 7, (p) is

N, + = I P
P o (ta,(@) — W2), 07 a0

Note that |o| = o,0,, following from the Cauchy—Schwarz in-

equality, so that the variance above involving is always

0,03
. . ()- . . ..
nonnegative. Setting 6 = —;, we achieve the following conditional
g

2
expectation:

E(t, (Pt (@) = (w1 — Op2) + 61, (q). 3)

Hence in the special case that (u; — 0p,) =0, o, = o, = 2, we
have

2 log(p) = 1,,(p) = b1,,(q) = 26 log(q).

and hence

p =4 )
which is called the Lehmann family, proposed by Le (2006) to
describe ROC curves. The model (Equation 4) is also called the PHM,
and its application to SROC modeling is discussed in Holling et al.
(2012). Note that Equation 3 is a generalization of Equation 4. We can
now easily calculate the resulting SROC curve for the first model:

p =t (k) — Bp) + 61,,(9)). (5)

Note that for some values of « the inverse £, ' has a closed form; even
when no closed form exists, the inverse is easily determined numer-
ically.

The Second Model

In a nutshell, we obtain the second model from the first by dis-
carding assumption Equation 2 and assuming that p; and §; are
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realizations of binomial variables. Nevertheless we want to model the
t-transformed study parameters as realizations of some kind of
bivariate normal distribution. Again, we use p; to denote the true
sensitivity of the ith study and ¢, to denote the true false-positive rate
in the ith study. It is natural to model y, and z; as realizations of a
binomial variable with parameters p; and g,, respectively. Then

i (1 = p; i (1 =g
Vm(z) _ Bﬁggfﬂ,andVa%Ej _al=a)
m, m

i i i n;

Using the delta method, we obtain

i N(O‘p(l _pi)_(2—otp))2 o,
Var(%(a)) = mp1 = py) =:d; (6)

and

g - C-a)
Var<tﬂ”<;i>> N ng(l — q) = d @

If the studies at hand are entirely homogeneous, that is, p, = p, =
...=pyand g, = g, = ... = gy, then the above variances would
explain all the observed variance. To cope with study heterogene-
ity, we need to incorporate additional variance terms into the
modeling. We assume that the transformed observed diagnostic
accuracies (7,,(p)), 1,,(4,)) follow a bivariate distribution with mean
W = (@, My)'. Part of the variance of this distribution will be
explained by the variances of the form (Equation 6), but the
remaining variance, due to study heterogeneity, is incorporated
into the model as follows: We assume that there are o, o2, and o2
such that the covariance matrix ¥, for the ith study is provided as

o] o

Ei:<0- 0-§>+Dia (8)

where D, is the 2 X 2 diagonal matrix with nonzero elements d?
and d3. This can be seen as an LMM with known variances of
random effects:

(tu,,(ﬁi)ytuq(‘?i))r =p+d+te,

with 3, ~ M0, D)), &, ~ N(0, ) and 3, €; independent for i, j =
1, ..., N. It should be noted that the full likelihood of this model
(see Appendix A) contains the Jacobian of the transformation; this
is a necessary complication if more than one transformation is to
be compared (i.e., more than one value of a, or a, is to be
considered). Just as in the first model, o models the positive
correlation of log(p,) and log(g,), and o7 and o3 are measures of
the heterogeneity between studies.

As can be seen from the covariance matrix, the SROC curve of this
model is identical to that of the first model if m;, and n; are becoming
large, since the expressions d7, d5, converge to 0. If study sizes are
small, then the SROC curve can only be given study specifically:

E(tu,,(pi)|ttxq(qi)) = (i —0) + 02.,(q), )
where
o — o
Y

An estimated SROC curve for the second model can be obtained
by plugging the parameter estimates for the second model into the

SROC curve of the first model (i.e., Equation 5). We call this the
analytical SROC curve because of the convenient form of this
curve. This is also in contrast to a Monte Carlo SROC curve, for
which one uses random sampling from the estimated parameters of
the model to obtain an SROC curve (we outline an algorithm for
this in Appendix B).

A few comments are in place. Note that we have made no
assumptions regarding the relationship of sensitivity and false-
positive rate within a study. It follows solely from the normality
assumption that the SROC curve has straight line shape on the 7,
space as given in Equation 3 or 9. This also shows its close
relationship to the PHM. Note that for o, = o, = 2, that allowing
an intercept on the log scale (or a scaling factor on the SROC
scale) will imply that the SROC curve will be larger or smaller
than 1 for the sensitivity when the false-positive rate approaches 1.
This needs to be kept in mind when doing practical implementa-
tions of the concept for this special case.

Parameter Estimation

The parameters of the 7, transformation in both models can
either be fixed at interesting values (e.g., a, = o, = 2 leads to a
model generalizing the PHM [Equation 4]) or estimated from the
data. We explain the general approach before going into more
details. When using parametric transformations like ., there are
broadly two approaches with respect to the additional parameters
0 introduced: The first view suggests that 6 is part of the model and
is thus to be incorporated into the estimation process and espe-
cially in the calculation of standard errors; the second view is to
work conditional on 6 and not consider it part of the model. In
either case 0 is typically determined by calculating the profile
likelihood p(0) for many different 0, that is, p(6) = L(X(9)|9),
where A(0) is the (maximum likelihood) estimate of the remaining
model parameters conditional on 6. Then 0 is chosen so that it
maximizes p(0), for example, when using a grid search.

We stress that in a maximum (adjusted) likelihood approach, both
views outlined above lead to the same point estimates of the model
parameters; the key difference is felt when computing standard errors
of the estimates. The first view leads to variance inflation; that is, the
additional uncertainty introduced by the parameter of the transforma-
tion increases the variance of the other parameters, whereas not
considering the parameters of the transformation part of the model
gives smaller standard errors. This phenomenon is well understood for
the Box and Cox (1964) transformation (Bickel & Doksum, 1981). In
the following we adopt the second view of parameter estimation to
avoid variance inflation.

For full generality, we aim to construct estimators for the param-
eters a,,, &, Wy, Po, 0y, 05, and o for the first and second model,
though in applications it is often desirable to fix at least one of o, and
Q. Since both models fall into the class of LMMs, maximum likeli-
hood estimation (MLE) of variance parameters produces biased esti-
mates, especially for small sample size. To address the issue of small
sample size, we will use a restricted maximum likelihood (REML;
also known residual maximum likelihood) correction to the likeli-
hoods, that is, an adjusted likelihood. Maximizing this adjusted like-
lihood yields unbiased estimation of variance parameters.
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Likelihood of the First Model where
If Wf: ()Ami.t th.e Jacobian, the likelihood of the ith observation _ ( fa,,( P — }_11 la,,( Pa) — E“l . fa,,( DPr) — ELI>
yi = (P §) is given by o (G)) = Mo 10(G) — Bo - 10 (Gn) — i

oY) = 2m) 3| 7%

L{(pwgi

1
exp <—§(t(yi) — w2 () — M)>,

where #(y,) = (¢, (P> t.,(4:)- The log-likelihood function /; for
the ith study is then straightforward to calculate from the above.

If we assume independence between studies, the likelihood
function for the full sample is

L(Pis . PasGis - - -

|
—
=~

s 9N|0Lp, Qs Ly 2) =

and hence the log-likelihood function is
{prs o Prdns s drl g ) = Dl (10)

Likelihood of the Second Model
If we write
%, =32+D,

the likelihood of a single pair for the second model is
1
Li(ﬁz, in|ap’ Ay s 2) = (2‘“')71 |Ei| 2

1
exp <_ E(t(yi) - pﬂ)’zi—l([(yi) - M))

We omitted the Jacobian in the above likelihood (see Appendix A).
Again, it is not difficult to compute the log-likelihoods of a single
pair, and so the full sample log-likelihood is

N

/O S [ A Py ) = E — log (2m)

=1

l(ﬁl’ ﬁZ’ .

1 1
= log (%i]) = 5(t(y) = W27 (e(y) — ). (A1)

REML and MLE for the First Model

For the first model conditional on Q, and Q,, the maximum
likelihood estimators have the following closed forms: The vector
of the sample means

1 N N T
= (s )= | 2100 20, ()
i=1 i=1
is the MLE for (,, p,)" and the 2 X 2 matrix

1
C— T
s LA

is the MLE for 3, as is well known (see, e.g., Anderson, 2003, for
this general fact about multivariate normal distributions). Note that
3 is obtained by multiplying a 2 X N and an N X 2 matrix. We
note that though S is the MLE of 3, it is not unbiased. An unbiased
estimator of the covariance matrix 2 is the sample covariance

1
matrix Q, which is obtained by changing the factor N to

1
L — T
Q:= y—WW.

Hence £ will underestimate 3, by the factor , which for small

number of studies N is not close to 1. The reason for this is that 3,
depends on ., so the 2N degrees of freedom of the model are
reduced by 2, leading to the factor

2N—-2 N-1

2N N~

We use Q subsequently to estimate the parameters of the first
model and note that Q is in fact the REML estimate; we give more
details though for the REML estimate of the second model. The
variance of the MLE is also well studied (see, e.g., Lehmann and
Casella, 1998, p. 472). Again, simple closed-form expressions
exist that approximate the variance, though it should be noted that
for large N the following approximation is considered to be better:
A2

Var(jn,) = N (12)

and

A4
N o N
Var(6?) = N fori=1,2 and Var(é)=

(13)

REML and MLE for the Second Model

We discuss two approaches to parameter estimation: maximum
likelihood (ML) and REML. We stress the advantage of the latter.
It is well known that the ML estimates of variance parameters and
more generally covariance parameters are biased, especially for
small sample sizes; for a sample of N studies, the ML estimate
Sy underestimates the true S roughly by a factor of (2N —
2)I2N = (N — 1)/N (see the discussion of parameter estimation for
the simple model). REML aims to compensate for that. There are
different strategies to derive an adjusted likelihood that yields the
REML estimates as its maximum (see, e.g., Lee, Nelder, &
Pawitan, 2006, Section 5.2.2), but typically the first step is to
derive a profile likelihood to eliminate .

To obtain a profile likelihood, we first work conditional on 3
and «,, o, Note the following: The variances of the random
effects d% and d5 depend only on the data y, = (3, §;), the sample
sizes in the ith study m;, n; and o, and ;. One easily checks that



| tapraid5/met-met/met-met/met00212/met2187d12z | xppws | S=1 | 4/17/12 | 12:56 | Art: 2010-0161 | |

8 DOEBLER, HOLLING, AND BOHNING

J
the partial derivative al(u, 3) of the full log-likelihood I(y,|w, 2)

of the ith observation is (in vector notation) proportional to
37ty — w),

where 1(y;) = 1(t,(P) 1.,(d:). Setting the partial derivative of the
full likelihood equal to O yields

D3 My) = 23 = (E Ef‘)u,
and hence
= (2 2,“) 3y

maximizes the full likelihood conditional on a,, o, and . By
plugging {& into the full likelihood, one obtains the profile log-

likelihood

p(lop D) = D i(ylay, oy . 3). (14)

Since [i is estimated from the data, intuitively one loses 2 degrees
of freedom in the process. This can be compensated for by study-
ing the following adjusted profile log-likelihood:

CR for transformation parameters (dementia)

12 14 16 18 2

Oq
1
|
>

0 02 04 06 08

T T T T T T T T T T T
0 02 04 06 08 1 12 14 16 18 2

Gp

Figure 4. Confidence regions (CRs) for transformation parameters. Estimate of («

- - 1
Pres (g 0, 2) = plylay, o, 2) = S log | X 57 /(2m).

(15)

Maximizing p(?\ap, @, ) yields the ML estimates, and the REML
estimates are obtained by maximizing pREML(7|o¢p, a,, 2). For small
sample sizes the difference in the variance components is substantial,
and the REML estimates offer an unbiased estimate of 3.

The log-likelihood (Equation 11), the profile likelihood (Equa-
tion 14), and the adjusted profile log-likelihood (Equation 15) of
the second model are well behaved in the sense that they allow
numerical maximization. Such a numerical maximization was car-
ried out with the function mle and the package mvtnorm in R
(Genz et al., 2010; R Development Core Team, 2010). The max-
imization was found to be more stable when working with the
Cholesky decomposition of ¥, rather than with 3, itself. Numerical
maximization was feasible for all data tested, though we relied on
the SANN algorithm of the optim function for some data sets,
especially for those with small o.

Confidence Intervals and Standard Errors

To obtain confidence intervals, we use different strategies for
the parameters o, a,, and the remaining parameters. For o, and
a, it is not difficult to invert the appropriate likelihood ratio test;

CR for transformation parameters (MCI)

_go-
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Oq
1
|
\o
&,
>
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Op

aq) is marked by a circle;

P

the triangle amounts o, = o, = 1 (i.e., to the logit transformation). The plot was obtained by calculating the
log-likelihood of the first model / at the restricted maximum likelihood (REML) estimates for all o on a fine grid
and computing the statistic D = 2(I* — [), where [* is the log-likelihood at the (REML) estimates. Then D is
approximately chi-square distributed with 2 degrees of freedom, so the contours are obtained by comparing D
to the quantiles of this distribution. For the dementia subset of the Mini-Mental State Examination data, the
transformation parameters are clearly bounded away from the logit. The small sample size of the mild cognitive
impairment (MCI) data (N = 5) makes the CR far wider than the one obtained for the dementia data; it cannot
be concluded that (o, o) # (1, 1). The asymmetric shape of the CRs also underlines that confidence intervals

P’

for a,, or o, should not be based on a normal approximation.
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that is, if &, and &, maximize the log-likelihood—say, I* is the
maximum—then one can obtain a confidence region for the pair by
computing the likelihood /" for the (RE)ML estimates conditional
on other values oc[’), a,’i, in the neighborhood. Then the test statistic
—2(I" — I*) is known to be approximately chi-square distributed
with 2 degrees of freedom. If one of o, or o, is considered fixed,
then a confidence interval for the other is obtained by the same
method via the chi-square distribution with 1 degree of freedom
this time. Since we give more details on likelihood ratio tests
below, we do not give further details here (see also Figure 4).
There are several ways to approximate the variances of the remain-
ing parameters of which we discuss the bootstrap method first. We
explored the bootstrap method for the dementia data from Mitchell
(2009), using ordinary case resampling in this case. The standard
deviations obtained in this fashion were used to calculate confidence
intervals with a normal approximation. Besides using a normal ap-
proximation, one could use various bootstrap confidence intervals
(see, e.g., Carpenter & Bithell, 2000). Bootstrapping was found fea-
sible, but too cumbersome. The first alternative to bootstrap methods
is numerical covariance matrices, given, for example, by mle; the key

Table 2

disadvantage is that these covariance matrices are unreliable for
ill-conditioned optimization problems, which we encountered in data
sets with small underlying o. Also, when «, and «, are to be
estimated from the data, then a numerical covariance matrix cannot be
calculated if o, and a,, are on one of the boundaries of [0, 2]. This is
no problem, though, if working conditional on «,, and «,,. For these
parameters profiling the likelihood is nevertheless feasible. The third
alternative for the variance components is the approximate formulae
for the first model in Equation 12.

The performance of the estimation process was evaluated with
the help of simulation experiments. We report these in the supple-
mental materials to this article. The simulations, especially for
small sample size, underline the importance of the REML correc-
tion in the estimation of the variance components.

The Presence of a Cutoff Value Variation as a
Likelihood Ratio Test

In a meta-analysis of a diagnostic test, we can expect differ-
ent authors to use different cutoff values. This intrinsic diffi-

Data from Mitchell (2009) on the Mini-Mental State Examination

Study Condition True positive False negative False positive True negative
1 Dementia 65 3 240 870
2 Dementia 117 12 10 110
3 Dementia 48 19 63 989
4 Dementia 134 8 28 152
5 Dementia 24 5 44 292
6 Dementia 67 15 48 153
7 Dementia 64 17 0 71
8 Dementia 281 64 20 286
9 Dementia 13 1 44 286

10 Dementia 262 20 29 177
11 Dementia 143 18 29 123
12 Dementia 183 33 33 51
13 Dementia 22 0 152 140
14 Dementia 112 0 590 2,091
15 Dementia 152 81 126 1,009
16 Dementia 29 26 26 236
17 Dementia 31 6 3 247
18 Dementia 10 3 12 333
19 Dementia 707 88 1438 10,447
20 Dementia 181 108 17 184
21 Dementia 59 29 23 74
22 Dementia 74 23 16 143
23 Dementia 27 12 26 209
24 Dementia 40 6 75 528
25 Dementia 317 52 173 578
26 Dementia 387 116 16 54
27 Dementia 118 65 1 44
28 Dementia 44 7 34 396
29 Dementia 123 46 98 309
30 Dementia 25 43 3 171
31 Dementia 73 32 2 225
32 Dementia 37 45 0 440
33 Dementia 78 34 45 376
34 MCI 72 12 53 214
35 MCI 106 23 410 379
36 MCI 37 36 22 118
37 MCI 67 30 22 75
38 MCI 17 77 0 90
Note. MCI = mild cognitive impairment.
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Table 3
Meta-Analysis for Mini-Mental State Examination Dementia Data

First model

Second model

Parameter M SD 95% CI M SD 95% CI
[ 0.1220 0.1113 [—0.0961, 0.3401] 1.4161 0.1567 [1.1090, 1.7233]
[T -0.3174 0.0923 [—0.4983, —0.1364] —1.7707 0.1637 [—2.0916, —1.4498]
o 0.1911 0.0678 [0.0583, 0.3239] 0.4360 0.1704 [0.1020, 0.7700]
ol 0.4087 0.1006 [0.2115, 0.6058] 0.6889 0.2122 [0.2730, 1.1047]
a3 0.2813 0.0693 [0.1456, 0.4170] 0.7961 0.2438 [0.3183, 1.2738]
o’ 1.6746 [1.2062, 1.8975] 0.9544 [0.0000, 1.8311]
o’ 0.2438 [0.0914, 0.6380] 0.8696 [0.1730, 2.0000]
t;pl(pul)b 0.7924 [0.7314, 0.8488] 0.7915 [0.7377, 0.8365]
t;ﬂ'(p.z)b 0.1139 [0.0743,0.1612] 0.1119 [0.0809, 0.1523]

Note. CI = confidence interval.

“ No standard deviations for «,, and «, were computed, since Cls were obtained from the highly asymmetric profile likelihood (see Figure 4).

b1
Ly, (y)

and £, '(j1,) are given for pooled sensitivities and false-positive rates; since these are nonlinear transformations of ., and p,, no standard deviation is

calculated.

culty of such a meta-analysis, the cutoff value problem, is
incorporated in both models by the covariance o of the (7,-
transformed) false-positive rate and sensitivity. Nevertheless,
an obvious question is whether the cutoff value problem is a
relevant factor in the meta-analysis at hand. This question can
be reformulated by asking if o is (close to) 0. Note that the
following answer to this question also applies to models beyond
ours. The answer is provided by a likelihood ratio test that
compares the fit of the model with a model with o restricted to
0. Our null model is this restricted model; that is, we test our
null-hypothesis H, : ¢ = 0 against H, : ¢ # 0. Note that no
boundary problem exists here as it typically occurs, for exam-
ple, when testing variance components being zero; that is, when
H, : o? = 0, the tested value is on the boundary (Greven,
Crainiceanu, Kiichenhoff, & Peters, 2008).

For the first model, one can proceed as follows: First, recall
the fact that if the true o equals 0, then the false-positive rate
and the sensitivity are independent variables. Hence in this case
we can fit sensitivity and false-positive rate data separately to
normal models; that is, the transformed sensitivity is N(u,, al)

Table 4

distributed, and the transformed false-positive rate is N(j.,, o3)
distributed. So if we restrict o to 0, we have an easy way of
fitting this restricted model. Let (&,, &, fi1, Lo, 6, 67, 63) be the
(RE)ML estimates of the parameters for the (full) first model
and let (&, &, fi;, flo, 31, 33) denote the (RE)ML estimates of
the parameters of the first model with ¢ = 0. Below / denotes
the log-likelihood of the model as in Equation 10. It is well
known that the statistic

D = 72[1([5]9 sy inv e ‘&pa &q’ p‘]v }12’ O’ 6’%7 6‘%)

- l(ﬁh e éh s ‘&p’ &q’ ﬁ‘l’ p“Z’ g, 6-%’ 6%)]
is asymptotically (i.e., for large N) chi-square distributed with 1
degree of freedom (see, e.g., Shao, 2003). One now compares D to
the quantiles of the chi-square distributions or calculates p values
as usual. One rejects the null model for high values of D.

For the second model, we use the same idea and notation: Along
the lines of the case for the first model, one straightforwardly
obtains a model for o restricted to 0. In our calculations we used

Meta-Analysis for Mini-Mental State Examination Mild Cognitive Impairment Data

First model

Second model

Parameter M SD 95% CI M SD 95% CI
By —0.0063 0.5771 [—1.1373, 1.1248] 0.6739 0.5707 [—0.4445, 1.7924]
Mo —0.9630 0.6277 [—2.1932, 0.2672] —3.6494 1.0487 [—5.7048, —1.5940]
o 1.6419 1.0932 [—0.5008, 3.7846] 24773 2.0478 [—1.5363, 6.4909]
ol 1.6651 1.0531 [0.0000, 3.7291]°¢ 1.5621 1.1533 [0.0000, 3.8226]¢
a; 1.9698 1.2458 [0.0000, 4.4115]°¢ 4.7749 4.5880 [0.0000, 13.7671]°
a,’ 1.2990 [0.0000, 2.0000] 0.8934 [0.0000, 2.0000]
a,” 0.6249 [0.0676, 2.0000] 2.0000 [0.0899, 2.0000]
l‘;ﬂ](p.])b 0.6038 [0.3345, 0.8510] 0.6269 [0.3539, 0.8297]
t;ﬂl(p,z)b 0.1498 [0.0281, 0.4356] 0.1613 [0.0577, 0.4507]

Note. CI = confidence interval.

“No standard deviations for o, and «, were computed, since Cls were obtained from the highly asymmetric profile likelihood (see Figure 4).

bt;‘,l(l"vl)

and 7, '(j,) are given for pooled sensitivities and false-positive rates; since these are nonlinear transformations of ., and p.,, no standard deviation is

calculated. € ClIs for variance components had to be truncated at 0.
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First model
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Figure 5. Data, summary receiver operating characteristic (SROC) curves, and pooled diagnostic accuracy for
the Mini-Mental State Examination (MMSE) meta-analysis. Pooled estimates computed as (Iu,f‘(pul), qu’l(pul)),
where p, and p, are from Tables 3 and 4, respectively. Confidence regions (CRs) obtained by applying the
appropriate inverse transformation to a 95% confidence ellipsoid on 7, space (see Harbord et al., 2007). Data are
from Mitchell (2009). SROC curves were truncated to avoid extrapolation beyond the data. Graphical compar-
ison of the SROC curves and CRs suggests that the MMSE is suited better to diagnose dementia than it is to
diagnose MCI; note, though, that the mild cognitive impairment (MCI) data set is rather small (N = 5). The CRs
for the diagnostic accuracy are smaller in the second model, since the random effects explain part of the
variation. The SROC curves are less dependent on outliers. It is also noteworthy that though the estimates of o,
and «, are far from each other, the SROC curves are surprisingly similar.

the resulting likelihood and the mle function of R to fit such a
model. Again, one calculates the statistic

D= —=2[l(p,, ..., Gis - - - |}11, fi,, 0, 6'%, 6'%)

- l(pAl, DR th 2.0 C “117 '12’ 6-7 6‘%’ 6‘%)]

where [ is the log-likelihood or adjusted log-likelihood of the
second model.

Apart from these likelihood ratio tests, there is another way to
test ¢ = 0 by using Pearson’s r. For this one calculates Pearson’s
r (also known as the Pearson product—-moment correlation coeffi-
cient) from the transformed observed sensitivities and false-
positive rates. As in our first model, a bivariate normal distribution
is assumed on the 7, space. If ¢ = 0, then N — 3F(r) is approx-
imately standard normal, where F is the Fisher transformation.
One can now calculate p values or a (two-sided) confidence
interval as usual (see, e.g., Anderson, 2003). This approach,
though, does not take into account the random effects of the second
model.

Worked Examples

In the following examples we showcase the use of the model
with both transformation parameters as free parameters. In appli-
cations it might be more appropriate to fix one of o, or o, or even

both, especially when sample size is small. The parameters of the
first model in the following examples have been estimated with
and Q with a continuity correction where necessary. For the second
model, we used the REML estimates, again adding a continuity
correction to all cells if zero cells were present. A customary value
for such a correction is .5; when estimating an odds ratio this
reduces bias from small cells (see, e.g., Gart & Zweifel, 1967;
Sutton et al., 2000). In our situation we found that it leads to overly
large random effects in our second model. These random effects
with known variances are based on the variance approximation
(Equation 6) derived by the delta method, that is, based on a
second-order Taylor approximation. Since Equation 6 approaches
o for p near O or 1, the random effects become large if zero cells
are present and a small continuity correction is used. The resulting
confidence intervals on 7, space were found unreasonably large
when compared to transformed Wilson score intervals for binomial
proportions. We used a continuity correction of 1 instead.

MMSE for Dementia and MCI

We continue the first example from the introduction. In the
meta-analysis (Mitchell, 2009) the MMSE was surveyed as a
diagnostic test for dementia and MCI. Table 2 shows the original
data; note that we excluded one study, since we could not calculate

T2, AQ: 4
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Table 5
Data from Patrick et al. (1994) on the Validity of Self-Reported
Smoking, Self-Administered Questionnaire Subset

True False False True
Study positive negative positive negative

1 21 15 28 324
2 90 10 120 969
3 104 8 26 232
4 333 18 92 673
5 3 0 2 77
6 437 23 78 901
7 23 13 18 333
8 350 35 77 155
9 397 34 32 154
10 3 45 6 198
11 59 5 5 227
12 27 47 25 1,233
13 81 7 5 170
14 103 5 13 169
15 81 24 7 213
16 103 8 11 209
17 120 5 54 329
18 21 25 22 177
19 15 0 35 198
20 17 2 27 200
21 120 1 39 148
22 132 52 110 889
23 158 8 95 960
24 55 0 32 180
25 57 1 29 180
26 163 3 24 178
27 177 4 9 178
28 141 3 45 180
29 25 11 3 40
30 56 33 2 49
31 19 2 1 96

the frequencies of false positives, true positives, true negatives,
and false negatives.

We reanalyzed the dementia part of the data as well as the MCI
part of the data using REML estimation. The parameters o, and
were determined by maximizing the adjusted profile log-likelihood
and then considering a, and o, fixed for the purpose of calculation
of standard errors. It should be noted that the MCI data contain
only five studies. For the second model, we used a numeric
covariance matrix obtained from mle to obtain estimates for the
standard deviations of the parameters; we preferred this over a
bootstrap because the numerical maximization of the likelihood
was unstable for some of the bootstrap samples. Also, the admis-
sibility of the bootstrap method is questionable for the small
sample size of the MCI data.

Tables 3 and 4 show the parameters and their standard devia-
tions for both models for the dementia and MCI data, respectively.
Figure 5 shows the SROC curves for both applications of the
MMSE and the empirical sensitivities and false-positive rates.
Figure 4 shows confidence regions for e, and «, for the first
model. The main conclusion that can be drawn from Figure 5 is
that the MMSE is an appropriate instrument to screen for dementia
and even better suited to screen for the absence of it, whereas the
MMSE seems to be unsuitable to detect MCI.

The cutoff value problem in the MMSE data. We first
discuss the cutoff value problem for the dementia data. The second

model with o restricted to 0 was fitted to the dementia data,
yielding p, = 2.3705, b, = —1.9429, o7 = 1.0037, o3 = 0.8779,
a,, = 0.4306, and o, = 0.9461. This results in a log-likelihood for
the restricted parameter space of 54.6608 compared with 59.5678
for the second model with all five parameters. So for the dementia
part of the data, the likelihood ratio test statistic for the cutoff
problem (second model) is D = 9.8140. One can compare this to
3.8415, the 95% quantile of the chi-square distribution, or compute
the p value, which is less than 102, Either way, it is clear that the
sensitivities and false-positive rates are (positively) correlated,
since we reject the null hypothesis that o = 0. In fact, Mitchell
(2009) reported various cutoff values for the primary studies. For
the MCI data the result is similar (D = 5.0768).

Comparison of inferences from the HSROC. The HSROC
was fitted to both data sets. The pooled pair of sensitivity and
false-positive rate was (0.7910, 0.1113) for the dementia data and
(0.6212, 0.1658) for the MCI data—both pairs very similar to our
second model—and the confidence region was similar for the
dementia data but not for the MCI data. SROC curves were
inspected for the HSROC and compared to the SROCs of the
second model. For the center of the data, the SROC curves agreed,
but for false-positive rates greater than .5, the SROC curve of the
HSROC predicted large sensitivities for the MCI data. The simi-
larities of confidence region and SROC curve for the dementia
data is not surprising, since the point estimates of c, and «,, are
close to 1, the value that yields the HSROC.

Summary of findings. In sum, the MMSE has greater diag-
nostic power with respect to dementia than it has with respect to
MCI; this conclusion is in line with Mitchell (2009). Using the
SROC curves and confidence regions to graphically compare the
two subsets of the MMSE data reinforces this conclusion; in fact,
the MCI SROC curve is uniformly below the dementia SROC
curve for both models.

Table 6
Data from Patrick et al. (1994) on the Validity of Self-Reported
Smoking, Interviewer-Administered Questionnaire Subset

True False False True
Study positive negative positive negative

32 380 38 10 854
33 480 72 46 1,078
34 312 24 46 594
35 28 4 2 164
36 346 4 14 78
37 336 4 26 76
38 150 8 16 370
39 214 48 2 76
40 206 28 10 96
41 214 0 2 20
42 188 6 30 14
43 208 0 10 20
44 126 12 0 182
45 116 8 2 180
46 78 2 2 44
47 84 2 12 44
48 72 4 8 42
49 76 4 18 42
50 1,358 186 68 3,322
51 1,650 18 424 6,632
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Meta-Analysis for Smoking Data
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Complete data SAQ subset TAQ subset
Parameter M SD 95% CI M SD 95% CI M SD 95% CI
™ 4.388 0.289 [3.821, 4.954] 3.508 0.353 [2.816, 4.199] 5.923 0.435 [5.071, 6.775]
15y —4.949 0.252 [—5.443, —4.456] —4.851 0.244 [—5.329, —4.373] —4.628 0.505 [—5.617, —3.638]
ol 3.705 0.846 [2.047, 5.362] 3.374 0.972 [1.469, 5.278] 3.095 1.241 [0.663, 5.526]
a; 2.855 0.647 [1.586, 4.124] 1.553 0.473 [0.625, 2.480] 4.642 1.661 [1.387,7.897]
o 1.570 0.563 [0.466, 2.674] 1.281 0.530 [0.241, 2.320] 2.315 1.129 [0.103, 4.528]
a,’ 0.234 [0.000, 0.908] 0.358 [0.000, 1.099] 0.000 [0.000, 1.965]
a,’ 2.000 [0.655, 2.000] 2.000 [0.339, 2.000] 1.819 [0.493, 2.000]
t;/,'(pl)b 0.918 [0.887, 0.940] 0.885 [0.827, 0.924] 0.948 [0.921, 0.966]
t;‘ll(P«]) 0.084 [0.066, 0.108] 0.088 [0.070, 0.112] 0.078 [0.045,0.1330]

Note.

SAQ = self-administered questionnaire; IAQ = interviewer-administered questionnaire; CI = confidence interval.
“ No standard deviations for o, and o, were computed, since Cls were obtained from the highly asymmetric profile likelihood.

"1y, () and 1o [(py) are

given for pooled sensitivities and false-positive rates; since these are nonlinear transformations of w, and ,, no standard deviation is calculated.

Diagnosing Smoking: Comparing Self-Administered
and Interviewer-Administered Questionnaires

The second example is based on data from the meta-analysis of
Patrick et al. (1994), which examines the accuracy of self-reported
measures of smoking. We will focus on the question whether SAQ
or IAQ is more reliable; Tables 5 and 6 show the original data. We
will only present an analysis based on the second model, since
inferences from the first model are very similar. Again, REML
estimation was preferred over ML, even though the sample sizes in
this example are adequate for ML.

a CR for alpha parameters (smoking, 2nd model)
~ [
«© _|
<© ]
~ ]
~ \
0.5
s < &
[ee]
d N \0,8
[(e}
©
< | S~——o95
o
N
e B Point estimate of alpha_p, alpha_q
o - A alpha_p = alpha_q =1 (HSROC)

! ! ! ! ! ! ! ! ! ! !
04 06 08 1 12 14 16 18 2

%p

Table 7 shows the parameters and their standard deviations for the
complete data and the SAQ and IAQ subsets. Figure 6 shows profile
plots for e, and e, for the complete smoking data and also the SROC
curves for both subsets of the data. The main conclusion that can be
drawn from Figure 6B and Table 7 is that self-reported measures of
smoking are reliable, regardless of whether SAQ or IAQ is used. The
second conclusion is that the confidence region for the point estimate
of the diagnostic accuracy parameters for the IAQ data as well as the
SROC curves implies that IAQ is more reliable than SAQ. The 95%
confidence regions for the pairs of sensitivity and false-positive rate

b SROC and CR of SAQ and IAQ data (2nd model)

0.9 1.0
|

Sensitivity
0.8

B SAQ data
A JAQ data

0.7
-

* SAQ pooled estimate
@ |AQ pooled estimate
! — SAQ SROC/CR
. - -- IAQ SROC/CR

T T T T T

0.0 0.1 0.2 0.3 0.4

0.6

False Positive Rate

Figure 6. Smoking meta-analysis: transformation parameters and comparison of self-administered question-
naires (SAQ) and interviewer-administered questionnaires (IAQ). CR = confidence region; SROC = summary
receiver operating characteristic; HSROC = hierarchical summary receiver operating characteristic.

F6
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from SAQ and IAQ do not overlap, so that this rigorous conclusion
can be drawn from Figure 6.

The cutoff value problem in the smoking data. The likeli-
hood ratio test for the cutoff value problem was calculated for the
complete smoking data, the SAQ and IAQ subsets. All three
statistics were significant (p < .01 in all three cases), leading to
the conclusion that some sort of cutoff value problem is present in
the smoking data. In fact, since data from comparable but not
identical questionnaires were examined by Patrick et al. (1994),
the wording in each primary study differed and was in many cases
not reported. Nevertheless, we are reluctant to conclude that dif-
ference in wording explains the significance of the likelihood ratio
test, since Patrick et al. also reported that a biochemical gold
standard procedure used in some of the primary studies led to
increased false-positive rates (i.e., people self-reported to be smok-
ers, but the gold standard test was negative).

Comparison of inferences from the HSROC. The contours
shown in Figure 6A are based on an inverted likelihood ratio test for
the hypothesis H,, : a, = o, = 1. Since H,, amounts to the HSROC,
the likelihood ratio test rejects the HSROC for the smoking data. For
the SAQ and IAQ subsets, though, the same test is not significant at
5%. Point estimates from the HSROC as well as SROC curves are
comparable in all three cases. The reason for the superior fit of the
second model is the nonnormality of the observed diagnostic accu-
racy: Patrick et al. (1994) reported that sensitivities and specificities
are negatively skewed; it is mentioned that a log transformation of
both diagnostic accuracies led to approximate normality. One conclu-
sion from the HSROC, though, was not in line with the findings from
our second model: The confidence regions for the mean parameters
overlap for the HSROC, so the rigorous conclusion drawn from the
second model is not possible.

Summary of findings. The main conclusion drawn in Patrick
et al. (1994) is reinforced by our analysis: Self-reported measures
of smoking are reliable (pooled sensitivity = 0.918, pooled false-
positive rate = 0.084). Also, the observation that the use of IAQ
leads to improved accuracy compared with SAQ is made by
Patrick et al., but the logistic fixed-effect model used in the
original article only allows to conclude that the false-positive rates
are significantly better for IAQ, not the sensitivities. The refined
analysis building on the second model and the transformed confi-
dence ellipses enable us to report a significant improved accuracy
of TAQ. We did not control for the additional covariates, though,
like Patrick et al. did in their original analysis.

The Models in Context

Comparison of the Two Models

The models we propose share a key advantage with existing
bivariate models: Our approach is very natural in this symmetric
problem; that is, we could have exchanged the roles of the sensi-
tivity and false-positive rate and nevertheless obtained the same
SROC curve. One difference between the two models is that o,
and o, can be expected to be smaller in the second model due to
the variance explained by the binomial model assumed (i.e., Equa-
tion 6). In this sense the first model overestimates the heteroge-
neity among the studies. The confidence regions of the pooled
diagnostic accuracy for the second model are somewhat smaller.
Note that the area of the confidence regions, which are confidence

ellipses on 7, space, depends solely on the estimate of X, the
parameters used to describe the heterogeneity. The confidence
regions depicted in Figure 2 show that this overestimation is slight
for the MMSE data. In general, the reduction would be consider-
able if the primary studies were very small, which is unlikely in a
diagnostic meta-analysis. For all data we reanalyzed (see Table 8),
the estimates of diagnostic accuracy from the two models were
rather close; also, the SROC curves were similar, as in Figure 5.

The random effects of the second model widen the confidence
intervals for o, and «,, considerably, a wide range being plausible
for the MMSE data. This is very much in contrast to the first

Table 8
Comparison of Fit of the Second Model With Free and Fixed
a,, o, and the Hierarchical Summary Receiver Operating

D
Characteristic (v, = o, = 1) for Various Data Sets

Q, a, AIC
MMSE: Dementia (N = 33)
Free Free —105.1
1 1 —109.1
0.6 0.6 —108.8
Free 1 —107.1
1 Free —107.1
1 0.6 —109.0
MMSE: MCI (N = 5)
Free Free —-0.8
1 1 —4.5
1 2 —4.8
0.6 2 —4.7
1 Free —-2.8
AUDIT-C (N = 14)
Free Free —48.0
1 1 —=50.7
14 1.4 —=51.3
Smoking (N = 51)
Free Free —230.2
Free 1 —230.5
1 Free —227.1
1 1 —227.4
0 2 —233.5
0.6 2 —233.0
Smoking: TAQ (N = 20)
Free Free —102.8
Free 1 —103.9
1 1 —105.3
0 1.4 —106.1
0 2 —106.7
Smoking: SAQ (N = 31)
Free Free —133.6
1 1 —133.6
0 2 —136.4
0.6 2 —137.2
1 2 —134.8
0.6 1.4 —136.6
Note. Mini-Mental State Examination (MMSE) for dementia and mild

cognitive impairment (MCI) from Mitchell (2009); Alcohol Use Disorders
Identification Test (AUDIT-C) from Kriston et al. (2008); smoking for
interviewer-administered questionnaire (IAQ) and self-administered ques-
tionnaire (SAQ) from Patrick et al. (1994). N = number of primary studies
in this data set; AIC = Akaike information criterion.

T8, AQ: 5
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Table 9
Fitting the First Model With o, Restricted to I to Real-World Data

Free o, and o, = 1 a, =a, =1

Data set (N) Q, 95% CI for a, AIC Pshapiro AIC PrLr Pshapiro

Dementia (33) 1.711 [1.283, 1.915] —98.3 0.689 -93.2 0.008 0.021
AUDIT-C (14) 1.869 [1.522,1.971] —55.9 0.981 —50.3 0.006 0.050
SAQ (31) 0.424 [0.000, 1.056] —138.2 0.719 —137.1 0.079 0.109
TIAQ (20) 1.921 [1.586, 1.984] —112.3 0.867 —108.0 0.012 0.041

Note. Mini-Mental State Examination for dementia from Mitchell (2009); Alcohol Use Disorders Identification Test (AUDIT-C) from Kriston et al.
(2008); smoking for interviewer-administered questionnaire (IAQ) and self-administered questionnaire (SAQ) from Patrick et al. (1994). N = number of
primary studies in this data set; CI = confidence interval; AIC = Akaike information criterion; pgyapiro = p Value of Shapiro test for normality of

transformed sensitivities; p; g = p value of likelihood ratio test for Hy: o, =

model; here the confidence intervals are often small enough not to
contain 1, the value that amounts to the logit (see Table 9). The
increased uncertainty of «, and «,, due to random effects can be
explained as follows: The random effects shift some of the ob-
served pairs of sensitivities and false-positive rates toward the
mean. Since the function p +— ¢,(p) is approximately linear for
many values of a and p € [0.1, 0.9], estimation of o is most
precise when information about the most extreme values is avail-
able, that is, p in the intervals [0, 0.1] and [0.9, 1]. The shift toward
the mean hence makes the parameter of the transformation harder
to estimate, so confidence intervals are wider.

All in all, the advantage of the first model is its simple parameter
estimation; the advantage of the second model is the refined
estimation of the heterogeneity parameters by random effects.

Comparison With the HSROC

The main difference between the HSROC and the models we
propose is the choice of the transformation. We compare the
HSROC with our second model, which contains the HSROC as a
special case (o, = «, = 1). First, we discuss SROC curves and
normality assumptions, then we compare the model fit.

The SROC curve in the 7, space (i.e., Equation 3) is a linear
function, since it is the conditional expectation of the bivariate
normal distribution; the same holds for the SROC curve in the logit
space. For the first model, the conditional expectation of the
bivariate normal distribution coincides with the ordinary least
squares regression line (see, e.g., DasGupta, 2010, Theorem 12.6);
this is a general fact not related to SROC curves. In our setup this
means that the linear regression line of the z, -transformed sensi-
tivities on the ¢, -transformed false-positive rates is identical to the
t-transformed SROC curve. This also means that our SROC
curves, and more generally all our inferences, depend on the
normality assumption of linear models (first model) and LMM
(second model), respectively. For LMMs, independent normal
errors of the fixed and random effects are assumed, leading to a
normal variation in the whole sample; in our situation, this boils
down to assuming that the transformed sensitivities and false-
positive rates are assumed to be normal in both models.' Normality
of a data set can be tested, a well-known omnibus test for depar-
tures from normality being the Shapiro Test. Table 9 shows that
the normality assumption for the logit-transformed sensitivities is
frequently violated in real-world data sets and that the first model,
even when o, is restricted to 1, outperforms a bivariate normal

1.

model for the logit-transformed sensitivities and false-positive
rates. The proper use of transformations like 7, ensures that nor-
mality assumptions of models are met.

We compare the fit of models with Akaike’s information crite-
rion (AIC) given by

AIC:= 2k — 2In (L),

where k is the number of parameters and In(L) is the log-likelihood
of the model. Smaller values of the AIC indicate a better model.
The HSROC has five parameters, two for the vector of means
and three for the covariance matrix ¥; the comparison based on the
AIC and our two models has two more parameters (o, and o). If
the transformation parameters are considered free, they have to be
taken into account when calculating the AIC. In some of the model
variants we look at below, we fix both as at natural values,
reducing the number of parameters in AIC calculations by one or
two. Values we considered are 0, 0.6, 1, 1.4, and 2; here 0.6 and
1.4 are chosen, since 7, approximates the (complementary) log-log
transformation for these values. Also, note that the log-likelihoods
are frequently positive, mainly due to the contribution from the
Jacobian, resulting in negative AIC.

For our comparison, we fitted our second model and the HSROC
to various data from diagnostic meta-analyses from psychology.
Many of these data sets provide more than just the sensitivities and
specificities or the frequencies of true positives, false positives, true
negatives, and false negatives; our point here is not to reanalyze them
in detail, but to show how the log-likelihood behaves for a variety of
data. Apart from the data discussed in the examples from Mitchell
(2009) and Patrick et al. (1994), we studied the data from Kriston,
Holzel, Weiser, Berner, and Hirter (2008), a meta-analysis of the
Alcohol Use Disorders Identification Test (AUDIT-C), a short ver-
sion of the AUDIT, an established test to detect unhealthy alcohol use.
Tables containing the frequencies for all the data sets are part of the
supplemental materials to this article.

In Table 8 we report the values of the AIC statistic. With respect
to AIC data, sets with no or few zero cells or moderate sensitivities
in the majority of primary studies (MMSE, AUDIT-C) seem not to

! Cramér’s Theorem states that if & and & are independent random
variables and & + € is normal, then € and & are normal. Gurka et al. (2006)
argued that to ensure that the fixed and random effects in an LMM are
normal, one can focus to check the normality of the (transformed) outcome
variable, that is, on a transformation to normality.
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profit from using the second model with free parameters. The
smoking data set and its subsets SAQ and IAQ (with many of the
primary studies reporting high sensitivity and low false-positive
rate) profit substantially in terms of model fit. Since the HSROC
is nested within the second model, one can also compute a likeli-
hood ratio test for H, : o, = «, = 1. This test is significant at a
5% confidence level for the smoking data (p = .034).

Discussion

It could be argued that our models have the following short-
coming: If one of a, or a, equals 0 or 2, then the inverse
transformation is 1 — exp(—x/2) or exp(x/2), respectively; since
the SROC curve is a straight line on 7, space (i.e., R?), it can well
take values outside the unit square [0, 17% that is, if the factor

ag
exp(m, — p W) in Equation 5 is greater than 1, then values of the
2

SROC curve can lie outside the unit square. For example, for
second model for the MCI data, the estimate is o, = 2 (see Table
4). Nevertheless, if we restrict the domain of the SROC curve to
the interval [min{g; i = 1, ..., N}, max{g;i = 1,..., N}] (i.e.,
if we only plot the SROC curve where there are observed false-
positive rates), then the curve is plausible for the MCI data. This
restriction is reasonable in general to avoid extrapolation beyond
the data. If the aim is to draw an SROC on the whole of the unit
cube, then one could also truncate the SROC at 1.

One potential way of dealing with this minor defect of the
SROC curves would be to use a truncated normal distribution on
the log space, that is, to restrict the bivariate normal distribution on
the log space to [—, 0]%. Using the package tmvtnorm (Wilhelm
& Manjunath, 2010b), we fitted such a model to several data sets.
We encountered well-known problems with MLE of the truncated
normal distribution (Wilhelm & Manjunath, 2010a) but neverthe-
less obtained ML estimates. From our somewhat limited explora-
tion, it seems that using the truncated normal distribution is rather
detrimental than beneficial with respect to the shape of the SROC
curve; in fact, we are not aware of a closed-form expression of the
SROC curve, so one relies on Monte Carlo SROC curves.

Our work could be generalized by implementing a meta-
regression on the parameters |.,, |L,; that is, if additional informa-
tion is available on the primary studies—say, the type of popula-
tion, the study setting, the cutoff value, or the gold standard
procedure—then it is possible to include these as covariates for .
This helps to explain the variation among the primary studies.

An alternative to 7, is given by the Guerrero and Johnson (1982)
transformation

X ]
s <<71_x> — 1>/d) (b # 0) ’
logit(y =0

which is obtained from the Box and Cox (1964) transformation by

(16)

substituting for x. This allows for a transformation to qua-

1 —x
sinormality like 7,; since Equation 16 is bounded for a wide range
of ¢, we deemed it less suitable for this purpose. Gurka, Edwards,
Muller, and Kupper (2006) discussed use of the Box—Cox trans-
formations in LMMs, and since Equation 16 is closely related to
this transformation, we assume that it is a feasible alternative.

Note that all R code that was written for this publication is
available from the first author upon request. We plan to compile an
R package with functions for diagnostic meta-analysis.
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Appendix A

Detailed likelihoods

The following abbreviation is useful:

(on

0,0,

Note that p is the correlation coefficient.

Likelihood of the First Model

We begin by stating the expanded likelihood of the first model:
By our distribution assumption for (7,,(p), .,(q)), the likelihood
function for the ith study is

Ju,,(pAi)Jaq(in)

-
2mo,0,(1 = p?)2

-1 [(ta,,(ﬁi) - P«1>2 _s (tu,,(ﬁi) - p*l)(tqu(‘?i) - Mz)
xp 2(1 — pz)L [ P [ 0

(tal,(éi) - Mz)z]}
) |1

a 22—«

0
J(x) = afu(x) = T 1 a

Li(pAi’ inlap’ 0Lq7 M, 2) =

Here

is the Jacobian of 7.

Likelihood of the Second Model
For the second model, we set

2. p 2 2._ 2
o= dy + oy, 03:= dp + 03,

and

(on

pi= .
0102

By our distributional assumption for (¢, ,(p), t., (¢)), the likelihood
function for the ith study is

Ja,,(ﬁi)Ja,,(in)

-
2mo,05,(1 — P?)i

-1 (tm,,(ﬁi) - Ml)z - (tap(ﬁi) - M])(lup(@) - Mz)
xp 2(1 - P?) 0y o gy 0y
02

We also state the second model in matrix notation for mixed
models: Let

L{p;, in|“~, ) =

Y = (t,(P1)s 1,41, 1, (P2)s 1a,(G2)s - - - s 10, (B, tm,(éN))Ty

let 8 and € denote the vectors obtained by concatenating the 8, and
€, respectively, and let

(1010 ... 1 0\
X=lo 1 0 1 0 1

denote the 2N X 2 design matrix. Then the model can be stated as
Y=Xwn+3d+e.

With this notation, it is straightforward to check that the restricted
maximum likelihood (REML) likelihood pgpy,, 1S just a special
case of the REML likelihood obtained in the literature (e.g., in Lee
et al., 2006, Section 5.2.2; Smyth & Verbyla, 1996).

(Appendices continue)
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Appendix B

A Monte Carlo Summary Receiver Operating Characteristic Curve

We outline an algorithm for a Monte Carlo summary receiver
operating characteristic (SROC) curve for the second model. The

Dementia data with SROC curves
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Figure Bl. Primary study data from the meta-analysis of the Mini-Mental

State Examination to detect dementia with resulting analytical and Monte
Carlo summary receiver operating characteristic (SROC) curves.

key steps are random sampling and using a LOWESS smoother.
The random sampling can be realized as follows: Say the param-
eters |,, W, 0, 0, and o, have been estimated. Set

12 12
A= N:EI m; and }\”::Ng n;.

First, generate two natural numbers m and n using Poisson distri-
butions with parameter \,, and \,,, respectively. From m, n, and the
parameters compute a covariance matrix as in Equation 8§ and
generate a random sample. Repeat this process until the desired
number of random samples is available. Then fit a curve to these
random samples, for example, by LOWESS smoothing.

We now compare the analytical and Monte Carlo SROC curve
for the dementia data. Table 3 contains the parameters we used to
calculate the analytical SROC curve. With the above algorithm we
obtained 10,000 random samples and used R’s lowess function
with default parameters. The theoretical SROC curve and the
Monte Carlo SROC curve are shown in Figure B1. The curve
obtained from the LOWESS smoother is very similar to the the-
oretical SROC curve obtained from Equation 9. Also, for other
data sets we studied, the Monte Carlo curve is very close to the
theoretical curve. Since the effort of random sampling is clearly
higher, we believe the theoretical SROC curve should be preferred
not only in this example.

Received October 4, 2010
Revision received August 30, 2011
Accepted January 19, 2012 =



