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Abstract Capture–Recapture methods aim to estimate the size of an elusive target
population. Each member of the target population carries a count of identifications
by some identifying mechanism—the number of times it has been identified dur-
ing the observational period. Only positive counts are observed and inference needs
to be based on the observed count distribution. A widely used assumption for the
count distribution is a Poisson mixture. If the mixing distribution can be described
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496 S. Niwitpong et al.

by an exponential density, the geometric distribution arises as the marginal. This
note discusses population size estimation on the basis of the zero-truncated geometric
(a geometric again itself). In addition, population heterogeneity is considered for the
geometric. Chao’s estimator is developed for the mixture of geometric distributions
and provides a lower bound estimator which is valid under arbitrary mixing on the
parameter of the geometric. However, Chao’s estimator is also known for its relatively
large variance (if compared to the maximum likelihood estimator). Another estimator
based on a censored geometric likelihood is suggested which uses the entire sample
information but is less affected by model misspecifications. Simulation studies illus-
trate that the proposed censored estimator comprises a good compromise between the
maximum likelihood estimator and Chao’s estimator, e.g. between efficiency and bias.

Keywords Capture-recapture · Chao’s estimator · Censored estimator · Censored
likelihood · Estimation under model misspecification · Truncated likelihood

1 Introduction and background

For integer N , we consider a sample of counts Y1, Y2, …, YN ∈ {0, 1, 2, . . . ,} arising
with a mixture probability density function

gy =
∞∫

0

p(y|λ)q(λ)dλ (1)

where the mixture kernel p(y|λ) comes from the Poisson family p(y|λ) = Po(y|λ) =
exp (−λ)λy/y! and the mixing density q(λ) is left unspecified. Whenever Yi = 0 unit
i remains unobserved, so that only a zero-truncated sample of size n = ∑m

y=1 fy is
observed, where fy is the frequency of counts with value Y = y and m is the largest
observed count. Hence, f0 and consequently N = ∑m

y=0 fy are unknown. The purpose
is to find an estimate of the size N . Since frequently the count variable Y represents
repeated identifications of an individual in an observational period, the problem at
hand is a special form of the capture-recapture problem (see Bunge and Fitzpatrick
1993; Wilson and Collins 1992 or Chao et al. 2001 for a review on the topic).

The sample of counts Y1, Y2, …, YN can occur in several ways. A target population
which might be difficult to count consists out of N units. This population might be a
wildlife population, a population of homeless people or drug addicts, software errors
or animals with a specific disease. Furthermore, let an identification device (a trap,
a register, a screening test) be available that identifies unit i at occasion t where
t = 1, . . . , T and T being potentially unknown and/or random itself. Let the binary
result be yit where yit = 1 means that unit i has been identified at occasion t and
yit = 0 means that unit i has not been identified at occasion t . The indicators yit might
be observed or not, but it is assumed that yi = ∑T

t=1 yit is observed if at least one
yit > 0 for t = 1, . . . , T . Only if yi1 = yi2 = · · · = yiT = 0 and, consequently
yi = 0, the unit i remains unobserved. In this kind of situation the clustering occurs
by repeated identifications of the same unit, the latter being the cluster. It is clear that,
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Capture–recapture estimation 497

Table 1 Frequency of contacts per drug user of Scottish needle exchange in 1997 for n = 647 observed
drug users

y 1 2 3 4 5 6 7 8 9 10 11+

fy 175 85 50 47 37 38 32 16 17 17 133

assuming independence and conditional on T, Yi has a binomial distribution with
potentially unit-specific parameter πi

(
T

yi

)
π

yi
i (1 − πi )

T −yi ≈ exp (−λi )λ
yi
i /yi !

which can be approximated by a Poisson with parameter λi = T πi . Clearly, this
approximation is most appropriate for small detection probabilities. If λi is assumed
to arise from a distribution with density q(λ) the mixture (1) occurs.

Example Before we go on, we illustrate the situation at hand with an example. In the
social sciences capture–recapture methods are often employed to estimate the size of
target populations which are difficult to enumerate because of their elusive character
(Van der Heijden et al. 2003; Roberts and Brewer 2006). One example area is family
violence which is largely a hidden activity (Paluscia et al. 2010; Oosterlee et al. 2009).
Another area of interest is determining the size of a population with addiction problems
(Van Hest et al. 2008). Hay and Smit (2003) provide data on drug user contacts to a
Scottish needle exchange programme in 1997. The system provided a record of the
number of individuals accessing the service over the period from January to December
1997. The number of visited drug users over this 12 months was 647 and the frequency
distribution of the number of times contacting a treatment centre is provided in Table 1.

The model (1) is attractive since it incorporates population heterogeneity into the
Poisson assumption. The general estimator available under this model is Chao’s esti-
mator (1987, 1989) with N̂Chao = n + f 2

1 /(2 f2) where fy is the frequency of count
y in the sample. However, N̂Chao gives only an estimate of a lower bound for N
since it is based on the Cauchy-Schwarz inequality [E(XY )]2 ≤ (E X2)(EY 2) which
produces for X2 = exp(−λ) and Y 2 = exp(−λ)λ2 the result g2

1 ≤ g0 × 2g2 from
where Chao’s estimator follows. If there is no variation in λ then equality holds (and
the lower bound becomes asymptotically sharp) and the more variation the stronger
the underestimation.

The idea is to replace some of the (otherwise unspecified) heterogeneity density by
a parametric density, potentially leaving some residual heterogeneity q∗(θ):

gy =
∞∫

0

⎛
⎝

∞∫

0

p(y|λ)e(λ|θ)dλ

⎞
⎠ q∗(θ)dθ,

where e(λ|θ) = ( 1
θ

exp(−λ
θ
) is the exponential density with parameter θ . Under

exponential mixing the integral can easily be solved so that for y = 0, 1, . . .
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498 S. Niwitpong et al.

Fig. 1 Ratio fy+1/ fy of neighboring frequencies for the data of the Scottish needle exchange program

ky(p) =
∞∫

0

p(y|λ)e(λ|θ)dλ = (1 − p)y p (2)

the geometric as the associated marginal arises, with parameter p = 1/(1+θ) ∈ (0, 1).
The geometric distribution is a remarkably simple distribution and is popular in life
time data analysis as a discrete survival distribution, although, despite its flexibility,
has been often ignored for modelling count distributions. By incorporating some of
the unobserved heterogeneity into the mixture kernel distribution it seems reasonable
to expect an improvement in the lower bound based on this new form of mixture

gy =
1∫

0

ky(p)q∗(p)dp =
1∫

0

(1 − p)y p q∗(p)dp. (3)

Indeed, the Cauchy-Schwarz inequality [E(XY )]2 ≤ (E X2)(EY 2)produces for X2 =
p and Y 2 = p(1 − p)2 the result g2

1 ≤ g0 × g2 from where the lower bound estimator
N̂C = n + f 2

1 / f2 can be derived, clearly larger than the original Chao estimator
N̂Chao = n + f 2

1 /(2 f2). Note that this difference stems from the fact that a geometric
kernel is used in (3) intead of the Poisson kernel in (1).

Example (continued) The geometric has the characteristic that ky+1/ky = (1− p), in
other words the ratio of neighboring geometric probabilities is constant. Frequently, it
can be seen that an exponential mixing is more appropriate than a homogeneous Pois-
son. An estimate of gy+1/gy is given by fy+1/ fy which we see plotted in dependence
of y for the data of the Scottish needle exchange program in Fig. 1. There appears to
be evidence of a fairly constant pattern indicating a small amount of residual hetero-
geneity w.r.t. the geometric kernel.
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Capture–recapture estimation 499

Fig. 2 Observed frequencies with fitted frequencies under Poisson and geometric for the data of the Scottish
needle exchange program

We also see in Fig. 2 that the geometric distribution provides a much better fit
than the Poisson distribution although the fit of the geometric is not perfect. It is
exactly this situation for which the following estimators, in particular an estimator
we call the censored estimator, are intended. The paper is organized as follows. In
Sect. 2 we consider classical maximum likelihood estimation for the zero-truncated
geometric including a form of Mantel-Haenszel estimation. In Sect. 3, we develop
Chao-estimation based upon a specific form of truncated likelihood. This estimator is
appropriate for strong heterogeneity, but has the disadvantage of a large variance. In
Sect. 4 we develop an estimator that uses all available information but censors counts
larger than 1. Finally, in Sect. 6 we compare all estimators and demonstrate that the
censored estimator is appropriate for mild or moderate forms of heterogeneity.

2 Maximum likelihood estimation

We first consider conditional maximum likelihood estimation under the Poisson-
exponential mixture. For y = 1, 2, . . ., let k+

y = ky/(1 − p) = (1 − p)y−1 p be
the associated zero-truncated geometric. Then the log–likelihood, conditional upon n,
is given as

log L(p) =
m∑

y=1

(y − 1) fy log(1 − p) + n log(p)

= S log(1 − p) + n(log p − log(1 − p)), (4)
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500 S. Niwitpong et al.

where S = ∑m
y=1 y fy . It is easy to verify that (4) leads to the score–equation

n

p
= S − n

1 − p
,

which is uniquely solved for p̂M L = n/S. Since e0 = E( f0|p) = N p = (e0+E(n))p
we have that ê0 = (ê0 + n)p, so that ultimately ê0 = n p̂M L/(1 − p̂M L) and N̂M L =
n + ê0 = n/(1 − p̂M L). Note that N̂M L can be simply written as

N̂M L = n

1 − n/S
= nS

S − n
.

Note that N̂M L given above is usually a non-integer number which can be rounded for
producing a sensible estimate of N .

A simple, alternative estimator arises as follows. Since ky+1/ky = 1 − p
it is intuitively reasonable to consider a weighted estimator of the form(∑m−1

y=1 wy fy+1/ fy

)
/(

∑m−1
y=1 wy). Any non-random choice of weights will give

asymptotically unbiased estimators of 1 − p. Instead of searching for minimum vari-
ance estimators in this class, we consider the choice wy = fy (a random weight) and
get the Mantel-Haenszel estimator

1 − p̂M H =
∑m−1

y=1 fy+1∑m−1
y=1 fy

= n − f1

n − fm
, (5)

which, with N̂M H = n/(1 − p̂M H ) = n(n − fm)/(n − f1), is not only of a very
simple form but also will avoid problems that might occur through zero frequencies
in the ratios fy+1/ fy for the general weighted estimator.

3 Chao’s estimator revisited

Clearly, the geometric model might not hold for the entire target population. Hence
it seems more appropriate to consider additional heterogeneity in form of a density
q∗(p) on the parameter of the geometric as in (3).

The importance of the mixture (3) of geometric densities can be seen in the fact
that it is a natural model for modeling population heterogeneity. There appears to be
consensus (see for example Pledger (2005) for the discrete mixture model approach
and Dorazio and Royle (2005) for the continuous mixture model approach) that a
simple model ky(p) is not flexible enough to capture the variation in the re-capture
probability for the different members of most real life populations. Every item might
be different, as might be every animal or human being. However, recently there has
been also a debate on the identifiability of the binomial mixture model (see Link
2003, 2006; Holzmann et al. 2006). Furthermore, using the nonparametric maximum
likelihood estimate (NPMLE) of the mixing density in constructing an estimate of
the population size leads to the boundary problem implying often unrealistically high
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Capture–recapture estimation 501

values for the estimate of the population site (Wang and Lindsay 2005, 2008). Hence,
a renewed interest has re-occurred in the lower bound approach for population size
estimation suggested by Chao (1987). By generalizing a moment inequality based
upon the Cauchy-Schwarz inequality Mao (2007a,b, 2008a,b) developed in a series
of papers a theory of lower bounds for the population size. This theory leads to a
sequence of monotonically ordered lower bounds which include as a special case
Chao’s lower bound. In the lower bound approach there is neither need to specify
a mixing distribution, nor is there need to estimate it. In this sense it is completely
non-parametric.

We have previously derived Chao’s estimator as N̂C = n + f 2
1 / f2 for a geometric

mixture. It is interesting to see that a truncated, conditional likelihood approach yields
Chao’s estimator. Since the Chao estimator uses only frequencies with counts of 1
and 2, a truncated sample consisting only out of counts of ones and twos might be
considered. We call this the binomial truncated sample. Recall that the geometric is
given by ky(p) = (1 − p)y p for y = 0, 1, 2, . . .. The associated binomially truncated
geometric probabilities are

π1 = (1 − p)p

(1 − p)p + (1 − p)2 p
= 1/(2 − p) and π2 = (1 − p)/(2 − p).

This truncated sample leads to a binomial log-likelihood f1 log(π1)+ f2 log(π2) which
is uniquely maximized for π̂2 = 1−π̂1 = f2/( f1+ f2). Since π2 = (1−p)/(2−p) the
estimate p̂ = ( f1− f2)/ f1 for the geometric density parameter p arises. We show in the
appendix that under binomial truncated sampling e0 = E( f0|p; f1, f2) = f1+ f2

(1−p)(2−p)
which leads to the estimated value

ê0 = f1 + f2

(1 − p̂)(2 − p̂)
= f1 + f2

(1 − f1− f2
f1

)(2 − f1− f2
f1

)
= f1 + f2

f2
f1

2 f1− f1+ f2
f1

= f 2
1

f2
.

From here Chao’s estimator NC = n + f 2
1 / f2 for a geometric mixture follows. Note

that the likelihood framework of a conditional binomial truncated likelihood into
which we have embedded the Chao estimator offers potential. For example, we can
derive easily asymptotic variance formula and also extend the estimator with respect
to covariates.

4 An estimator under censoring

One of the critical points in Chao’s estimator is that it disregards the information
contributed from counts larger than two. A compromise between retaining robustness
as well as efficiency appears to be an approach based upon censoring which we try
to develop here. Occasionally, we find the hint in the literature that members of the
target population which have been identified only once behave quite differently from
members of the target population which have been identified more frequently. Hence
also from this, more substantial aspect the approach appears justified. Consider the
conventional zero-truncated geometric
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502 S. Niwitpong et al.

k+
y = p(1 − p)y

1 − p
= p(1 − p)y−1,

for y = 1, 2, . . .. Then, if we consider all observations larger than 1 to be censored,
P(Y = 1) = k+

1 = p and P(Y > 1) = ∑∞
y=2 k+

y = 1 − p, using the log-likelihood
f1 log p + (n − f1) log(1 − p). The maximum likelihood estimate for p is simply
p̂Cen = f1/n. Here, it is easy to work out e0 = E( f0|p) = Ng0 = (e0 + n)p, from
where e0 = np/(1 − p) follows. Hence we have ê0 = n f1/n

1− f1/n and

N̂Cen = n + f1

1 − f1/n
= n

1 − f1/n
= n2

n − f1

follows. Note the close similarity to the Mantel-Haenszel estimator N̂M H = n(n −
fm)/(n − f1) with identity for fm = 0. Hence we can expect that N̂Cen and N̂M H

are close since typically fm will be small (often only equal to 1). Hence we won’t
consider N̂M H any further in the following.

5 Standard errors of estimates

It is important to have measures of precisions available for the developed estimators.
In the following we summarize the variance estimators for the three population size
estimators, namely the conditional likelihood based estimator N̂M L = n/(1 − n/S),
the censored estimator N̂Cen = n/(1 − f1/n) and Chao’s estimator for geometric
mixtures N̂C = n + f 2

1 / f2. We have derived (for full details see Appendix 2) the
following variance estimates

v̂ar(N̂M L) = S2n2

(S − n)3 (6)

v̂ar(N̂Cen) = f1

(1 − f1/n)2

2n − f1

n − f1
(7)

v̂ar(N̂C ) = f 4
1

f 3
2

+ 4 f 3
1

f 2
2

+ f 2
1

f2
. (8)

Example (continued) Before we continue comparing and evaluating these estimators
more systematically on empirical grounds we illustrate their numerical behavior for the
data of the Scottish needle exchange program. We had seen before that the geometric
provides a reasonable, but not perfect fit to the data. Hence we expect that there is
residual heterogeneity so that the maximum likelihood estimator can be expected to
underestimate. Indeed, using that n = 647 and S = 7034 we find that N̂M L = 750 (727
– 773) whereas N̂Cen = 887 (832–942) and N̂C = 1007 (871–1,144) showing, at least
for this example, the compromising character of the censored estimator between bias
and efficiency. Note that the conventional estimator of Chao under general Poisson
heterogeneity is N̂ = 827 indicating the bias reduction potential of the new Chao
estimator upon the classical one.
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Capture–recapture estimation 503

6 Simulation study

To illustrate the performance of the estimators a simulation study was undertaken.
Since we show in the Appendix 1 that, under geometric homogeneity, all estimators
are asymptotically unbiased, the focus of the simulation will be on scenarios where
the model is misspecified.

6.1 Design

A number of scenarios were investigated. Initially, the case was considered that the
geometric density is the true model. This is the situation under which all estimators
were derived. Secondly, a contamination model (1−α)ky(p)+αky(q) was considered
with α = 0.1 (small amount of contamination) and with α = 0.5 (large amount of
contamination). We also study as a continuous heterogeneity distribution the beta-
distribution with density

b(p|α, β) = �(α + β)

�(α)�(β)
pα−1(1 − p)β−1,

so that sampling arises from the marginal

1∫

0

ky(p) b(p|α, β) dp.

The forms of the beta-density we have considered are provided in Fig. 3.

6.2 Results

Tables 2 and 3 presents the results in terms of mean, standard error of estimate and
root mean squared error for the maximum likelihood estimator, Chao’s lower bound
estimator adapted to the geometric case, and the proposed censored estimator. We
are not presenting any results for the Mantel-Haenszel estimator since they are almost
identical to the censored case. Table 2 provides results for N = 1,000 whereas Table 3
shows results for N = 100. We summarize a few major results:

• under geometric homogeneity all three estimators are asymptotically unbiased
(this is also proved in the Appendix 1 as Theorem 2, so that the simulation part
referring to this situation (populations 1–4) serves only as illustration,

• the efficiency of the censored estimator ranges typically between 80 and 90 %
whereas Chao’s estimator varies between 40 and 50 % in its efficiency,

• for cases of mild heterogeneity, such as for populations 5–12, 15, 16, 21 and 22,
the censored estimator behaves well. It has still a small bias and its variance is
close to the variance of the maximum likelihood estimator,
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504 S. Niwitpong et al.

Fig. 3 Some beta-densities characterized by parameters α and β to model heterogeneity in the parameter
p of the geometric

• for cases of stronger heterogeneity, such as populations 13, 14 and 17–20, the bias
is reasonably small (except populations 17 and 19) and well balanced by a small
standard error,

• if focus is on achieving an estimator with small bias, then the choice should be
Chao’s estimator which has smallest bias for all populations with heterogeneity.

In summary, the simulation study confirms and provides evidence for the hypothesis
that the censored estimator is a reasonable compromise between maximum likelihood
estimation and Chao’s lower bound estimator.

We have also investigated with the simulation study how well the variance estima-
tors (6)–(8) approximate the true variance. The results are presented in Table 4. The
approximations, expressed in the ratio = E[V̂ar(N̂ )]/Var(N̂ ), work reasonably well,
under homogeneity even in the small population size case N = 100 (Table 5).

• For N = 1,000 (Table 4) and the homogeneity case we have that |ratio−1| ≤ 0.05
for all three estimators. For N = 100 (Table 5) and the homogeneity case we have
that |ratio − 1| ≤ 0.18 for the MLE and the censored estimator, and |ratio − 1| ≤
0.55 for Chao’s estimator.

• It is interesting that for the considered heterogeneity cases for N = 1,000 (Table 4)
we also have good approximations for Chao’s estimator with |ratio − 1| ≤ 0.13
as well as for the censored estimator with |ratio − 1| ≤ 0.15. Here, however, the
variance estimator for the MLE breaks down completely (see populations 13–14
and 17–21).

• The main message is that variance estimators for the censored and Chao’s estima-
tor will work for most scenarios under reasonable population size (N ≥ 1,000),
whereas the variance estimator for the MLE will only work under homogene-
ity and can become entirely unsatisfactory in certain situations (populations 17
and 18).
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Table 3 Performance measures for the MLE, Chao and Censored estimator in the case N = 100

Population Model E(N̂ ) SE RMSE

MLE Chao Cens MLE Chao Cens MLE Chao Cens

Homogeneity: geometric G(p)

1 p = 0.1 100.14 102.92 100.09 3.53 12.04 4.92 3.53 12.39 4.92

2 p = 0.3 100.55 103.99 100.55 8.00 19.86 10.48 8.02 20.25 10.49

3 p = 0.5 101.91 106.77 101.76 14.75 36.88 18.31 14.87 37.50 18.39

4 p = 0.7 110.52 120.15 110.10 41.74 72.18 45.04 43.04 74.94 46.16

Heterogeneity: 0.9G(0.1) + 0.1G(q)

5 q = 0.2 99.51 102.89 99.97 3.71 11.91 5.12 3.74 12.26 5.12

6 q = 0.3 98.51 103.03 99.70 3.82 12.61 5.34 4.10 12.97 5.35

7 q = 0.4 97.38 102.67 99.03 3.83 13.44 5.45 4.63 13.70 5.53

8 q = 0.5 96.12 102.44 98.08 3.94 15.09 5.61 5.53 15.29 5.93

Heterogeneity: 0.9G(0.3) + 0.1G(q)

9 q = 0.6 97.65 103.43 98.97 8.15 20.84 10.86 8.48 21.12 10.91

10 q = 0.7 96.04 102.59 97.55 8.19 21.43 11.06 9.09 21.59 11.32

Heterogeneity: 0.5G(0.1) + 0.5G(q)

11 q = 0.2 97.96 103.29 99.77 4.42 13.57 6.16 4.87 13.91 6.16

12 q = 0.3 93.35 103.11 98.66 5.14 15.49 7.32 8.40 15.80 7.44

13 q = 0.4 87.69 103.29 96.44 5.37 8.26 8.31 13.42 19.79 9.04

14 q = 0.5 81.63 103.44 92.78 5.51 23.77 8.83 19.17 24.01 11.40

Heterogeneity: 0.5G(0.3) + 0.5G(q)

15 q = 0.4 99.33 104.21 100.37 9.19 21.89 11.96 9.21 22.29 11.96

16 q = 0.5 95.09 104.98 98.74 10.05 25.29 13.17 11.19 25.78 13.23

Heterogeneity:
∫ 1

0 G(p)b(p|α, β)dp

17 α = 1, β = 1 56.07 91.37 75.74 6.62 32.13 10.95 44.42 33.26 26.61

18 α = 1, β = 3 79.03 102.14 94.01 5.06 20.28 7.79 21.56 20.40 9.82

19 α = 2, β = 2 69.08 97.37 84.39 9.30 30.97 13.49 32.28 31.09 20.62

20 α = 2, β = 5 84.54 102.57 95.86 6.49 19.56 9.07 16.76 19.73 9.97

21 α = 2, β = 10 91.50 103.00 98.59 4.60 15.48 6.53 9.66 15.77 6.68

22 α = β = 10 92.86 105.15 97.45 13.15 34.13 16.79 14.96 34.52 16.98

7 Discussion

We have tried in Sect. 6 to compare the suggested estimators by means of a simulation
study. There is one problem which arises in any comparison involving biased estima-
tors. Recall that we are considering in the simulation study two types of misspecified
models: in one model the geometric parameter is sampled from a two-component mix-
ture and in the other model it sampled from a beta-distribution. Under these two models
all three estimators are asymptotically biased. Whereas with increasing sample size
the bias stabilizes and persists, the standard error decreases. Hence, with increasing
sample size, the mean squared error will be dominated by the bias and the evaluation,
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Table 6 Mean and standard error of N̂/N for increasing N for the geometric parameter p coming from a
2-component mixture giving equal weight to p = 0.3 and q = 0.5

N E(N̂/N ) SE(N̂/N )

MLE Chao Cen MLE Chao Cen

100 0.95 1.04 0.98 0.10 0.24 0.13

1,000 0.94 0.99 0.97 0.03 0.06 0.04

10,000 0.94 0.99 0.97 0.01 0.02 0.01

if done solely on the basis of the mean squared error, will ultimately favor the estimator
with the smallest bias. This point is best illustrated using the example in Table 6 where
we consider the ratio N̂/N . It is clear that from Table 6 that asymptotically Chao’s
estimator will perform best, since it has the smallest asymptotic bias and the standard
error (of N̂/N , not of N̂ ) converging to zero.

As a consequence, one should either limit oneself to realistic values of the popu-
lation size if using the mean squared error (as we have done here) or, for asymptotic
considerations, choose a performance measure different from the MSE.

Another issue is whether uncertainty evaluation should be based upon estimating
N or predicting f0 as a referee pointed out. This seems equivalent at first glance since
N = n+ f0 and, hence N̂ = f̂0 +n, where f̂0 is the predicted value for the unobserved
random variable f0. However, the issue is how n should be treated and this can be done
in two ways. One way is, and this is most current practice, to consider n as random. Then
the variance of N̂ has two sources of error, the one coming from the random variable
n, the other from predicting f0. The second way is to treat n as fixed and hence there
is only one source of error variance V ar(N̂ ) = V ar( f̂0). This conditional inference
seems more appropriate for capture-recapture problems. Suppose one is interested in
finding the errors in a software system. A capture-recapture experiment finds 3 errors.
Then the only interest is in how many more errors are hidden in the system and what
is the random error attached to it. Whether the 3 observed errors are random or not is
irrelevant for the prediction question. Hence we tend to agree with the second view,
but still have done the performance assessment in the first way since it is commonly
done and widely accepted.

Simulation studies are an important tool to evaluate a series of estimators. However,
they also have their limitations since they can only mirror a reality envisioned in the
design of the study with natural restrictions in complexity. Hence it is of interest
to study the proposed estimators in data sets where the population size is known in
advance. Borchers et al. (2004) report the following capture–recapture experiment
in St. Andrews. N = 250 groups of golf tees were placed in a survey region of
1,680 m2. They were then surveyed by eight different students of the University of
St. Andrews and n = 162 were identified. Typically, an unknown number of golf
tees would be missed, but here we know that exactly 88 golf tees remained missed.
The data are provided in Table 7. The estimators under geometric sampling are fairly
similar and close to the true number N = 250. Note that Chao’s estimator (adjusting
for heterogeneity) is close to the maximum likelihood estimator indicating that the
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Table 7 Frequency of recovery counts in golf-tees experiment (true N = 250) with associated estimators
of N (95 % CI)

y 1 2 3 4 5 6 7 8
fy 46 28 21 13 23 14 6 11

Estimator of N (95 % CI)

Geometric Poisson

MLE Chao Cens Chao Turing

230(207–253) 238(183–292) 226(198–255) 200(180–241) 177(170–190)

exponential mixing is coping well with any heterogeneity in the data. We have also
computed two estimators under Poisson sampling: the Chao estimator n + f 2

1 /(2 f2)

and the Turing estimator n/(1 − f1/S), both being too small and also different from
each other. Note also that none of the two has confidence intervals including the
true population size. This means that there is residual heterogeneity under Poisson
sampling which evidently the geometric estimators can pick up and adjust for.

The geometric is a an exponential mixture of Poisson densities and, hence, the set of
geometric mixtures is a subset of the class of Poisson mixture distributions. Indeed, it is
a proper subset, since no non-trivial Poisson distribution can be expressed as a mixture
of geometric distributions. From this perspective, working with geometric mixtures is
more restrictive than working with Poisson mixtures and leads to different inferences
as can be seen, in particular, for Chao’s estimator which becomes an improved lower
bound when using the assumption of a mixture of geometric distribution for Y .

However, let us consider comparing the homogeneous Poisson with the homoge-
neous geometric distribution taking the geometric simply as another one-parameter
count distribution. In this comparison, we feel that the geometric provides a more
flexible model than the Poisson because of the fact that the geometric is a Poisson-
exponential mixture, as pointed out above. On the other hand, the Poisson is not a
special case of the geometric. Only if the parameter of the exponential mixing dis-
tribution becomes small, meaning mean and variance become small, the geometric
becomes close to a Poisson. Hence, for situations with small detection probabilities
we can expect the geometric to be provide better fits. To illustrate we consider data
discussed previously in Van der Heijden et al. (2003) on the illegal possession of
firearms in the Netherlands based on a police registration system. According to this
f1 = 2561 were caught once possessing a firearm, f2 = 72 were caught twice and
f3 = 5 were caught 3 times. The χ2−goodness-of-fit statistic is 7.31 the Poisson
and χ2−goodness-of-fit statistic is 3.42 for the geometric. Note that only the second
value is non-significant (P-value 0.064 with 1 df). It is clear that this advantage of the
geometric might be lost in situations with increased detection probabilities. But even
here we see often a better fit of the geometric distribution in comparison to the Poisson.
This was case in the example discussed previously (see Fig. 2), but it is also the case
in a capture-recapture study on ant species mentioned in Mao (2008b). Clearly, this
long-tailed distribution is fitted a lot better by the geometric than by the Poisson (see
Table 8). The associated population size estimates (with 95 % CIs) are N̂M L = 228
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Table 8 Observed and fitted frequency distribution for ant species data discussed in Mao (2008b)

y fy Poisson Geometric y fy Poisson Geometric

1 50 25.16 28.75 16 2 0.00 2.59

2 29 41.07 24.49 17 2 0.00 2.21

3 24 44.69 20.86 18 2 0.00 1.88

4 13 36.48 17.77 19 3 0.00 1.60

5 6 23.82 15.14 20 5 0.00 1.36

6 9 12.96 12.89 21 1 0.00 1.16

7 3 6.05 10.98 22 1 0.00 0.99

8 4 2.47 9.35 23 3 0.00 0.84

9 1 0.90 7.97 24 1 0.00 0.72

10 7 0.29 6.79 25 1 0.00 0.61

11 6 0.09 5.78 26 4 0.00 0.52

12 2 0.02 4.92 27 1 0.00 0.44

13 6 0.01 4.19 28 1 0.00 0.38

14 5 0.00 3.57 29 1 0.00 0.32

15 1 0.00 3.04

(214–241), N̂Cen = 261 (233–290) and N̂C = 280 (220–340) which are well in the
range of estimators given in Mao (2008b).

As mentioned previously Mao (2007a,b, 2008a,b) constructs a series of lower
bounds that allow improving upon the Chao’s lower bound, in fact, a sharpest lower
bound can be derived. However, the choice between these bounds may be not easy. As
Mao (p. 132) Mao (2008b) emphasizes: A higher-order lower bound seems desirable,
but it may have a larger estimation bias and variance. · · · It is a difficult problem
to select one estimator from the sequence · · · . We point out that the lower bound
approach also depends on the choice of the mixing kernel (Poisson vs. geometric).
In this context it is interesting to note that for the second example discussed in Mao
(2007b) (the ESTs data) the geometric gives a much better fit than the Poisson which
is also supported in the associated ratio plots. This supports the likewise importance
of the choice of the mixing kernel in (1).

The geometric (and mixtures of geometric distributions) appears to be an interesting
alternative to the Poisson (and mixtures thereof). We have presented two estimators,
Chao’s estimator and the censored estimator, which appear to work well under geo-
metric heterogeneity. Frequently, the geometric provides a better initial fit than then
Poisson and hence can be expected to cope with some of the potentially available
heterogeneity. It is also technically easy to deal with. However, ultimately diagnostic
devices such as the suggested ratio plot y → fy+1/ fy or goodness-of-fit measures
should also be used to check for the appropriateness of the approach.
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8 Appendix 1: Proof of theorems

Theorem 1 Let ky(p) = (1 − p)y p for y = 0, 1, · · · and p ∈ (0, 1).

(a) Let log L(p) = f1 log(π1) + f2 log(π2) with π1 = 1/(2 − p) and π2 = (1 −
p)/(2− p) being the geometric probabilities truncated to counts of ones and twos.
Then log L(p) is maximized for p̂ = ( f1 − f2)/ f1.

(b) E( f0| f1, f2; p̂) = f 2
1 / f2, for p̂ = ( f1 − f2)/ f1.

Proof For the first part, it is clear that f1 log(π1) + f2 log(π2) is maximal for π̂1 =
f1/( f1 + f2) = 1/(2 − p̂), which is attained for p̂ = ( f1 − f2)/ f1. For the second
part, we see that with ey = E( fy | f1, f2; p) = ky(p)N we have the following:

ey = ky(p)N = ky(p)

⎛
⎝e0 + f1 + f2 +

∞∑
j=3

e j

⎞
⎠

so that

e0 + e+
3 = [1 − k1(p) − k2(p)](e0 + e+

3 ) + [1 − k1(p) − k2(p)]( f1 + f2)

with e+
3 = ∑∞

j=3 e j . Hence

e0 + e+
3 = 1 − k1(p) − k2(p)

k1(p) + k2(p)
( f1 + f2)

and

e0 = k0(p)( f1 + f2 + e0 + e+
3 ) = k0(p)( f1 + f2)

[
1 + 1 − k1(p) − k2(p)

k1(p) + k2(p)

]

= k0(p)

k1(p) + k2(p)
( f1 + f2) = f1 + f2

(1 − p)(2 − p)
.

Plugging in the maximum likelihood estimate p̂ = ( f1 − f2)/ f1 for p yields

f1 + f2

(1 − p̂)(2 − p̂)
= f1 + f2

f2
f1

f1+ f2
f1

= f 2
1 / f2,

the desired result. 	

Theorem 2 Let ky(p) = (1 − p)y p for y = 0, 1, · · · and p ∈ (0, 1). Then,

lim
N→∞

E(N̂ )

N
= 1

for N̂ = N̂M L , N̂C , or N̂Cen.
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Proof Let N̂ = N̂M L = n/(1−n/S). Note that E(n) = N p and E(S/N ) = (1−p)/p
so that

E(n/(1 − n/S))

N
N→∞−−−−→ p

1 − p
p/(1−p)

= 1.

Let N̂ = N̂C = n + f 2
1 / f2. Note that E( f1) = N p(1 − p) and E( f2) = N p(1 − p)2

so that

E(n + f 2
1 / f2)

N
N→∞−−−−→ (1 − p) + p2(1 − p)2

p(1 − p)2 = 1.

Finally, let N̂ = N̂Cen = n
1− f1/n . Using the above we have

E
(

n
1− f1/n

)

N
N→∞−−−−→ 1 − p

1 − (1−p)p
(1−p)

= 1,

which ends the proof. 	


9 Appendix 2: Standard errors

Let N̂ be the estimator of the population size N of interest, the latter being a fixed but
unknown quantity. Also, let the random quantity n be the observed number of units.
We will make use of the result

Var(N̂ ) = En{Var(N̂ |n)} + Varn{E(N̂ |n)}, (9)

where N̂ |n refers to the distribution of N̂ conditional upon n and En(.) and Varn(.)

refer to the first and second (central) moment w.r.t. the distribution of n. For more
details see Böhning (2008).

9.1 Maximum likelihood estimator

We consider the maximum likelihood estimator p̂M L = n/S and the associated pop-
ulation size estimator N̂ = N̂M L = n/(1 − n/S). We start with the second term in (9)
and have that E(N̂ |n) ≈ n/(1 − p), approximately, so that

Varn[n/(1 − p)] = 1

(1 − p)2 N p(1 − p).

Note that N (1− p) can be estimated by n and p by the maximum likelihood estimator
n/S, so that the variance estimator Sn2

(S−n)2 arises.
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For the first term in (9), we use the δ-method to determine Var(N̂ |n) as

n2

(1 − p)4 Varn( p̂M L)

and, using the Fisher information for p, we can determine Varn( p̂M L) as

Varn( p̂M L) ≈ n(S − n)

S3 .

The expected value En{Var(N̂ |n)} is then replaced by its moment estimate Var(N̂ |n)

to achieve the total variance

Sn2

(S − n)2 + n2

(1 − n/s)4

n(S − n)

S3 = S2n2

(S − n)3 (10)

9.2 Censored estimator

We consider the censored estimator p̂Cen = f1/n and the associated population size
estimator N̂ = N̂Cen = n/(1− f1/n). We have E(N̂ |n) ≈ n/(1− p), approximately,
so that, as before, Varnn/(1 − p) = 1

(1−p)2 N p(1 − p), which can be estimated as
f1

(1− f1/n)2 by replacing N (1 − p) by n and p by f1/n.

For the first term in (9), Var(N̂ |n), using the δ−method once more we achieve the
approximation

Var

(
n

1 − f1/n
|n

)
≈ n2

(1 − f1/n)4 Var

(
f1

n
|n

)
,

from where the variance estimator f1(1− f1/n)

(1− f1/n)4 = f1
(1− f1/n)3 arises. In total, taking both

variance terms into account, we achieve the variance estimator

f1

(1 − f1/n)2 + f1

(1 − f1/n)3 = f1

(1 − f1/n)2

2n − f1

n − f1
(11)

9.3 Chao’s estimator

Finally, we consider the Chao-type estimator N̂ = N̂C = n + f 2
1 / f2. Note that it

differs from the original Chao-estimator n+ f 2
1 /(2 f2) for which a variance estimator is

provided in Chao (1987). If we would be only interested in a variance estimator of f̂0 we
could simply multiply the Chao-variance-estimator by a factor of 4. However, interest
is usually in the population size estimator N̂ for which this simple adjustment is not
valid. Hence we provide a full analysis in the following, again using the conditioning
technique (9).
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We have E(N̂ |n) = E(n + f 2
1
f2

) ≈ n + (g+
1 )2n/g+

2 = n(1 + (g+
1 )2/g+

2 ), approxi-

mately. Recall that g+
y = gy/(1 − g0) for y = 1, 2, . . .. (Note that E(N̂ |n) refers to

the conditional count distribution g+
1 , g+

2 , . . . which is estimated by f1/n, f2/n, . . ..
Hence Varn{n(1 + (g+

1 )2/g+
2 )} = (1 + (g+

1 )2/g+
2 )2 Ng0(1 − g0) which can be

estimated as follows. Ng0 can be estimated as f̂0 = f 2
1 / f2 and (1 − g0) as

1 − f 2
1 /(N̂ f2) = f2n

f2n+ f 2
1

, so that in total the estimate (1 + f 2
1

f2n )2 f 2
1 n

f2n+ f 2
1

arises, which

we can simplify as

(
1 + f 2

1

f2n

)2
f 2
1 n

f2n + f 2
1

= f 2
1 / f2 + f 4

1 /( f 2
2 n). (12)

For the first term in (9), Var(N̂ |n), using the bivariate δ−method, we achieve the
approximation

Var(N̂ |n) ≈ ∇φ0( f1, f2)
T cov( f1, f2)∇φ0( f1, f2)

where φ0( f1, f2) = f 2
1 / f2 and ∇φ0( f1, f2) is the two-vector of partial derivatives

with respect to f1 and f2:

∇φ0( f1, f2)
T = (2 f1/ f2,− f 2

1 / f 2
2 ).

The covariance matrix, conditional on n, is cov( f1, f2) = n(dia(g+)−g+g+T ), where
g+ is the two-vector of probabilities, conditional on n, for observing a one or a two,
respectively. Also, dia(g+) is the diagonal 2 × 2 matrix with g+

1 and g+
2 on the main

diagonal. This matrix is estimated by

(
f1 − f 2

1 /n − f1 f2/n
− f1 f2/n f2 − f 2

2 /n

)
.

Hence we find for

∇φ0( f1, f2)
T ĉov( f1, f2)∇φ0( f1, f2) = 4 f 3

1

f 2
2

+ f 4
1

f 3
2

− f 4
1

f 2
2 n

. (13)

Ultimately, taking (12) and (13) together, we achieve the variance estimator for N̂ =
N̂C = n + f 2

1 / f2 as

f 4
1

f 3
2

+ 4 f 3
1

f 2
2

+ f 2
1

f2
, (14)

being of remarkably simple form.
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