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Abstract The purpose of this note is to contribute some general points on how mixtures
of power series distributions relate to their ratios of neighboring probabilities and how the
associated graph, the ratio plot, can be used as diagnostic device as suggested in Böhning
(J Comput Graph Stat 22:133–155, 2013). This work is continued here and extensively used
to explore the aptness of the negative-binomial and beta-binomial model as capture-recapture
zero-truncated count models. It is concluded that these models are less suitable for capture-
recapturemodelling as frequently readily assumed.This ismainly due to an inherent boundary
problem that is elaborated here and illustrated at hand of some case studies.
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1 Introduction

We consider discrete distributions of the power series family with density

px (θ) = axθ
x/η(θ), (1)

where ax is a known, nonnegative coefficient, θ a positive parameter and x = 0, 1, . . . ranges
over the set of nonnegative integers. Also, η(θ) = ∑∞

x=0 axθ
x is the normalizing constant.

The power series distributional family is very general; it contains the Poisson, the binomial,
the geometric, the negative-binomial with known shape parameter, the log-series and others.
In fact, it is equivalent to the one-parameter discrete exponential family. Note further that the
coefficient ax defines the specific member of the power series, for example ax = 1/x ! defines
the Poisson, ax = (T

x

)
for x = 0, . . . , T with positive integer T defines the binomial (ax = 0
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202 D. Böhning

for x > T ) or ax = 1 gives the geometric. For known value of the shape parameter k > 0, the
negative-binomial px = �(x+k)

�(x+1)�(k) θ
x (1 − θ)k is also part of the power series family (here

θ ∈ (0, 1) is the event parameter). Note that the coefficient ax is given by ax = �(x+k)
�(x+1)�(k) .

For k = 1 the negative-binomial becomes the geometric distribution and for k → ∞ the
negative-binomial approaches the Poisson distribution.

Assume that the target population of interest is heterogeneous and this heterogeneity is
unobserved and, hence, can only be described by a latent variable Z . Furthermore, the joint
distribution of the quantity of interest, the count X , and the latent variable Z is given by

f (x, z) = f (x |z) f (z),
where f (x |z) = f (x, z)/ f (z) and f (z) = ∫

z f (x, z)dz. Since the state of the latent variable
z is unobserved we consider the marginal density

∫

z
f (x |z) f (z)dz.

If the conditional density f (x |z) can be described by a power series density px (θ) where the
state of the latent variable is identified by the parameter θ of the power series, we arrive at
the general mixture model for the power series family

mx =
∫

θ

px (θ) f (θ)dθ. (2)

Whereas the modelling capacity of the power series distribution is limited, mixtures of power
series distributions experience enhanced flexibility in model fitting. The mixture (2) has two
parts themixture kernel px (θ) and themixing distribution f (θ). If we leave themixing distri-
bution unspecified, the nonparametric estimate is discrete ([17]) and connects to clustering.
If we choose the mixing distribution parametric and continuous the associated modelling
leads latent trait approaches ([23]).

We are interested in using the above modelling with continuous, parametric mixing distri-
butions in the context of zero-truncated count distributional modelling which arises naturally
in capture-recapture experiments or studies. The size N of a target population needs to be
determined. For this purpose a trapping experiment or study is done where members of the
target population are identified at T occasions where T might be known or not. For each
member i the count of identifications Xi is returned where Xi takes values in {0, 1, 2, . . .}
for i = 1, . . . , N . However, zero-identifications are not observed, they remain hidden in the
experiment. Hence, a zero-truncated sample X1, . . . , Xn is observed, wherewe have assumed
w.l.o.g. that Xn+1 = · · · = XN = 0. The associated zero-truncated densities will be denoted
as p+

x (θ) = px (θ)/[1 − p0(θ)] and m+
x (θ) = mx (θ)/[1 − m0(θ)] for the zero-truncated

power series and the zero-truncated mixture of power series distributions, respectively.

2 Mixtures of power series distributions and the monotonicity
of the probability Ratio

The power series (1) has an important property. If we consider ratios of neighboring proba-
bilities multiplied by the inverse ratios of their coefficients then

rx = ax
ax+1

px+1

px
= θ, (3)
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in otherwords, rx is constant over the range of x with value equal to the unknown parameter θ .

Note that rx is also identical to
ax

ax+1

p+
x+1

p+
x
. A nonparametric estimate of rx is readily available

with r̂x = ax
ax+1

fx+1
fx

where fx is the frequency of observations with count value x . The graph
x → r̂x is called ratio plot andwas developed in [6] as a diagnostic device providing evidence
for the aptness of a distribution.

We now show how the ratio plot might be used for a given data set. In [24] a study was
reported on domestic violence in the Netherlands for the year 2009. Here the perpetrator
study is reported with the data given in Table 1. To understand the table, there were 15,169
perpetrators identified being involved in a domestic violence incident exactly once, 1957
exactly twice, and so forth. In total, there were 17,662 different perpetrators identified in the
Netherlands for 2009. The data represent the Netherlands except the police region for The
Hague.

In Fig. 1 we see the two ratio plots, one using r̂x = (x + 1) fx+1/ fx for the diagnosis of
a Poisson, the other using r̂x = fx+1/ fx for the diagnosis of a geometric. Clearly, the ratio
plot for the Poisson does not show a horizontal line pattern and, hence, the Poisson does not
appear to be an appropriate distribution for these data. The ratio plot for the geometric is
much closer to a horizontal line, although some positive slope appears to be present. One
could easily construct a test for linear trend based on the estimated slope parameter, but we

Table 1 Frequencies of the number of times perpetrators have been identified in a domestic violence incident
in the Netherlands in the year 2009

Year f1 f2 f3 f4 f5 f6+ n

2009 15,169 1957 393 99 28 16 17,662
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Fig. 1 Ratio plot for perpetrator domestic violence identifications in the Netherlands 2009 using the Poisson
and the geometric
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204 D. Böhning

do not follow up on this here as there are various statistical tests for homogeneity available
([3]).

We have more interest in connecting the presence of unobserved heterogeneity (which
could be described by a latent variable) with the concept of the ratio plot. We have seen
in (2) that the occurrence of unobserved heterogeneity leads to the mixture of power series
distributions. We can likewise consider the ratio plot for mixtures

rx = ax
ax+1

mx+1

mx
, (4)

where we use the coefficients ax associated with the mixture kernel, for example, in the case
of a Poisson kernel ax = 1/x ! or the case of a geometric kernel ax = 1. The estimate of
rx will not change, however, the interpretation of the observed pattern in the ratio plot will.
This is mainly due to the following result [5]:

Theorem 1 Let mx = ∫
θ
px (θ) f (θ)dθ where px (θ) is a member of the power series family

and f (θ) an arbitrary density. Then, for rx = ax
ax+1

mx+1
mx

we have the following monotonicity:

rx ≤ rx+1

for all x = 0, 1, . . .

A proof of this result—using the Cauchy-Schwarz inequality—is available in [5]. The
ratio rx = ax

ax+1

mx+1
mx

has an interesting connection to Bayesian inference. In fact,

rx = ax
ax+1

mx+1

mx
= ax

ax+1

∫
θ
ax+1θ

x/η(θ) × θ f (θ)dθ
∫
θ
axθ x/η(θ) f (θ)dθ

=
∫
θ
axθ x/η(θ) × θ f (θ)dθ
∫
θ
axθ x/η(θ) f (θ)dθ

=
∫

θ

θ f (θ |x)dθ

is the posterior mean for prior distribution f (θ) on θ . Here f (θ |x) = ax θ x/η(θ) f (θ)∫
θ ax θ

x/η(θ) f (θ)dθ
is

the posterior distribution. Hence r̂x = ax
ax+1

fx+1
fx

provides an estimate of the posterior mean
without implying any knowledge on the prior distribution nor is there any requirement for
estimating the prior distribution. This idea goes back to [20] and is considered the manger
of empirical Bayes. For more details see [9].

The major use of the monotonicity result of Theorem 1 is the following. If a monotone
pattern occurs in the ratio plot this can be taken as indicative for the presence of heterogeneity.
Coming back to Fig. 1, there is a clear monotonicity present in both ratio plots. However,
the linear trend is stronger for the ratio plot of the Poisson whereas the trend is less strong
for the geometric. This may be interpreted in a way that part of the heterogeneity has been
adjusted for in the geometric model as it is itself a Poisson mixture with a mixing exponential
density:

(1 − p)px =
∫

exp(−θ)θ x/x ! × 1

λ
exp(−θ/λ)dθ,

where p = λ/(1 + λ). The slight positive trend in the ratio plot for the geometric may
indicate some residual heterogeneity not adjusted for in the Poisson-exponential mixture.
If the geometric distribution is appropriate a simple estimate of p can be achieved as
[∑T

x=2 fx ]/[∑T−1
x=1 fx ] where T is the largest observed count. This estimate is asymptot-

ically unbiased and feasible if f1 > fT which is usually the case. We mention this estimate,
not necessarily as a better alternative to the maximum likelihood estimate, since it is ratio plot
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based in the sense that it uses a weighted average of the ratios fx+1/ fx , x = 1, 2, . . . , T . In
practice, workingwith the geometric is unproblematic. This is in contrast to its generalization,
the negative binomial distribution, which we discuss now.

3 The failure of the negative-binomial

It is natural to consider the negative-binomial distribution as a generalization of the geomet-
ric. The negative binomial distribution arises as a mixture of a Poisson distribution with a
Gamma distribution, hence it is sometimes also called the Poisson-Gamma model. Due to
its enhanced flexibility in fitting count data [8,15,18,25], in comparison to the Poisson, it
has been suggested as a more flexible approach in zero-truncated count data modelling ([2];
Chapter 4, [12]). We will show that using the negative-binomial frequently encounters fitting
problems. These problems do also arise in untruncated count data, but are more pronounced
in zero-truncated count data. The negative-binomial distribution is given as

px = �(x + k)

�(x + 1)�(k)
px (1 − p)k, (5)

where p ∈ (0, 1) is the event parameter, k > 0 is the shape parameter, and x = 0, 1, . . ..
The negative-binomial contains as special cases the geometric, for k = 1, and the Poisson
for k → ∞. The ratio of neighboring probabilities for the negative-binomial turns out to be

rx = (x + 1)
px+1

px
= (x + k)p = α + βx, (6)

where we have used the reparameterization α = kp and β = p. This shows that, for a
negative-binomial distribution, these ratios are a linear function of x . This property could
also be used to develop an estimator for f0 as proposed in [21]. Here, instead, wewould like to
follow a suggestion in [6] to take a straight line pattern in the graph x → r̂x = (x+1) fx+1/ fx
as indicative for the aptness of the negative-binomial as a distributional model for the zero-
truncated count data. To illustrate we look again at the ratio plot given in Fig. 2. There is a
clear evidence that the ratios follow a straight line pattern.

However, despite this apparent fact, the negative-binomial is not an appropriate model for
these domestic violence data. As the best fitting line in Fig. 2 indicates, the estimate for the
intercept is negative and hence violates the restriction α > 0. This not only means that the
distribution is no longer valid, it also implies that the predicted ratio r̂ p1 = f1/ f̂0 becomes
negative, leading to a useless prediction value of f0.

Furthermore, taking logarithms on both sides of the first equation in (6), leading to

log rx = log(1 − p) + log(x + k),

does not help, as the graph x → log r̂x in Fig. 3 with embedded fitted nonlinear model
̂log(1 − p) + log(x + k̂) shows. Implementing a boundary condition k > 0 does not help

either as the parameter estimate of k will lie on the boundary. The ratio plot does not offer a
solution for the problem, but it clearly points out the reason why the negative-binomial is not
appropriate. This is in contrast to standard packages such as R or STATA where only error
information is returned such as parameter estimates have not converged or
log-likelihood is not concave which adds more to the confusion than to its
enlightenment.

The question arises towhich extent the boundary problemoccurs if it is known that the data
come from a negative-binomial distribution. In a simulation, 100 counts were sampled from
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Fig. 2 Ratio plot for perpetrator domestic violence identifications in the Netherlands 2009; dashed line
corresponds to the weighted least-squares regression line
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Fig. 3 Log-ratio plot for perpetrator domestic violence identifications in the Netherlands 2009; solid line
corresponds to the weighted least-squares nonlinear model

a negative-binomial with event parameter p = 0.5 and shape parameter k = 2. Zero-counts
were truncated and a regression line estimated. In 100 replications, 24 % of the intercept
estimates were negative indicating a boundary problem. If k = 2 (doubling the variance) this
percentage goes down to 12%. If k = 1 and p = 0.3 (decreasing the variance) the percentage
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of boundary problem occurrence goes up to 35 %. These simple simulations indicate that
the boundary problem is by far not negligible. As mentioned previously, standard software is
unable to deliver estimates in these situations whereas the ratio plot is able to provide some
valuable insights on the occurrence of a potential boundary problem.

4 The failure of the beta-binomial

We now consider the situation that the number of trapping/identification occasions T is
known. Then it is natural to consider the binomial

px =
(
T

x

)

θ x (1 − θ)T−x (7)

as potential distribution for the count X of identifications per unit out of T . The associated
ratio plot uses ax = (T

x

)
, so that

rx = x + 1

T − x
px+1/px = θ/(1 − θ)

becomes a straight line. Note that rx/(1 + rx ) = θ so that log rx represents the canonical
logit link-function. In Fig. 4 we see the ratio plot using r̂x = x+1

T−x fx+1/ fx for 100,000
replications from a binomial with size parameter 8 and event parameter θ = 0.4; mainly for
scaling purposes we are showing the graph x → r̂x/(1 + r̂x ). There is clear evidence of a
horizontal line with intercept θ̂ = 0.4.

We illustrate the concept at the example of the golf tees study of St. Andrews ([7]). 250
clusters of golf teeswere placed in an area of 1680m2.The areawas surveyedby eight students
of the University of St. Andrews. Their task was to retrieve the golf tee clusters without prior
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Fig. 4 Ratio plot for 100,000 simulated data from a binomialwith size parameter T = 8 and success parameter
θ = 0.4; solid line corresponds to the weighted least-squares line
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Table 2 Frequencies of the number of times a golf tee has been recovered by the 8 observers in the St.
Andrews capture-recapture experiment

f0 f1 f2 f3 f4 f5 f6 f7 f8 n

(88) 46 28 21 13 23 14 16 11 162
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Fig. 5 Ratio plot for golf tees identifications in the capture-recapture experiment in St. Andrews (Scotland);
solid line corresponds to the weighted least-squares nonlinear model

knowledge on their placements. The results are provided with Table 2. According to this
Table 46 golf tee clusters were found by exactly 1 surveyor, 28 by exactly 2 surveyors, 21 by
exactly 3, etc. It should be pointed out that 88 of the 250 golf tee clusters remained undetected.

In Fig. 5, we see clear evidence that the ratios r̂x are monotone increasing and do not
follow a horizontal line. This points into the direction of potential heterogeneity in golf tees
detection (some golf tees might be found easier than others) but also into the direction of
potential heterogeneity in golf tee detection ability among the surveyors.

To cope with heterogeneity mixtures of binomials have been suggested, and in particular,
for the setting of zero-truncated count data, the beta-binomial ([13]). The beta-binomial
occurs when the binomial distribution is mixed with a beta distribution

mx =
∫ 1

0

(
T

x

)

θ x (1 − θ)T−x

�(α+β)
�(α)�(β)

θα−1(1−θ)β−1

︷︸︸︷
g(θ) dθ, (8)

where α and β are positive parameters, and the marginal takes a simple form as the integral
can be analytically solved to give

mx =
(
T

x

)
�(α + β)

�(α)�(β)

�(x + α)�(T − x + β)

�(T + α + β)
. (9)
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Fig. 6 Log-ratio plot for golf tees identifications in the capture-recapture experiment in St. Andrews (Scot-
land); solid line corresponds to the weighted least-squares nonlinear model

It is easy to see that the ratio plot for the beta-binomial is provided by

x → ax
mx+1

mx
= �(x + 1 + α)�(T − x − 1 + β)

�(x + α)�(T − x + β)
= x + α

T − x − 1 + β
, (10)

a very simple expression on the RHS of (10). Note that ax = (x + 1)/(T − x) in this
case. In Fig. 6 we see the ratio plot on the log-scale x → ax

fx+1
fx

for the golf tee clusters
capture-recapture study.

Also, in Fig. 6 as the solid line, the fit for the non-linear model log rx = log(x + α) −
log(7 − x + β) has been included. The odd behavior of the model at the boundaries, in
particular between 0 and 1, becomes apparent. To further illustrate the erratic behavior of the
beta-binomial, consider what happens if we predict r̂0 = 1

T
f1
f0
. Having values α̂ and β̂ from

the model fit, we get

f̂0 = T − 1 + β̂

α̂

f1
T

, (11)

which takes on the value 306 for the golf tees data, a substantial overestimate and misleading
guess of the hidden 88 clusters. This is exactly what has been observed in simulation studies
[22], but the ratio plot explains why this occurs. For the golf tees data we are in the lucky
situation that the fitted parameter values for α and β are positive, so that the beta-binomial
could be fitted. But this, by no means, needs to be always the case. Even a slight perturbation
of the observed value log r̂x = −1.75 to −2.00 leads to the situation described in Fig. 7,
where infeasible parameter estimates occur, and invoking parameter constraints would only
mean that the solution lies in the boundary and no regular beta-binomial distribution fit exists
(in the sense that parameter estimates lie in an open neighborhood of the feasible parameter
space).

123



210 D. Böhning

5 Discussion

We have seen in the previous section that the beta-binomial has inherent model features that
does not make this model the prime choice for predicting the missing cell frequency f0. On
the other hand, as Fig. 7 shows, the golf tees data experience a certain structure that should
allow some simple form of modelling. In fact, taking the log-ratio as response, a simple
straight line model seems a reasonable approximation of the observed pattern. Whereas, in
generality, every regression model for log rx will lead to valid distribution px , it might be
not easy, if it all, to derive at a closed form solution for this associated distribution px . In this
case, however, when we use the model log rx = α + βx , the associated distribution is the
multiplicative-binomial distribution, introduced by [1], further discussed by [19] and more
recently used in Freirer et al. [14] and [16]. The multiplicative-binomial has density

mx =
(
T

x

)

θ x (1 − θ)T−xνx(T−x)/c, (12)

where c is the normalizing constant
∑T

x=0

(T
x

)
θ x (1−θ)T−xνx(T−x) and ν > 0 the additional

parameter, indicating over- or underdispersion. If ν = 1 the multiplicative-binomial reduces
to the binomial. Clearly, the ratio log rx = log[ x+1

T−x
mx+1
mx

] leads to
log rx = log θ/(1 − θ) + (T − 1) log ν − 2x log ν,

for x = 0, 1, . . . , T − 1. This is a straight line model α + βx with α = log θ/(1 − θ) +
(T −1) log ν and β = −2 log ν. Whereas the multiplicative-binomial involves the parameter
constraints 0 < θ < 1 and ν > 0, there are no more constraints for the log ratio straight line
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Fig. 7 Log-ratio plot for golf tees identifications in the capture-recapture experiment in St.Andrews (Scotland)
with the first log-ratio slightly changed to −2; solid line corresponds to the weighted least-squares nonlinear
model
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model α + βx . Note that the ratio method eliminates the unpleasant normalizing constant c
as well.

Although it is not really required for predicting the missing frequency f0 to derive the
distribution associated with the regression model, it is of help interpreting the value and
meaning of the regression model at hand. In closing this point, we would like to raise an open
question. As the value of the additional parameter involved in the multiplicative-binomial is
associated with the occurrence of over- or underdispersion, the question arises whether the
multiplicative-binomial distribution can be obtained by mixing the binomial with some (yet
unknown) mixing distribution to reflect unobserved heterogeneity.

We use r̂x = ax
ax+1

fx+1
fx

as the general estimate for rx . This is the natural, nonparametric
estimate in the count data situation and can be expected to work well with large sample sizes
as it is a consistent estimator. However, if sample sizes become smaller the nonparametric
estimate will be less reliable and might even fail to exist in the case of fx = 0 for some
x . The latter leads to the unpleasant feature of the appearance of certain holes in the ratio
plot, typically for large x . One could think of using the nonparametric mixture m̂(x) =∫
θ
px (θ) f̂ (θ)dθ with the nonparametric mixing distribution estimate f̂ (θ). However, this is

prohibitive as the nonparametric mixture will impose a monotone relationship in the ratio
plot which we are interested in finding out in the first place. As a simple measure a simple
smoothing constant could be used, e.g. using fx + c instead of fx with c = 0.5 as a house
number. We must leave it as an open problem here how much bias this could implement in
the ratio plot. To adjust for uncertainty in the ratio plot, pointwise standard error bars could
be supplemented to the ratios as done before (see [6]). The variance of log r̂x can easily
be approximated, using the δ−method, by 1/ fx+1 + 1/ fx . This approximation seems to be
reasonably good for values of fx of 5 and above as a small simulation under the Poisson
assumption for fx shows (Fig. 8). Including an error bar appears to be the best option at the
moment to address the reliability of the nonparametric estimate r̂x .

Another question arises on how a continuous mixture can be separated from a discrete
mixture by means of the ratio plot. Is it possible to draw any conclusions about the nature
of the mixing distribution from the appearance of the ratio plot? From the theory, in the
case of discrete mixing, we would expect the ratio plot to show a step-function behavior, at
least if the component distributions are well separated. Figure 9 shows a discrete mixture
of two Poisson distributions (simulated with a sample size of 1000): one is well-separated
with component means 1 and 8, the other less separated with component means 1 and 4. This
question is also connected to the omitted covariate situation: in this case a binary covariate,
which is ignored, would marginally lead to a discrete mixture. How does this affect the ratio
plot?

Whereas for the first situation the discrete character of the underlying distribution is clearly
recognizable (even the component means can be seen here), this is considerablymoremasked
in the second situation. In fact, here it is even not clear whether a discrete or smooth mixing
distribution operates in the background. Hence, it seems that the ratio plot can only be used
to detect large contaminating components.

Another issue arises with the question to which extent the approach can be extended to
the situation of multiple sources or lists. Up to now we have been implicitly assuming that
the count arises from a repeated identification of the same subject within a given time period.
However, a count also arises in settings where a subject is identified by several, different
sources or lists. For illustration, [26] revisits an application of estimating the number of
children born with Down’s syndrome. Health records from five (T = 5) different sources
(hospital records, Department of Health, schools, Department ofMental Health, and obstetric
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Fig. 9 Ratio plot for two discrete Poisson mixture models: one is giving equal weights to component para-
meters 1 and 8 (blue bullets), the other equal weight to component parameters 1 and 4 (red squares)

records) were searched to obtain the names of children born in Massachusetts between 1955
and 1959 with the birth defect Down’s syndrome. All told, 537 names were found. Of these,
248 appeared in only one source, 188 appeared in just two different sources, 81 in exactly

123



Power series mixtures and the ratio... 213

three different sources, 18 in just four and 2 in exactly 5 different sources. The problem is to
estimate the total number of children born between 1955 and 1959 with Down’s syndrome.

We show in Fig. 10 the ratio plot for these data on Down’s syndrome. Evidently, the
binomial distribution (using T = 5) appears justified. It is interesting to note that [26]
ignores the finite number of sources character of the data and uses a Poisson approach. In
more generality, one needs to be careful using the ratio plot for marginal counts for multiple
lists as multiple lists might have different identification probabilities and/or also experience
complex dependency structures. A reasonable strategy seems to be to decide this on a case-
by-case approach. In particular if there are few sources, the alternative log-linear modelling
approach ([4]: Chapter 6) might be more appropriate. Admittedly, with a large number of
lists, the marginal count ratio plot still is an interesting option worthwhile to consider.

Another question is how the ratio plot connects to established estimators such as Chao’s
estimator [10,11]. Chao’s estimator of f0 has been developed as a lower bound estimator
undermx = ∫

θ
px (θ) f (θ)dθ where px (θ) is thePoissondensity and f (θ) an arbitrarymixing

distribution. The estimator takes the form f̂0 = f 21 /(2 f2) and has been developed using the
Cauchy-Schwarz inequality. We see in Fig. 11 that f1/ f0 ≤ 2 f2/ f1 and solving for f0 gives
Chao’s estimator. Many other bounds are possible as Fig. 11 shows, for example we have that
f1/ f0 ≤ 4 f4/ f3 which leads to f̂0 = f1 f3/(4 f 4). We also see that all these estimators are
underestimating as they use equality (Poisson homogeneity) in their development. Clearly,
Chao’s estimator has the lowest bias, but it does have bias. The ratio plot implements the
idea of reducing bias. Instead of taking horizontal lines, for example f1/ f0 = 2 f2/ f1, it
appears more appropriate to consider lines that connect f1/ f0 with any other ratio. These are
the grey lines in Fig. 11. As f0 is not known in applications we need to use some surrogate
lines. It seems natural to use 2 f2/ f1 as anchor point as most of the information is frequently
concentrated on ones and twos. Then this point is connected with any other point in the ratio
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Fig. 10 Ratio plot for Down’s syndrome data used in [26]: the plot shows the binomial parameter estimate
θ̂x gained from the ratio r̂x = x+1

T−x fx+1/ fx
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Fig. 11 Ratio plot for simulated data arising from a two-component, equally weighted mixture of Poisson
distributions with sample size 1000
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Fig. 12 Ratio plot for a two-component, equally weighted mixture of negative-binomial distributions with
respective event parameter 0.3 and 0.8 and common shape parameter k = 4

plot. These are the red lines. The line α + βx that connects 2 f2/ f1 with 4 f4/ f3 leads to
f̂0 = f1/[3 f2/ f1 − 2 f4/ f3] with a value of 205 for the simulated data set of Fig. 11. This
compares well with the true (but ignored value of f0 = 202). Chao’s estimate is here 136.

123



Power series mixtures and the ratio... 215

109876543210

6

5

4

3

2

1

x

ra
tio

p = 0.5
p = 0.8
mixture

Variable

Fig. 13 Ratio plot for a two-component, equally weighted mixture of negative-binomial distributions with
respective event parameter 0.5 and 0.8 and common shape parameter k = 4

Of course, the choice of the line was lucky and a less lucky choice is the line that connects
2 f2/ f1 with 3 f3/ f2 leads to f̂0 = f1/[4 f2/ f1 − 3 f3/ f2] with a value of 442, clearly far off
from the true value. As some lines will lie above, some below, a proper statistical approach
could develop some form of averaging. This is beyond the scope of the present paper but it
shows the creative power of the ratio plot.

The ratio plot for a negative-binomial distribution is a straight line. The larger the variance
of the negative-binomial, the steeper the slope. The question arises how departures from the
negative-binomial could result in specific forms of the ratio plot. For example, how would
the ratio plot appear for more dispersed distributions than the negative-binomial? We take
as an example an equally weighted, discrete mixture of two negative-binomials with event
parameters 0.3 and 0.8 (and common shape parameter k = 4).

The associated ratio plot is provided in Fig. 12. It can be seen that the ratio plot for
the mixture moves from the straight line for ratio plot of the negative-binomial with event
parameter 0.3 to the ratio plot for the negative-binomial with event parameter 0.8. This clear
pattern arises as the two components in themixture are well-separated. If the two components
become closer the pattern of the ratio plot changes and the mixture might be more difficult to
be separated from a negative-binomial itself as Fig. 13 indicates where an equally weighted,
discrete mixture of two negative-binomials with event parameters 0.5 and 0.8 (and common
shape parameter k = 4) is considered.
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