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Abstract

This contribution reviews some of the major developments in the algorithmic area connected
with the construction of maximum likelihood estimators in semiparametric mixture models.
Mixture models arise in a natural way in that they are modelling unobserved population
heterogeneity. It is assumed that the population consists of a possibly unknown number k of
subpopulations with parameters 9., ..., 9, receiving weights %, ..., %,. Since it is not possible to
observe the subpopulation membership, one can only observe data coming from the marginal
or mixture density f(x.P)= ’J‘f S(x,8;)a; with P giving mass «; to 3;. The log-likelihood
+(P) becomes y  log f(x;, P) and it is easily seen that A(P) forms a concave functional on the
convex set of all probability distributions and this property in essence produces the basis for the
construction principles of reliable maximum likelihood algorithms. In Section I, the gradient
function is discussed. Any optimization algorithm needs a search direction and the gradient
function serves as a basis for finding vertex directions. Section 2 discusses vertex direction
methods. The fundamental idea of vertex direction methods is as follows. Consider a vertex
P, (the probability measure putting all mass at 3) and set up the convex combination of some
current P and Py (1 — %) P + aP,, where « is called the step-length. Good choices will be
discussed in the next section. The gradient function is used to find the appropriate vertex
direction. If $is chosen to maximize the gradient function the associated convex combination is
called the vertex direction method (VDM). Large improvements of this method such as the
vertex exchange method (VEM) or the intra simplex direction method (ISDM) will be discussed.
In Section 3, the problem of finding a monotonic step-length given some current value P and
a search direction H is studied. The idea of estimating the area above the second derivative
curve is introduced and related to existing algorithms. The concept of area overestimation then
leads to the monotonicity of the associated algorithm. Section 4 discusses the problem of
maximizing a concave function of a finite number of probabilities. Three algorithmic ap-
proaches are discussed: the projection approach, the transformation approach and the general-
ized EM approach. Concluding in Section 5. the case of a fixed (known) number of components
in the mixture model as well as software packages available for all mentioned algorithms are
discussed.
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0. Introduction

The mixture model arises as a simple and natural way to model population
heterogeneity. Suppose the population consists of k homogeneous subgroups or
component populations (simply called components). A simple parametric model, such
as the Poisson model, is then assumed to hold in each component. Formally, let
f(x, 9;) be the probability density for observation X, when sampled from the jth
component. Suppose further the jth component is a fraction a; of the total population,
with oy + 2, + --- + o = 1. If the component membership is known, one can find
maximum likelihood estimates of &; and «; for simple models in a direct way (see
Table 1).

Assuming that one samples from the entire population, without knowledge of
component membership, then the observation X has mixture or marginal density

fP)= Y fix. 92 = L.f’(x, 9) P,

i=1

where the unknown parameter vector P consists of k component parameters 3, ..., %
and k component proportions a,, ..., o. In the mathematical analysis of such a model,
it is often useful to associate the unknown parameters P with a discrete probability
distribution (which we also denote by P and call the mixing distribution) giving
mass a; to ;. Viewed in this fashion, the number of components, k, equals the support
size of the discrete distribution P (i.e., the number of 9; with strictly positive mass p;).
In constructing a mixture model, one must choose regarding the number of compo-
nents k. We can either treat k as fixed and known, and call it the fixed support size
case, or we can treat k itself as an unknown parameter, and call it the flexible
support size case. In the latter case, we can then think of P as a completely unknown
discrete distribution on the values 3. It is this latter case that will be discussed mainly
in this paper.

Example. The following data have been discussed as well in Bohning et al. (1992). It
refers to a cohort study in northeast Thailand, where the health status of 602
preschool children was checked every 2 weeks from June 1982 until September 1985.
For each child it was recorded whether the child had one of the symptoms fever or

Table 1
Population heterogeneity: k subpopulations

Means 9, 9, 9
Weights «, 2y Iy
Lo
9, e 8y

Py Py
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Table 2
Distribution of the counting variable number of illness spells for a cohort sample of 602 preschool children
in northeast Thailand

No. of illness 0 1 2 3 4 5 6 7 8 9 10 11
spells

Frequency 120 64 69 72 54 35 36 25 25 19 18 18

No. of illness 12 13 14 15 16 17 18 19 20 21 23 24
spells

Frequency 13 4 3 6 6 5 1 3 1 2 1 2

cough, or both together. The frequencies of these illness spells during the study period
were recorded, as shown in Table 2. Fig. 1(a) shows the distribution of illness spells
(denoted with solid dots in the figure).

It is quite common to model this kind of count data with a Poisson distribution.
The single Poisson distribution f(x, $) = Po(x, $) = ¢ —99%/x! does not fit the em-
pirical distribution very well (the crosses in Fig. 1(a) correspond to f(x;, X), sometimes
also called the fitted or predicted values). Shown in the same figure are the fitted values
from the Poisson mixture model

Po(x.P) = Po(x, $;)o; + Po(x, 3;)a; + Po(x, 83)x3,

which provides a much better fit. An analysis suggests (for the semiparametric
maximum likelihood estimator see Fig. 1(b)) that the population consists of three
components with estimates 31, 92, 93 Component 1 consists of all those children who
were rarely ill; component 2, a group that tended to be sick several times (an average
of 8-9 times); and component 3, a group that tended to be sick quite often (an average
of 16-17 times). Note in Fig. 1(b) that the fit of the three-component mixture model
coincides with the empirical fit at the origin.

The method of estimation used here is maximum likelihood. A maximum likelihood
estimator P of P is defined as a probability measure P that maximizes the log-
likelihood function A(P) = (1/n) ¥.7_, log f (x;, P). Sometimes it is more convenient to
write the log-likelihood function in the form A(P) =¥ w,logf(x, P), with w, = (no.
of values in sample = x)/n. For fixed support size (i.e., k-component models), P is
allowed to vary in the set Q, of all discrete probability measures with maximum
support size k. In the case of flexible support size (i.e., k unknown), P varies in the set
Q of all probability measures. In the latter case, the estimated probability measure Pis
known as the semi- or nonparametric maximum likelihood estimator (SMLE) of the
mixing distribution (Laird, 1978, 1982). For a general introduction into the topic the
reader is advised to check the books of Titterington et al. (1985), McLachlan and
Basford (1988), or the older one by Everitt and Hand (1981).

The main question which will be dealt with in this paper is as follows: Is there
unobserved heterogeneity, and if so, how can it be estimated and the estimator
algorithmically obtained?



8 D. Béhning | Journal of Statistical Planning and Inference 47 (1995 ) 5-28

0.20 4
0.15
5
5 010
=
0.05
Density
0.00+ O mixed Poissen
X single Poisson
® ompirical
—_ I T m e e e A S e |
0 5 10 15 20 25

Number of Symptoms

0.5
1
0 iE
I
=t
— E’;ﬁ
be | s
03 g}x
= s
" B
H
‘o 227 e ELJZ
= L rd
'L‘_.:Ti e}
- o]
HEN 2
ol RS I ot
SEIE R E 3
ELEERN A F REMaL
Leibed LA tq 10 i
0.0 'l-t;-r}nnmﬁwﬂ ol bl
- LA T T Al 1 L T 1 1 LI 1 LIRS 1
0O 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Number of Symptoms

Fig. 1. (a) Empirical distribution, single and mixed Poisson of illness spells of a sample of 602 preschool
children in the northeast of Thailand. (b) Semiparametric estimation of heterogeneity for a sample of 602
preschool children in the northeast of Thailand.
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1. Gradient function and vertex directions

Characterizing the semiparametric maximum likelihood estimate: We consider the
following:

,X,, find the SMLE for P where P is SMLE by
definition if P maximizes the log-likelihood

Problem. Given a sample xq,...

AMP) =3 wlogf(x,P)

We do have the following properties (Lindsay, 1981, 1983a, b; Bohning, 1982;
Jewell, 1982). Note that these results do not require any special assumption on the
density f(x,3) under consideration.

Properties. (1) 4 concave in Q, the set of all probability measures on the parameter
space ©.
(2) The directional derivative is defined as (and exists)

@(P.Q) = lim [4((1 — )P + 2Q) — A(P)]/u
_y S P
SR

for any two probability measures P and Q.
(3) In particular, if P, is the one point measure putting all its mass at 3

fx.9) = f(x.P)

fix. P)

Dp(9) = D(P.Py) =Y w,

is called the gradient function.
(4) General mixture maximum likelihood theorem:
(a) PMLE <> Dp(9) < 0 for all 9,
(b) Dp(9) = 0 for every support point 3 of P.

Remarks. One of the nice features of this theorem lies in the fact that a characteriza-
tion of the SMLE is provided by just looking into vertex directions. Part (b) of
the theorem can also be thought of as a defining equation for the weights given
the support points. There are also other forms of characterizing the SMLE such as
one given by Gribik and Kortanek (1971,1977) which states that P is SMLE
if and only if ®(Q.P)>0 for all probability measures Q. This theorem
can be topographically interpreted as ‘the top of the mountain is characterized by
the fact that from every point on this mountain it goes upward into the direction of
the top’.
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The gradient function is useful in many respects. A recent approach (Lindsay and
Roeder, 1992a) focuses on the graphical analysis of the residuals (observed —
expected)/expected as a diagnostic tool and establishes a close relationship to the
gradient function as a smoothed version of the residuals. In Lindsay and Roeder
(1992b) question of uniqueness and identifiability in mixture models are discussed.

Computational strategy for detecting homogeneous populations: Let us suppose that
the sample is coming from a homogeneous population described by some scalar mean
9p. Then, in standard situations the sample mean X would be an estimate of 9, and if
D:(9) < 0 for all § we know by the general mixture maximum likelihood theorem
that X would be also the SMLE. The critical point here is as follows: under regular
conditions we know that [ = 2 n[A(P) — i(x)] has a limiting x>-distribution under the
null hypothesis of homogeneity with degrees of freedom equal to the difference in
parameters between alternative and null hypothesis, in this case, k means + (k — 1)
weights = 2k — | parameters under the alternative, meaning 2(k — 1) parameters as
difference. This would imply that we can expect | = 0 with no positive probability,
even if the population is homogeneous. However, this result does not hold here, since
the null hypothesis is lying in the boundary of the alternative, and so there exists
a positive probability that [ =0 (for this point see Titterington et al. (1985) and
Bohning et al. (1994)). This analysis indicates that there is a good chance to detect
a homogeneous population via the general mixture maximum likelihood theorem.

Connection to optimal design theory: Many results in semiparametric mixture
models have analogous counterparts in optimal design theory. The latter context
can be described as follows. Given a dependent variable Y, a vector of regressors

= (xy,...,x,)’ and a connecting linear regression model E(y)= "x, based
on a sample of size N the best linear unbiased estimator of B is given by
B =(X"X)"'XTY, where X is the design matrix

xf

T
Xy

and Y" = (y,,...,yy)". The covariance matrix of f§ is proportional to (XTX) ! and
X" X can be written as (1/N) ¥~ , x,x" p;, p; = 1/N. In planning an optimal experiment
of size N one would like to choose those design points which minimize in some sense
the covariance matrix (XT X)~ . A frequently used optimality criterion is the determi-
nant, since it measures the contents of the dispersion ellipsoid. In other words, one
wants to find that design which maximizes det (¥, x;x p;), under the restriction
; = 1/N (exact design). To simplify the optimization task one gives up the restriction
p- = 1/N and maximizes the determinant of ¥*_ L X x! p: under the only restriction
=20 for all i=1,...,k and p, + --- + p, = 1. The results available in optimal
desngn theory can be split into three parts: the equivalence theory with the key result in
the general equivalence theorem going back to Kiefer and Wolfowitz (1960) stating
the equivalence of a continuous design giving mass p;,...,p, to design points
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Xi.....x, which maximizes the determinant and the design which minimizes
max, x" ( Zf.": . x;x! p;)” ! x. This result compares closely to the general mixture max-
imum likelihood theorem (see Atwood, 1973, 1976, 1980; Bohning, 1985; Titterington,
1975, 1980; Silvey, 1980). The second part is the duality theory developed by Silvey and
Titterington (1973) and Titterington (1975) for which the mixture model counterparts

have been pointed out by Lindsay (1983) and Lesperance and Kalbfleisch (1992). The
third part of development in optimal design took place in algorithms. Most of their
mixture model counterparts will be discussed in this paper. Original contributions in
the algorithmic area in optimal design are connected with the names of Atwood (1973,
1976, 1980), Bohning (1982, 1985), Gribik and Kortanek (1975, 1977), Silvey et al.
(1978), Simar (1976), Titterington (1976), Torsney (1981), Tsay (1974, 1976, 1977), Wu
(1978, 1983) and Fedorov (1972).

2. Vertex direction algorithms
2.1. The vertex direction method (VDM )

The vertex direction method (VDM) is based on the following property of the
gradient function Dp(9). If Dp(9) > 0 for some Y, then the likelihood can be increased
over A(P) by using a distribution with some additional mass at 3, formally, there exists
an x such that A((1 — x) P + 2Pg) > A(P). We would like to make

A((l — )P + aPg) — /(P)
as large as possible. Based on a first-order approximation we have

21 —2)P 4+ aPg) — 2(P) = aDp(9). (2.1)
Clearly, the right-hand side of (2.1) is maximized if we make Dp(9) as large as possible.

This leads to the following algorithm.

VDM
(1) Flnd \9max Wl[h DP(Smax) = SupthP(lg).

(i) Set P, = (1l —a)P + xPy with & monotone in the sense A(Ppew) = A(P).

The VDM is discussed in Wu (1978a, b), Lindsay (1983) and Béhning (1982, 1985). The
question of the monotonic step-length choice will be discussed in Section 3. We have
the following.

Properties. (a) Any sequence (P;) created by VDM with arbitrary initial value meets:
A(P;) = A(P) monotonically.
(b) The VDM is stable, very slow and wasting energy.
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Ideas on improvement: We would like to make A((1 — a) P + aPg) — A(P) as large as
possible. It is therefore appropriate to use a second-order approximation for this
increment leading to

aDp(9) + 122D (), (2.2)

where
~2
DP(8) = —— i((l — )P + aPy)|,_o

(fa)?
is the second derivative of 2((1 — x) P + xP,) with respect to « computed at « = 0 and
becomes equal to

(SR [ )Y
_g\,\x(\ﬂﬂm )

If we replace « in (2.2) by its maximizing value a,,,, = —DP(S)/D,(,Z)(S) we obtain (for

a = xmax)
(2.2) = =¥ Dp(9?/ D (9) = 4p(9).

A modification of the VDM would use the function Ap(9) in step (i) instead
of Dp(9).

Figs. 2 and 3 show max, 2((1 — %) P + P,) — A(P) with both approximations Dp(9)
(linear) and 4,(3) (quadratic) for two configurations. Both configurations consider the
data of Example 1. In Fig. 2 the current P gives equal weight 1/5 to 0, 1, 5, 10, 15
whereas in Fig. 3 the current P gives equal weight 1/4 to 1, 5, 10, 15. In both cases, the
quadratic approximation is evidently much better. However, whereas in Fig. 2 the
VDM and the modified VDM would choose similar vertex directions since the values
which maximize Dp(9) and Ap(9) are rather similar, in Fig. 3 the modified VDM
would choose a completely different one, as the $-value for which Dp(9) becomes
largest is quite different to the one which maximizes 4,(9).

2.2. The vertex exchange method (VEM )

The vertex exchange method (VEM) is based on the following idea. If 9 maximizes
Dp(3) and 9* minimizes Dp(9) in the support of P, then we would seem to need more
mass at 9 and less at $*. Formally, P,.,, = P + ap* [ Py — P,.] realizes this idea of
moving mass from 9* to $; at « =0 we just have P, = P, at « =1 we have
Prew = P+ p*[ Py — Py ], meaning the ‘bad’ support point $* is replaced by 9. Note
that p* = P($*). This latter exchange process has been the basis for the name vertex
exchange algorithm. Formally, the choice of 9and 9* can be motivated by a first-order
approximation of the increment

AP+ ap*[Py— Py.]) — A(P) x ap*(D,(9) — D,(9*))
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Fig.2. Optimal increment A({1 — x) P + xPy) — A(P) with respect to x and linear and quadratic approxima-
tion; current value P gives equal mass to 0, 1,5, 10, 15, data are the “illness spells” from Example 1.
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Fig. 3. Optimal increment A((1 — %) P + xPy) — 4(P) with respect to x and linear and quadratic approxima-
tion: current value P gives equal mass to 15,10, 15, data are the “illness spells’ from Example 1.
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which we would like to make as large as possible. Consequently, one would like to
maximize Dp(9) in 3 over the whole parameter interval and to minimize Dp(9) in the
support of P.

VEM
(1) Find 9,,, with Dp(39,.,) = supyDp(3).
(1/) Find 'gmin with DP(Smin) = SUPY* e supp(P) DP(‘g*)~
(i1) Set Py, = P+ 0prin [Py — Py ] with  monotone in the sense A(P,.,) = A(P).

For a detailed discussion of the VEM the reader may look at Béhning (1985, 1986).

Properties. (a) Any sequence (P;) created by the VEM with arbitrary initial value
meets: 1(P;)— /(P) monotonically.

(b) The VEM is stable and converging better than the VDM. Lesperance and
Kalbfieisch (1992) give an example in which the VDM needs 2177 iterations, whereas
the VEM needs only 143 iterations to achieve the same stopping accuracy.

Ideas on improvements: A limited numerical experience shows that changing Dp to
Ap in selecting 3y, and 3, improves the convergence behavior, although it appears
to be no ‘breakthrough’. Alternatively, one can again think of a quadratic approxima-
tion in o of

AP 4+ ap*[ Py — Py ]) — A(P)
which is provided by
ap*(Dp(9) — D,(9%)) + 22 p*2 D2 (9, 9%), (2.3)

where
N2

D' (9.9 = ——5 AP + 2[ Py — PyT)lam0

()
_ . f’(xv '9) _f'(xw ‘9*) :
=L ( Fx.P) ) ‘

If we replace o in (2.3) by its maximizing value o, = —(Dp(8) — Dp($))/
[p* D (8, 9*)] we find that (for a = x,,,)

(2.3) = —3(Dp($ — Dp(9%))/D (9, 9%)
= Ap(9, 9*).

A computational strategy could be now to find 9* to minimize Dp(9*) (or 4(9%)) in
supp(P) and then, in a second step, to find 3 to maximize 4(9 9*) in 3 With this
modification, the VEM would need 376 iterations (466 iterations with 4,(3*) instead
of Dp($*) in the first step), in contrast to 1927 iterations for the traditional VEM.
Computation time was 7s (8s) for the modified VEM, and 14s for the traditional
VEM.
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Initial point

Fig. 4. VDM, VEM and ISDM for two-dimensional simplex.

2.3. ISDM tintra simplex direction method )

The intra simplex direction method (ISDM) has been suggested by Lesperance and
Kalbfleisch (1992). The method works as follows.

ISDM
(1) Find all ‘local’ maxima 4, ..., 8, of Dp(9)!.
(i) Maximize A((1 —oo)P + Y7, %Py) in o, ...,%, subject to o; >0 and
o + -+ %, = 1.
(i) Set P = (1 —2o)P + ¥, 2, Py.

Properties. (a) Any sequence (P;) created by ISDM with arbitrary initial value meets:
MP,) > A(P) monotonically.

(b) Lesperance and Kalbfleisch (1992) point out that the ISDM is stable and very
fast. In the example mentioned before, the ISDM needed 11 iterations in contrast to
2177 for the VDM and 143 for the VEM. However, one has to keep in mind that there
is an increased complexity involved in solving step (ii). We will consider algorithms to
solve this substep in Section 4. Fig. 4 shows the differences in three methods. The
VDM moves always towards the direction of a vertex and the VEM moves parallel to
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the edges of the simplex. The ISDM would work in subsimplex shown on the left side
of Fig. 4 and find the solution in one step in this case.

(c) The ISDM is storage friendly, since only the vector { f(x, P)|w, > 0O} needs to be
stored (and not P itself), and is, in this respect, similar to the VDM.

Ideas on improvement: The analysis provided so far suggests that it might be
promising to use 4,(9) in step (i) instead of Dp(9).

2.4. Further concepts

The EM algorithm (for number of components known) has been discussed exten-
sively for mixtures (Redner, 1980; Redner and Walker, 1984; Hathaway, 1983, 1986;
Lindsay, 1984; Wu, 1983). Based on this algorithm we can develop the following:

Computational strategy:
(i) (EM step for support size k)

T —
‘gk—"ngM~ Ik ‘—”fo

work for a while here, then go to step (ii)!
(i1} (Increase support size)
Find & to maximize Dp(9).
Set 9., =93 k=k+ 1, go to step (1)!

This strategy has been developed by DerSimonian (1986, 1990).

Other ideas use the fact that there is a dual problem connected with the mixture
problem (primal problem) (Lindsay., 1983; Bohning, 1983). Lesperance and
Kalbfleisch (1992) use the dual problem to apply algorithms developed in semi-
infinite programming (Coope and Watson, 1985). One could also use the primal-dual
relationship to develop an algorithm that is based on projecting back and forth from
primal to dual.

3. A class of monotonic step-length estimators

In this section we provide a class of step-length estimators which meet the goal of
making the step-length monotonic in the sense of increasing the likelihood at each
step. There are several ways to construct a monotonic algorithm; here, we review the
relevant concepts from Bohning and Lindsay (1988) and Bohning (1989). In the case of
interest at hand we wish to maximize over « a log-likelihood of the form

@(2) = A(P + aH) — A(P),
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where typical examples of the direction H include the VDM direction H = (Py — P) or
the VEM direction H = p*(P, — P,.). We observe that

@)=Y w logf(x.P + aH)

X

= 2 wlog{ f(x,P)+ af(x,H)]

X

=Y w,log({A, + aB,)

with the first four derivatives equal to

B 2
=Y w, ———, A) = — o —= <0,
o < " A, + 2B, ¢ L (Ax + och>

x

B 3 B 4
My} = 2 . . X . (v} - 6 ' x S 0’
"' (2) g‘“"<,4_x+133> , o () Y w <—Ax+a8x)

x

implying that ¢ and ¢” are concave. We call this the double concavity property of the
mixture likelihood. We consider

AREA(5) = ' 0" (1)dt = ¢'(x) — @' (O,
JO
the area above ¢" from 0 to x (see Fig. 5). Specially, if « equals the optimal step-length
& we have

AREA(3) = @' (&) — ¢'(0) = — ¢'(0).

This equation allows an interesting perspective. Although we do not know &, we do
know AREA(2), the area above ¢” from 0 to & which is — ¢'(0).

Algorithms differ in the way that they provide an estimate area(x) of AREA(x).
Many well-known algorithms can be reproduced by equating the estimated area(cx)
with the ‘true’ AREA(a). The estimating equation is

area(x) = AREA(%). (3.1)

Let us look at two examples.

Example 1. Let areang(2) = x¢"(0). the rectangle estimator with baseline x and height
¢"(0). Solving (3.1) leads to a¢"(0) = areayg () = AREA(%) = — ¢'(0), from which we
get the Newton- Raphson (NR) estimator ang = — ¢'(0)/¢"(0).

Example 2. Let area..(x) =« AREA(1) (= ¢'(1) — ¢'(0)), the estimator that
assumes AREA(x) can be modelled as a straight line. Solving (3.1) leads to
al@(1) — ¢’ (0)] = area,.(x) = AREA(3) = — ¢'(0), from which the secant estimator
Uee = — @' (0)/[¢' (1) — @' (0)] is easily derived.
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Fig. 5. Tllustration of estimating Eq. (3.1) for rectangular and trapezoidic estimator of AREA(&).

Do we obtain any new insights from the duality

area step-length
estimators algorithms

In fact, it is possible to clarify the monotonicity of existing algorithms, and, secondly,
it can be helpful in constructing better monotonic step-length estimators. The subplot
in Fig. 5 shows a strong non-monotonic, overshooting Newton-Raphson step.
The geometrically obvious reason for this is that height (¢”(0)) of the rectangle
is so small that a wide baseline (ang) is needed to meet the estimating equation
areang(ang) = AREA(&). To avoid this effect we need an estimator which over-
estimates the true area. In Bohning (1989) the following result is proved.

Result 3.1. If area(x) < AREA(«) for all « then a solution x* of (3.1) is monotonic in
the sense @ (x*) > ¢(0).

It is appropriate to construct a monotonizing version of the Newton-Raphson step
by replacing the second derivative at 0 by a global lower bound.

Example 1 (Monotonizing Newton-Raphson step). We set M = inf, ¢” () and define
areape, (2) = aM < AREA(«). Solving (3.1) leads to oy,,, = — @’ (0)/M. Now we can
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Fig. 6. Illustration of the monotonicity condition ¢”(0) < AREA(1).

exploit the double concavity property to see that the minimum M is obtained at the
end-points of the interval [0,1]: M = min{¢"(0), ¢"(1)}. The corresponding
geometric illustrations are given in Fig. 5.

Example 2 (Improving the box-estimator). Clearly, the box-estimator leads to a con-

servative step-length choice. Why not approximate AREA(x) with trapezoid? The
associated formula is

area, ., (1) = 2¢"(0) + 2> {¢" (1) — ¢"(0)},2

and (3.1) takes the form
20"(0) + 2* {9 (1) — 9" (0)}/2 + ¢'(0) = 0. (3.2)

See Fig. 5. Eq. (3.2) has unique solution 2, in [0, 1]. Note that we have the property:
0 < ooy < Ayrap < 4.

There exists a further refinement of the Newton-Raphson step. If ¢”(0) < ¢"(1)
then areang will necessarily meet the overestimating condition of result (3.1). But this
will also be true, if ¢"(0) < AREA(1), in other words if the box with base line from 0 to
1 and height ¢"(0) overestimates the area above the curve ¢” from 0 to 1. Such
a situation is demonstrated in Fig. 6. Only if the latter condition is violated, we would
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Fig. 7. Optimal choice of curvature average. shaded areas are equal.

need to modify the Newton-Raphson step. It is then appropriate to construct a box
with height as an ‘optimal’ average of ¢”(0) and ¢"(1) in such a way that the condition
(I =P o”"0)+ pe”"(1) = AREA(1) [ = ¢'(1) — ¢'(0}] is met. See Fig. 7. The corres-
ponding area estimator is ared,pima(%) = 2 [ (1 — f)@"(0) + po"(1)] = a[¢'(1) —¢'(0)] =
areag. (). We summarize:

Result 3.2 (Bohning, 1989).

@"(0) < @"(1) or

If
¢"(0) < AREA(I)

} ang 1S Monotonic,

otherwise Yeee 1S MoONOtONIC.
This result leads to a modified version of the

VEM
(i) Find 95y With Dp(8min) = SUp g» c supp(p) Dp(9*).
(i) Find 3., With 4p (Inaxs Imin) = SUpPsAp($ Inin) where Ap(9, 3*) is defined as
(2) p*(Dp(9) — Dp(9%)) + 3 p*2 D (3, 9%), if @ (1) = 0 (x = 1),
(b) ap*(Dp(9) — Dp(9%)) + + 22 p*2 DIV (9, 9%) with « chosen according to
Result 3.2, if ¢'(1) < 0.
(iii) Set Py = P+ apmin[ Py, — Py, 1. 2 as in step (ii).
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Note that here the monotonic step-length choice has been built into the vertex
choosing function 4,(9, 9*).

4. Algorithms for finding the weights

In Section 2 rhree algorithms (VDM, VEM, ISDM), each capable of finding the
SMLE in a reliable way, are represented. However, there are at least two arguments to
look at the maximum likelihood problem from the point of view of maximizing the
likelihood on the finite dimensional simplex as described in (4.1).

Maximize the concave function

X ;
Ay, ) =, log< Y Sl ‘91-)1‘,») @.1)
X wJ o1 /

st =0and %, + -+ + 2 = | (or, equivalently, « € finite simplex ).

One reason is that problem (4.1) has already occurred as a subproblem in the ISDM
algorithm in step (ii). Secondly, one can think of approximating the set of all
probability measures on @ by the set of all probability measures on an approximating
set Ogrig = 1. ... 34} of @. This would also lead to problem (4.1).

4.1. A class of search directions

Wu (1978a. b) considers a class of search directions based on the mapping
I(zy=1"'(2)=(1"Al)Az — (1T A2) A1 for arbitrary k-vector z.

Here 1 =(1...., )T, A4 any symmetric, positive definite matrix. I has the following
properties:
(a) u = I(z) satisfies the constraint 1Ty = Y, u; =0, which means (x +u)=1.
I1(V4(x)) offers good search directions since the directional derivative
(b) @ (. [(Vi(x)) = Vi(x)" I(VAi())
=(1"ADWVi(0)" AVA(2) — 1T AV (0) VA ()T A1

=0

by the Cauchy- Schwarz inequality, with equality if and only if « = & [ (VA(%)) = (%)
is direction of ascent.

(c) For 2 € Q, 2 + I(x) need not be in 2 (although it is lying in the ‘right’ subspace,
but it might be too long. see Fig. 8 for an illustration). Obviously,

:x.
0=u+ ———1,
T (%)

< % + mix) I (x).
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Fig. 8. Length adjustment of /(x).

where m(x) = min { — «;//;(a)| I;(2) < 0} is the appropriate length adjustment. Then
o + m(x) I(a) lies in Q. This leads to the following algorithm.

Algorithm
(1) Compute A = A(x), VA(2), 1(VA()).
(1) otgew = o + Pm(2)1(2) with B monotonic.

Properties. The algorithm not only offers a reliable procedure for constructing the
maximum likelihood estimate, but it also provides a frame to include well-known
algorithms such as the projected gradient (A = E) or projected Newton
(A=(—- 62/1/001,«6%)) ones. The algorithm was suggested by Wu (1978a, b) and with
A as the negative, inverted Hessian matrix by Atwood (1976, 1980), both in the context
of optimal experimental design (Silvey, 1980). In Bohning and Hoffmann (1982)
a detailed review of this class of algorithms is given, whereas in Bohning and
Hoffmann (1986) a Fletcher—Powell type choice of the A-matrix is discussed and
compared with the projected Newton method.
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4.2. A transformation approach

In Bohning (1984). analogous to logistic regression, a transformation is suggested
that allows the application of constraint free optimization techniques. The corres-
ponding transformation is the

EX PIT-transformation:

(Z(soonzi ) > (€70, e% 1 1)) ( +Ze]>eQ+.

z can now vary freely in R,_,.

Define L(z) = H{EXPIT(2))

k—1 k—1
=) w log( Y S +j;k> — log<1 + Y e”), 4.2)
i j=1 =1

where the w;’s correspond to those w, > 0 and f;; = f(x;, 9;). The gradient and second
derivative matrix are easy to obtain.

Gradient. The partial derivatives can be simply found as

,,

_é

0Zy

/f’ec: + fa 1 +€Z"ezj = Z w; faoy/ f(xi, P) — 0. (4.3)

Hessian. The element (I, {} of the second derivative matrix is given as

L i Oy fue® (Z J‘;‘jez’ + fi) — fu€® fur €
{?Z{'@" i=1 (Zj::.f}jezj +fij)2

op-e(l + ) ) —efte’
(1 +Z, | e®)?

n

= X w0 fuou/ f(xi, P) — fuoy firs o /f(xi,P)Z) — (Ou 2 — o). (44)
i=1
Here 3, is the Kronecker symbol (5, =1 if I =1 and J, = 0 otherwise). Note
that the gradient as well as the Hessian of (z) depend on the (k — 1)-vector z only
through «. This observation leads to the following rescaling modification of the
Newton—Raphson algorithm.

Rescaling algorithm

Step O (Initialization). Choose weights o, ....2 (a; = 0, Zle a; = 1) (Comment:
A default value of o; = 1/k corresponds to the z-vector 0).

Step (i). Compute the gradient VL(z) and the Hessian V? L (z) via formulae (4.3) and
(4.4), respectively.

Step (ii) (NR step). Compute zxg = z — V2 L(z) ' VL(2).

Step (iii) (Rescaling). Set z = zng. and compute o = EXPIT(z), and go to step (i).
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Properties. The transformation approach is studied in Bohning (1984) as well as in
Formann (1980, 1982). One of its disadvantages is that it works only for x € Q* (all
weights positive) and is therefore only useful to determine the weights after the support
points of the SMLE have been identified.

4.3. A fixed point concept

The following concept goes back to a suggestion of Silvey et al. (1978) and Torsney
(1981a,b) and is further studied in Béhning (1983). It is based on the fact that in the
finite simplex case the general mixture maximum likelihood theorem states that the
following four statements are equivalent:

(i) & MLE.
(ii) :—’ (3) = V(@) 4

(ii1) % 1s a fixed point of F, where the ith component of

. Cr .
Fi2) = = (2) 2/ Vi)«
A

(corresponds to the EM iteration).
(iv) & a fixed point of F®, where the ith component is given as

@ s O e o
Fi7(2) = E.(a) %/ VO A ()"

i

with ¢ > O arbitrary.

Since F"(x) is the EM iteration, F'*(x) can be viewed as a generalized EM
iteration. Fellman (1987) looks at values of d other than 1 to speed up the iteration and
finds that values around ¢ = 0.9 give better convergence results.

5. Miscellaneous topics
5.1, Problems in the fixed components case

The preceding algorithms have the feature that the number of support points is
flexible, potentially changing at every step. A very popular algorithm in which the
number of support points is held fixed is the EM algorithm (Dempster et al., 1977). See
also Laird (1978) for the mixture context. DerSimonian (1986, 1990) discusses the EM
iteration together the VDM, and gives a FORTRAN subroutine. One advantage of
the EM algorithm is its numerical simplicity together with a guaranteed monotonic-
ity. For a detailed discussion of the EM algorithm for mixtures see Redner and
Walker (1984), Hasselblad (1966, 1969), Titterington et al. (1985), Fahrmeir and
Hamerle (1984) and Agha and Ibrahim (1984).
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Initial values and stopping rule: It is one of the problems connected with the mixture
model of restricted support size (fixed number of components) that the EM algorithm
(as well as other ones) constructs only local solutions. One feature of the flexible
support size approach is that it suggests initial values for the fixed support size
case, which one hopes would lead to a global maximum at convergence. Another
question is when to stop the EM algorithm. The criterion usually used for the EM
algorithm is the size of the change in the likelihood or parameter estimates from the
iteration to another. This is more a measure of lack of progress rather than of actual
convergence.

Acceleration of the EM algorithm: Various attempts have been made to accelerate
the EM iteration, which include those by Gediga and Holling (1988), Jamshidian and
Jennrich (1993), Louis (1982} and Meilijson (1989). Detailed numerical evaluations
will be necessary to see how fruitful these methods are in the mixture context. In some
cases the parameter estimates are not of interest, but rather the value of the likelihood
estimate. The following simple version of the Aitken acceleration (for details see
Bohning et al., 1994) can be used.

Let the 4; be the log-likelihood at iteration i. Then we achieve the usual Aitken
acceleration in that we assume that ~,,, — 4; x ¢(4; — 4;.;y) which implies
Ziv1 — A = (4] — 40). From here we get

ay - i . . . .
17X 2o + Z Ay — Ag) = 4o + P (A — 4Ag)
i-0 - ¢
which can be estimated by

. . 1 : . . A2 — Ay
AN X 2+ —— (A — 2g), C= - —.
1 -¢ sl — Lo

Note the monotonicity property: 2% > /.
5.2, Software

One of the recent developments concerning software for mixture models is
C.AMAN developed by Bohning et al. (1992). It is menu-oriented and includes
algorithms for the flexible as well as for the fixed support size case. The data can come
from densities including normal, exponential, Poisson, binomial, and others. How-
ever, the inclusion of covariances — such as fitting models like Y Polx,o; + B 2)p;
where mixing would here go over the intercept — is not yet available; for connected
work in this area see Aitkin and Tunnicliffe Wilson (1980) or Dietz (1992). A specific
software package based on the Poisson submodule of C.AMAN is DISease
MAPping developed by Schlattmann (1993) and Schlattmann and Béhning (1993). Tt
allows the spatial analysis of rates (prevalence or incidence rates) or ratios (such as
SMR) denoted by x/E through the specific Poisson mixture model:

PO(.\', EP)= PO(.\',ESI}CCI + -+ Po (.\'.E\(}k)lk.
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Here the number of components k in the mixture model would correspond to the
heterogeneity involved in the spatial structure. DISM AP is strongly graphics oriented
and is able to put the found heterogeneous structure in an associated disease map.

Other software developments include the package MIX of MacDonald (1986) and
the subroutines level work done by McLachlan and Basford (1988), DerSimonian
(1986, 1990) and Agha and Ibrahim (1984).
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