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Abstract

This supplement considers the diagnostic odds ratio, a special summarizing

function of specificity and sensitivity for a given diagnostic test which has been

suggested as a measure of diagnostic discriminatory power. In the situation of

a continuous diagnostic test a cut-off value has to be chosen and it is a common

practice to choose the cut-off value on the basis of the maximized diagnostic

odds ratio. We show that for the case of a normal distributed diseased and a

normal distributed non-diseased population with equal variances the log-DOR

is a convex function of the cut-off value.

Notation

We are considering the diagnostic test accuracy of a diagnostic test B for diagnosing

the presence of a specific condition. A typical setting is as follows. The outcome

of B is binary where B = 1 indicates the presence of the condition (test is pos-

itive) and B = 0 indicates the absence of the condition. Here the objective lies

in determining the discriminating power of the diagnostic test in separating per-

sons with a specific condition (diseased) from those without this condition (non-

diseased). Widely, two measures of diagnostic accuracy are considered: the sensitiv-

ity defined as S+ = Pr(test positive|diseased) = (1 − β) and the specificity defined

as S− = Pr(test negative|non-diseased) = (1 − α). The sensitivity measures the ca-

pability of the diagnostic test to recognize a diseased person correctly, whereas the

specificity measures the capability of diagnosing a healthy person correctly. Conse-

quently, β is the error probability of falsely classifying a diseased person as healthy

and α is the error probability of falsely classifying a healthy person as diseased. The
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diagnostic odds ratio (DOR) has been suggested and utilized frequently in the liter-

ature as a summary measure of sensitivity and specificity. The diagnostic odds ratio

as a single indicator of diagnostic performance is defined as

D =
S+

1− S+
× S−

1− S−
. (1)

Note that (1) can be written as the ratio of the odds S+

1−S+ for diagnosing a diseased

person as diseased to the odds 1−S−

S−
for diagnosing a healthy person as diseased.

Now, we suppose that the diagnostic procedure is providing a continuous outcome

or an ordered categorical outcome which we denote as T . For example, a psychological

test is used (potentially among other procedures) to determine a certain condition

such as the presence of dementia in an elderly person. Often these diagnostic tests

deliver a score and a cut-off value c is used to decide about the presence or absence

of the condition. Note that T and the binary test result variable B are connected via

B = I{T>c}, where IS denotes the indicator function for a set S defined as IS(s) = 1

if s ∈ S and 0 otherwise. Then, sensitivity and specificity become a function of the

cut-off value c, and, consequently, also the diagnostic odds ratio

D8c) =
S+(c)

1− S+(c)
× S−(c)

1− S−(c)
. (2)

The convexity result for the DOR

We now come to the general result and consider the situation that the diagnostic

test T has the same variance σ2
D = σ2

H = σ2 in the diseased and the non-diseased

population. Without limitation of generality we set σ2 = 1, µD = µ, µH = 0. Hence,
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the following result is proved under the assumption of normality with equal variances

in the two populations of healthy and diseased individuals.

Theorem 1 Let Φ(·) be the cumulative distribution function of the standard normal

distribution. Also, let

D(c) =
S+(c)

1− S+(c)
× S−(c)

1− S−(c)
=

1− Φ(c− µ)

Φ(c− µ)
× Φ(c)

1− Φ(c)
.

Then:

D(c) > D(µ/2), for all 0 ≤ c ≤ µ, but c 6= µ/2, (3)

d2

dc2
logD(c) > 0 for all c ∈ [0, µ]. (4)

The theorem says that D(·) is actually minimized at ĉ = µ/2 and that logD(·)

is convex. As a consequence, points maximizing the D(c) will be on the boundary of

the parameter space [0, µ], leading to useless cut-off values. In conclusion, the DOR

is not useful as a criterion for maximizing discriminatory power.

Before we go the proof of the main result of Theorem 1 let us introduce some notation

and assumptions.

The random variable T is distributed according to a general distribution function

Φµ(·), with mean µ, fixed variance (say, equal to 1), and symmetric about the mean.

For simplicity, we write Φ(·) when µ = 0. Clearly, Φµ(·) = Φ(· − µ). Let φ(·) be the

derivative of Φ(·).
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Note that Φ(·) is not restricted to the normal case yet. Define

g(c) =
Φ(c)

1− Φ(c)
, and D(c) =

g(c)

g(c− µ)
.

Note that g(c) corresponds to S−/(1−S−) in (1) and g(c−µ) to (1−S+)/S+ in (1).

From the symmetry property, g(c)g(−c) = 1, and therefore

D(c) = g(c)g(µ− c).

Theorem 1 can be written in the equivalent form

ln g(c) + log g(µ− c) > 2 log g(µ/2), for all 0 ≤ c ≤ µ, but c 6= µ/2.

Proof of Theorem 1

Let us compute and define

d

dc
log g(c) =

φ(c)

Φ(c) [1− Φ(c)]
=: h(c).

Then

d

dc
log g(µ− c) = −h(µ− c),

and therefore

d

dc
logD(c) = h(c)− h(µ− c), and

d2

dc2
logD(c) = h′(c) + h′(µ− c)

where h′ = dh/dc. In particular, we see that d
dc

logD(µ/2) = 0.
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In the following we show that

h′(·) > 0 on [0, µ], (5)

which will imply two things: a) d
dc

logD(·) is strictly increasing on [0, µ] and therefore

it has only one stationary point on this interval; and b) the stationary point c = µ/2

is a minimum and the theorem holds.

By elementary algebra

h′(c) =
φ(c)

Φ(c) [1− Φ(c)]

[
φ ′(c)

φ(c)
− φ(c)

1− 2Φ(c)

Φ(c) [1− Φ(c)]

]
.

Case 1 : the density φ(·) is nondecreasing on [0, µ]. Then

φ ′(c)

φ(c)
− φ(c)

1− 2Φ(c)

Φ(c) [1− Φ(c)]
> 0, ∀c ∈ [0, µ], (6)

because, by the symmetry property, 1 − 2Φ(c) < 0 for c > 0. This case is of little

practical interest, but to obtain the result of the theorem in its most general form we

try to use as few assumptions as possible.

Case 2 : the density φ(·) is decreasing on [0, µ]. In particular, this case is met

in the standard Gaussian case. Once again, to get (5), we have to show (6). Let us

assume that for all c ∈ [0, µ], we have

c ≥ − φ ′(c)

φ(c)
. (7)
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Note that (7) is in particular satisfied in the Gaussian case where we have equality.

If (7) is satisfied, then (6) is implied by the following inequality

2− 1

Φ(c)
> c

1− Φ(c)

φ(c)
, ∀c ∈ [0, µ], (8)

which is proved in the Lemma 1 further below for the Gaussian case. Then the proof

is complete also for this case.

Case 3 : the density φ(·) is nondecreasing on some interval [0, c] and decreasing

on [c, µ] (or decreasing and nondecreasing on the respective intervals). In this case it

suffices to combine the arguments used for Cases 1 and 2 which ends the proof.

Lemma 1 Let Φ(·) and φ(·) denote the distribution function and the density of the

standard normal law. Then, for all c > 0

2− 1

Φ(c)
> c

1− Φ(c)

φ(c)
.

Proof. We shall prove the equivalent inequality ψ(c) > 0 for all c > 0, where

ψ(c) = [2Φ(c)− 1]φ(c) + cΦ(c) [Φ(c)− 1] .

Notice that ψ(0) = 0. Moreover, since in the Gaussian case

lim
c→∞

c[1− Φ(c)] = 0,
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we also have ψ(∞) = 0. Compute the derivative

ψ′(c) = 2φ2(c) + [2Φ(c)− 1] {φ ′(c) + cφ(c)} − Φ(c) [1− Φ(c)]

= 2φ2(c)− Φ(c) [1− Φ(c)]

where for the last equality we use the property φ ′(c) + cφ(c) = 0. Let us notice that

the statement ψ′(c) > 0 for all c > 0 does not hold. However, ψ′(∞) = 0 and

φ(0) >
1

2
√

2
,

which implies ψ′(0) > 0. Since ψ(0) = ψ(∞) = 0, in order to show ψ(c) > 0 for all

c > 0 it suffices to show that the derivative of ψ(·) is strictly positive on some interval

(0, a) and negative on (a,∞), where a > 0. This means that ψ′(·) has the sign

+ 0 − (9)

on (0,∞). Compute

ψ′′(c) = φ(c) [4φ ′(c)− 1 + 2Φ(c)] = φ(c) [−4cφ(c)− 1 + 2Φ(c)] ,

where for the last equality we used again the fact that we are in the Gaussian case

and thus φ ′(c) = −cφ(c). Notice that ψ′′(0) = ψ′′(∞) = 0 (since cφ2(c) → 0 when

c → ∞ and Φ(0) = 1/2). Unfortunately, we cannot rapidly say ψ′′(·) < 0 and close

the proof. However, if we show that the sign of the second derivative ψ′′(·) is

− 0 + (10)
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on (0,∞) (that is, ψ′′(·) has only one root on (0,∞)), then given that ψ′(0) > 0

and ψ′(∞) = 0, one deduces the variation (9) for ψ′(·). Since φ(·) > 0, to prove

the variation (10) for ψ′′(·), it suffices to prove that the sign of the function γ(c) =

−4cφ(c)− 1 + 2Φ(c) is

− 0 + (11)

on (0,∞). Notice that γ(0) = 0 and γ(∞) = 1 (since cφ(c) → 0 when c→∞). Now,

γ′(c) = −4φ(c)− 4cφ ′(c) + 2φ(c) = 2φ(c)
[
2c2 − 1

]
.

The function γ′(c) is strictly negative on (0, 1/
√

2), vanishes at c = 1/
√

2, and is

strictly positive for c > 1/
√

2. This means that when c moves from 0 to ∞, the

function γ(·) starts from zero, strictly decreases, reaches a minimum level at c = 1/
√

2

(which is necessarily negative since γ(0) = 0 and γ(·) is strictly decreasing from c = 0

to c = 1/
√

2) and strictly increases for all values c > 1/
√

2 and approaches the limit

value γ(∞) = 1. In such a case, the sign of the function γ(·) on (0,∞) is necessarily

like in (11). This completes the proof.
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