Supplement to

A Limitation of the Diagnostic-Odds Ratio in Determining an Optimal Cut-off Value for a Continuous Diagnostic Test

Dankmar Böhning

Applied Statistics, School of Biological Sciences
University of Reading, UK

Heinz Holling

Statistics and Quantitative Methods, Faculty of Psychology and Sport Science
University of Münster, Germany

Valentin Patilea

Centre de Mathématiques—IRMAR

Institut National des Sciences Appliquées (INSA) de Rennes, France

April 28, 2010

Abstract

This supplement considers the diagnostic odds ratio, a special summarizing function of specificity and sensitivity for a given diagnostic test which has been suggested as a measure of diagnostic discriminatory power. In the situation of a continuous diagnostic test a cut-off value has to be chosen and it is a common practice to choose the cut-off value on the basis of the maximized diagnostic odds ratio. We show that for the case of a normal distributed diseased and a normal distributed non-diseased population with equal variances the log-DOR is a convex function of the cut-off value.

Notation

We are considering the diagnostic test accuracy of a diagnostic test B for diagnosing the presence of a specific condition. A typical setting is as follows. The outcome of B is binary where B=1 indicates the presence of the condition (test is positive) and B=0 indicates the absence of the condition. Here the objective lies in determining the discriminating power of the diagnostic test in separating persons with a specific condition (diseased) from those without this condition (non-diseased). Widely, two measures of diagnostic accuracy are considered: the sensitivity defined as $S^+ = Pr(\text{test positive}|\text{diseased}) = (1 - \beta)$ and the specificity defined as $S^- = Pr(\text{test negative}|\text{non-diseased}) = (1 - \alpha)$. The sensitivity measures the capability of the diagnostic test to recognize a diseased person correctly, whereas the specificity measures the capability of diagnosing a healthy person correctly. Consequently, β is the error probability of falsely classifying a diseased person as diseased. The

diagnostic odds ratio (DOR) has been suggested and utilized frequently in the literature as a summary measure of sensitivity and specificity. The diagnostic odds ratio as a single indicator of diagnostic performance is defined as

$$D = \frac{S^+}{1 - S^+} \times \frac{S^-}{1 - S^-}. (1)$$

Note that (1) can be written as the ratio of the odds $\frac{S^+}{1-S^+}$ for diagnosing a diseased person as diseased to the odds $\frac{1-S^-}{S^-}$ for diagnosing a healthy person as diseased.

Now, we suppose that the diagnostic procedure is providing a continuous outcome or an ordered categorical outcome which we denote as T. For example, a psychological test is used (potentially among other procedures) to determine a certain condition such as the presence of dementia in an elderly person. Often these diagnostic tests deliver a score and a cut-off value c is used to decide about the presence or absence of the condition. Note that T and the binary test result variable B are connected via $B = \mathbb{I}_{\{T>c\}}$, where \mathbb{I}_S denotes the indicator function for a set S defined as $\mathbb{I}_S(s) = 1$ if $s \in S$ and 0 otherwise. Then, sensitivity and specificity become a function of the cut-off value c, and, consequently, also the diagnostic odds ratio

$$D8c) = \frac{S^{+}(c)}{1 - S^{+}(c)} \times \frac{S^{-}(c)}{1 - S^{-}(c)}.$$
 (2)

The convexity result for the DOR

We now come to the general result and consider the situation that the diagnostic test T has the same variance $\sigma_D^2 = \sigma_H^2 = \sigma^2$ in the diseased and the non-diseased population. Without limitation of generality we set $\sigma^2 = 1$, $\mu_D = \mu$, $\mu_H = 0$. Hence,

the following result is proved under the assumption of normality with equal variances in the two populations of healthy and diseased individuals.

Theorem 1 Let $\Phi(\cdot)$ be the cumulative distribution function of the standard normal distribution. Also, let

$$D(c) = \frac{S^{+}(c)}{1 - S^{+}(c)} \times \frac{S^{-}(c)}{1 - S^{-}(c)} = \frac{1 - \Phi(c - \mu)}{\Phi(c - \mu)} \times \frac{\Phi(c)}{1 - \Phi(c)}.$$

Then:

$$D(c) > D(\mu/2), \quad \text{for all } 0 \le c \le \mu, \text{ but } c \ne \mu/2,$$
 (3)

$$\frac{d^2}{dc^2}\log D(c) > 0 \text{ for all } c \in [0, \mu].$$
(4)

The theorem says that $D(\cdot)$ is actually minimized at $\hat{c} = \mu/2$ and that $\log D(\cdot)$ is convex. As a consequence, points maximizing the D(c) will be on the boundary of the parameter space $[0, \mu]$, leading to useless cut-off values. In conclusion, the DOR is not useful as a criterion for maximizing discriminatory power.

Before we go the proof of the main result of Theorem 1 let us introduce some notation and assumptions.

The random variable T is distributed according to a general distribution function $\Phi_{\mu}(\cdot)$, with mean μ , fixed variance (say, equal to 1), and symmetric about the mean. For simplicity, we write $\Phi(\cdot)$ when $\mu = 0$. Clearly, $\Phi_{\mu}(\cdot) = \Phi(\cdot - \mu)$. Let $\phi(\cdot)$ be the derivative of $\Phi(\cdot)$.

Note that $\Phi(\cdot)$ is not restricted to the normal case yet. Define

$$g(c) = \frac{\Phi(c)}{1 - \Phi(c)},$$
 and $D(c) = \frac{g(c)}{g(c - \mu)}.$

Note that g(c) corresponds to $S^-/(1-S^-)$ in (1) and $g(c-\mu)$ to $(1-S^+)/S^+$ in (1). From the symmetry property, g(c)g(-c)=1, and therefore

$$D(c) = g(c)g(\mu - c).$$

Theorem 1 can be written in the equivalent form

$$\ln g(c) + \log g(\mu - c) > 2\log g(\mu/2), \quad \text{ for all } 0 \le c \le \mu, \text{ but } c \ne \mu/2.$$

Proof of Theorem 1

Let us compute and define

$$\frac{d}{dc}\log g(c) = \frac{\phi(c)}{\Phi(c)\left[1 - \Phi(c)\right]} =: h(c).$$

Then

$$\frac{d}{dc}\log g(\mu - c) = -h(\mu - c),$$

and therefore

$$\frac{d}{dc}\log D(c) = h(c) - h(\mu - c), \quad \text{and} \quad \frac{d^2}{dc^2}\log D(c) = h'(c) + h'(\mu - c)$$

where h' = dh/dc. In particular, we see that $\frac{d}{dc} \log D(\mu/2) = 0$.

In the following we show that

$$h'(\cdot) > 0 \qquad \text{on} \quad [0, \mu], \tag{5}$$

which will imply two things: a) $\frac{d}{dc} \log D(\cdot)$ is strictly increasing on $[0, \mu]$ and therefore it has only one stationary point on this interval; and b) the stationary point $c = \mu/2$ is a minimum and the theorem holds.

By elementary algebra

$$h'(c) = \frac{\phi(c)}{\Phi(c) [1 - \Phi(c)]} \left[\frac{\phi'(c)}{\phi(c)} - \phi(c) \frac{1 - 2\Phi(c)}{\Phi(c) [1 - \Phi(c)]} \right].$$

Case 1: the density $\phi(\cdot)$ is nondecreasing on $[0, \mu]$. Then

$$\frac{\phi'(c)}{\phi(c)} - \phi(c) \frac{1 - 2\Phi(c)}{\Phi(c) [1 - \Phi(c)]} > 0, \qquad \forall c \in [0, \mu], \tag{6}$$

because, by the symmetry property, $1 - 2\Phi(c) < 0$ for c > 0. This case is of little practical interest, but to obtain the result of the theorem in its most general form we try to use as few assumptions as possible.

Case 2: the density $\phi(\cdot)$ is decreasing on $[0, \mu]$. In particular, this case is met in the standard Gaussian case. Once again, to get (5), we have to show (6). Let us assume that for all $c \in [0, \mu]$, we have

$$c \ge -\frac{\phi'(c)}{\phi(c)}. (7)$$

Note that (7) is in particular satisfied in the Gaussian case where we have equality. If (7) is satisfied, then (6) is implied by the following inequality

$$2 - \frac{1}{\Phi(c)} > c \frac{1 - \Phi(c)}{\phi(c)}, \qquad \forall c \in [0, \mu], \tag{8}$$

which is proved in the Lemma 1 further below for the Gaussian case. Then the proof is complete also for this case.

Case 3: the density $\phi(\cdot)$ is nondecreasing on some interval [0, c] and decreasing on $[c, \mu]$ (or decreasing and nondecreasing on the respective intervals). In this case it suffices to combine the arguments used for Cases 1 and 2 which ends the proof.

Lemma 1 Let $\Phi(\cdot)$ and $\phi(\cdot)$ denote the distribution function and the density of the standard normal law. Then, for all c > 0

$$2 - \frac{1}{\Phi(c)} > c \frac{1 - \Phi(c)}{\phi(c)}.$$

Proof. We shall prove the equivalent inequality $\psi(c) > 0$ for all c > 0, where

$$\psi(c) = \left[2\Phi(c) - 1\right]\phi(c) + c\Phi(c)\left[\Phi(c) - 1\right].$$

Notice that $\psi(0) = 0$. Moreover, since in the Gaussian case

$$\lim_{c \to \infty} c[1 - \Phi(c)] = 0,$$

we also have $\psi(\infty) = 0$. Compute the derivative

$$\psi'(c) = 2\phi^{2}(c) + [2\Phi(c) - 1] \{\phi'(c) + c\phi(c)\} - \Phi(c) [1 - \Phi(c)]$$
$$= 2\phi^{2}(c) - \Phi(c) [1 - \Phi(c)]$$

where for the last equality we use the property $\phi'(c) + c\phi(c) = 0$. Let us notice that the statement $\psi'(c) > 0$ for all c > 0 does not hold. However, $\psi'(\infty) = 0$ and

$$\phi(0) > \frac{1}{2\sqrt{2}},$$

which implies $\psi'(0) > 0$. Since $\psi(0) = \psi(\infty) = 0$, in order to show $\psi(c) > 0$ for all c > 0 it suffices to show that the derivative of $\psi(\cdot)$ is strictly positive on some interval (0,a) and negative on (a,∞) , where a > 0. This means that $\psi'(\cdot)$ has the sign

$$+ \quad 0 \quad - \tag{9}$$

on $(0, \infty)$. Compute

$$\psi''(c) = \phi(c) \left[4\phi'(c) - 1 + 2\Phi(c) \right] = \phi(c) \left[-4c\phi(c) - 1 + 2\Phi(c) \right],$$

where for the last equality we used again the fact that we are in the Gaussian case and thus $\phi'(c) = -c\phi(c)$. Notice that $\psi''(0) = \psi''(\infty) = 0$ (since $c\phi^2(c) \to 0$ when $c \to \infty$ and $\Phi(0) = 1/2$). Unfortunately, we cannot rapidly say $\psi''(\cdot) < 0$ and close the proof. However, if we show that the sign of the second derivative $\psi''(\cdot)$ is

$$-\ 0\ +$$
 (10)

on $(0, \infty)$ (that is, $\psi''(\cdot)$ has only one root on $(0, \infty)$), then given that $\psi'(0) > 0$ and $\psi'(\infty) = 0$, one deduces the variation (9) for $\psi'(\cdot)$. Since $\phi(\cdot) > 0$, to prove the variation (10) for $\psi''(\cdot)$, it suffices to prove that the sign of the function $\gamma(c) = -4c\phi(c) - 1 + 2\Phi(c)$ is

$$-\ 0\ +$$
 (11)

on $(0, \infty)$. Notice that $\gamma(0) = 0$ and $\gamma(\infty) = 1$ (since $c\phi(c) \to 0$ when $c \to \infty$). Now,

$$\gamma'(c) = -4\phi(c) - 4c\phi'(c) + 2\phi(c) = 2\phi(c) \left[2c^2 - 1\right].$$

The function $\gamma'(c)$ is strictly negative on $(0, 1/\sqrt{2})$, vanishes at $c = 1/\sqrt{2}$, and is strictly positive for $c > 1/\sqrt{2}$. This means that when c moves from 0 to ∞ , the function $\gamma(\cdot)$ starts from zero, strictly decreases, reaches a minimum level at $c = 1/\sqrt{2}$ (which is necessarily negative since $\gamma(0) = 0$ and $\gamma(\cdot)$ is strictly decreasing from c = 0 to $c = 1/\sqrt{2}$) and strictly increases for all values $c > 1/\sqrt{2}$ and approaches the limit value $\gamma(\infty) = 1$. In such a case, the sign of the function $\gamma(\cdot)$ on $(0, \infty)$ is necessarily like in (11). This completes the proof.