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A note on a test for Poisson overdispersion
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Germany

SUMMARY

This note discusses an error occurring in a test for Poisson overdispersion suggested by Tiago
de Oliveira (1965). The limiting null distribution of the suggested statistic is neither pivotal nor is
it standard normal. The error lies in the computation of the asymptotic standard error of the
overdispersion estimate, for which a corrected version is given. The corrected version of the test
statistic becomes equivalent to the normalized version of Fisher’s index of dispersion.
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1. INTRODUCTION

Consider a random sample of counts of sample size X, ..., X,. Let X = (X; + ... + X,)/n be its
mean and 2 = {(X; — X)? + ... + (X, — X)*}/(n— 1) its variance. If interest is in the hypothesis H,
that the sample comes from a Poisson distribution with parameter A, one naturally compares X
with SZ since, under Hy, E(X) = E(S?) = A. If $2 is much larger than X, then we have found Poisson
overdispersion, and (S — X) is its estimate. Overdispersion is a phenomenon often caused by latent
heterogeneity, meaning that the sample arises from a population consisting of different subpopula-
tions. A simple diagnostic test for overdispersion is helpful, since a lack of significance in testing
overdispersion might indicate that a further investigation of latent heterogeneity might not be
necessary. The test to be discussed here is based on a suggestion of Tiago de Oliveira (1965) who
looked at the difference S2— X and argued that its variance is given by (1 — 24% + 34)/n, which
can be estimated by (1 — 2X?* + 3X)/n if the null hypothesis is true. The statistic of Tiago de Oliveira
(1965) is thus

Op = n*(S? — X)/(1 — 2X* + 3X)¢ (1-1)

and it is claimed that the limiting null-distribution of (1-1) is standard normal. The test is also
referred to by Titterington, Smith & Makov (1985, p. 152) and by Johnson, Kotz & Kemp
(1992, p. 319).

The failure of the test. In a simulation study of the null distribution of (1-1) with sample size
n=1000, A ranging from 1 to 25, with step size 1, and replication size 10 000, it became evident
that the limiting distribution of (1-1) is neither standard normal under the null hypothesis, nor is
it independent of A.

2. THE VARIANCE OF S?2—X

The failure of the test is due to a false computation of the standard deviation of §2 —X. This
becomes apparent by observing that n x var (S — X) should go to 0 if A becomes small which is
evidently not the case for (1 — 24* + 34). The correct variance is provided by the following theorem.

THEOREM. Let X, ..., X, be a sample from a Poisson distribution with parameter A. Then
var (S%2 — X)=2A%/(n—1). 21)
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The proof is straightforward, requiring only the first four moments of a Poisson variate, e.g.
Haight (1967, p. 6), and some algebra. Details of the proof and the simulation study mentioned
above are available from the author.

On replacing the variance of S — X by its corrected version (2:1), and estimating 1 by X, we
obtain the test statistic

OF" = {(n—1)/2}*{(5%/X) - 1},

essentially equivalent to (n — 1)S%/X, usually referred to as Fisher’s index of dispersion (Potthof &
Whittinghill, 1966, p. 185). Hoel (1943) argues that the x> with n— 1 degrees of freedom gives a
good approximation for this.

3. EXAMPLE

The data presented in Table 1 are the daily numbers of deaths of women, with brain vessel
disease (International Classification of Diseases 430-438) as cause of death, for the year 1989 in
West Berlin. We calculate n =366, x = 63634, s? = 68238, indicating a slight overdispersion of
s> — X = 0-4604, and yielding values o = 2:2706 and 05" = 09774, leading to different conclusions.

Table 1. Cases of female deaths by brain vessel disease in West Berlin, 1989

Deathsperday 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Frequency 1 4 15 31 39 55 54 49 47 31 16 9 8 4 3
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