
© 2011 Royal Statistical Society 0964–1998/12/175001

J. R. Statist. Soc. A (2012)
175, Part 1, pp. 1–47

Statistical methods for healthcare regulation: rating,
screening and surveillance

David Spiegelhalter,

Medical Research Council Biostatistics Unit, Cambridge, UK

Christopher Sherlaw-Johnson,

Care Quality Commission, London, UK

Martin Bardsley and Ian Blunt,

Nuffield Trust, London, UK

Christopher Wood

Care Quality Commission, London, UK

and Olivia Grigg

University of Lancaster, UK

[Read before The Royal Statistical Society on Wednesday, June 22nd, 2011, the President ,
Professor V. S. Isham, in the Chair ]

Summary. Current demand for accountability and efficiency of healthcare organizations, com-
bined with the greater availability of routine data on clinical care and outcomes, has led to an
increased focus on statistical methods in healthcare regulation.We consider three different reg-
ulatory functions in which statistical analysis plays a vital role: rating organizations, deciding
whom to inspect and continuous surveillance for arising problems. A common approach to data
standardization based on (possibly overdispersed) Z -scores is proposed, although specific tools
are used for assessing performance against a target, combining indicators when screening for
inspection, and continuous monitoring using risk-adjusted sequential testing procedures. We
pay particular attention to the problem of simultaneously monitoring over 200000 indicators for
excess mortality, both with respect to the statistical issues surrounding massive multiplicity, and
the organizational aspects of dealing with such a complex but high profile process.

Keywords: Funnel plot; League table; Overdispersion; Risk-adjusted cumulative sum; Risk-
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1. Background

The National Health Service (NHS) is the dominant provider of healthcare in England and
relies on funding from national taxation. The traditional model of a regulator of such a pub-
lic service involved a regime of special data collection combined with regular inspections to
place institutions into a category reflecting their degree of ‘success’ or ‘failure’. There have
recently been two demands that are changing this model. First, calls for greater efficiency and
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less bureaucracy have led to a more ‘risk-based’ approach to make the process more targeted
and proportionate, both to reduce the data collection and inspection burden on institutions and
to optimize the use of regulatory resources. These ideas have grown from industrial applications
(Straub and Havbro-Faber, 2005) and were adopted in the UK by bodies such as the Financial
Services Authority (2000) and the Tenants Services Authority (2010). Second, recent ‘scandals’
in the health service have led to expectations of rapid detection of emerging problems which
inevitably involves a degree of surveillance. In this paper we describe the statistical aspects of
these innovations when implemented by a healthcare regulator charged with rating and inspect-
ing institutions as well as keeping them under continuous surveillance. Although our focus is
healthcare we feel that much of the methodology is readily applicable in a wide range of other
contexts.

The current healthcare regulator in England is the Care Quality Commission (CQC) which,
in April 2009, replaced its predecessor, the Healthcare Commission, under which the methods
that are described in this paper were developed. Here we consider the statistical methods that
have been adopted for three different contexts: awarding an annual performance rating on each
NHS trust, deciding which to inspect and surveillance for early detection of potential problems.
Trusts are the legally constituted responsible organizations and include acute and specialist trusts
(n=169 in 2008–2009) as the main providers of acute hospital care in the English NHS, whereas
primary care trusts (n = 152) are currently responsible for the commissioning of primary and
secondary healthcare in a geographical area. In addition there are mental health trusts (n=57),
ambulance trusts (n=11) and learning disability trusts (n=3). Similar approaches are used to
monitor independent sector healthcare organizations but are not discussed here, and social care
is also not included.

We emphasize that the requirements and processes of an agency such as the CQC are in a
constant state of development, and the precise methods that are described in this paper are
not necessarily those that will be used in future regulation duties; in particular, the inspection
process is currently being restructured. Specific procedures are therefore largely discussed in the
past tense. Nevertheless the generic statistical ideas are expected to remain and are considered
in the present tense.

A common theme to all these application areas is the variety of types of data: there may be
standardized mortality or incidence ratios, proportions, survey responses, counts of adverse
events, categorical data and even qualitative ‘intelligence’. Each area requires use of multiple
items of data on each trust, each of which can be scored against a standard, which may be either
an externally set ‘target’ or an expected value based on an aggregate performance. In some
circumstances these standardized scores need to be aggregated up a hierarchy. Yet, at the same
time, there is a demand for methods that are straightforward to implement, can be explained to
multiple stakeholders and are robust to potentially mediocre quality data.

The issue of quality of data is crucial. Rather than using the mass of routinely collected data,
it may be more efficient to expend resources in collecting fewer, but better quality, items targeted
towards determining quality of care and outcomes. However, currently there is strong pressure
on a regulator to avoid additional data collection.

Here we discuss three interrelated regulatory strategies. Section 2 concerns indicators and
ratings, exploring ‘exact’ methods for comparing indicators with targets that have contributed
to the annual rating given to each trust. Section 3 considers screening to target inspections and
introduces the use of Z-scores as a standardized measure of the extent to which an observation
is an outlier. This section also covers methods for dealing with overdispersion, aggregation of
Z-scores and the selection of trusts for inspection. Section 4 examines methods that are used
in continuous surveillance, focusing on the technical and organizational issues arising from
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monitoring many data series on large numbers of trusts. Some conclusions are drawn in
Section 5, and Appendix A contains specific details for constructing Z-scores.

Though the approaches that are described here were developed within the context of health-
care regulation, they have wider applicability in settings where large amounts of complex oper-
ational information are available but need to be summarized at the level of multiple comparable
units. We hope that the methods go some way to addressing the criticisms of public sector per-
formance indicators that were identified by the Royal Statistical Society report of 2005 (Bird
et al., 2005). Finally, although much of the discussion inevitably focuses on identification of
poor performance, the statistical techniques can and should be applied to identifying good
performance to emulate.

2. Ratings: the role for ‘exact’ methods

2.1. Construction of a performance rating
The Healthcare Commission was legally committed to annual publication of ratings for each
NHS trust. The CQC delivered a series of annual ratings publications on 392 trusts, the last
being in 2008–2009 (Care Quality Commission, 2009a) as this is no longer a legal require-
ment. Nevertheless the statistical techniques that were adopted as part of the rating system are
generally applicable in any situation where performance is to be compared against a target or
threshold.

In the ‘Existing commitments and national priorities’ section of the 2008–2009 ratings, each
target was assessed as ‘achieved’ (3 points), ‘underachieved’ (2 points) and ‘failed’ (0 points).
Points were then summed and a score obtained by using a set of published thresholds (Care
Quality Commission, 2009b): for example if there were 10 indicators, and the total score was
under 21 out of a maximum of 30, the existing commitments and national priorities were con-
sidered ‘not met’, and so ‘quality of services’ was immediately classed as ‘weak’. This could
happen, for example, with more than three failed indicators. We note that this process can lead
to a small change in a single indicator tipping the balance of an overall rating: for example in
2004–2005 Addenbrooke’s Hospital in Cambridge dropped from three stars to two stars (under
the old star rating system), and careful analysis revealed that this was due to just four too few
(out of 417) junior doctors being signed up to the ‘New deal’ on working hours (Spiegelhalter,
2005a).

Given a prespecified target and an observed performance measure, a definition is needed of
what is meant by achieved, underachieved or failed. Many of these were defined by using pre-set
thresholds: for example the existing commitment for acute trusts that patients should not wait
more than 4 hours in the Accident and Emergency Department was achieved if more than 98%
spend less than 4 hours (139 trusts in 2008–2009), underachieved if between 97% and 98% (39
trusts) and failed if less than 97% (12 trusts). However, declaring a trust as ‘underachieving’
when they fail to meet a specific target can be inappropriate when chance plays a substantial
role, say due to fairly low numbers or a rather volatile indicator. This resulted in a degree of
statistical tolerance being allowed around the target so that for example in the 2008–2009 assess-
ment ‘achievement’ for 20 indicators was assessed by ‘consistency’ with the target. To specify
what is meant by ‘consistent’, we first need to develop a measure of deviation from a standard
or target.

2.2. Measuring the deviation of an indicator from a standard or target
We assume an observed indicator y that needs to be compared with a standard t: the standard
is assumed known and measured without error. Standards are of two basic types: ‘average’
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performance across either all trusts or a subset used for ‘benchmarking’, or an externally set
target, possibly based on projections from historical data.

It is traditional to express evidence of deviation from a standard as a P-value, i.e. the proba-
bility P.Y �y|t, n/ of an observation at least as extreme as y, were the standard being exactly met
(the null hypothesis), where n is an appropriate measure of the precision of measurement, such as
sample size. P-values might be transformed to give standard normal deviates or Z-scores—see
Section 3. For discrete distributions such as Poisson and binomial, we may use the mid-P-value
Pm defined as

Pm.y, t, n/=P.Y<y|t, n/+P.Y =y|t, n/=2

which is a simple form of continuity correction. This quantity is easily obtained from standard
software.

If we are to use P-values as the basis for deciding achievement of a target, we need to be able
to invert this process to produce critical limits for a prespecified P-value pÅ: for each n we need
critical (non-integer) values yÅ such that Pm.yÅ, t, n/ = pÅ. For continuous distributions the
value of pÅ is obtained by using the inverse cumulative distribution function, but for discrete
distributions we require an interpolation procedure. For example, suppose that we want the
exact critical limit when Y is Poisson distributed with expected value E under the standard;
then we can (Jones et al., 2008)

(a) find y, the lowest integer such that P.Y �y/>pÅ,
(b) set yÅ =y −0:5+{pÅ −P.Y<y/}=P.Y =y/ and,
(c) if yÅ < 0, set yÅ =0.

This guarantees that yÅ
L, the integer below yÅ, has Pm.yÅ

L, t, n/ < pÅ and yÅ
U, the integer above

yÅ, has Pm.yÅ
U, t, n/>pÅ. Hence, although yÅ is generally non-integer, it forms an appropriate

critical boundary: in fact it is convenient to be non-integer as it is then clear whether an observed
count is above or below the critical threshold. A similar procedure can be used for binomial
data with target p and denominator n, although with an additional check that, if yÅ > n, yÅ is
set to n. These exact critical thresholds can be displayed in funnel plots (see Section 2.3) when
a common standard is shared by many trusts, or as pre-set thresholds when each trust has been
set its own standard. We emphasize that a high value of the indicator, which almost always
indicates ‘bad’ performance, is associated with a large Z-score and a P-value near 1.

We shall illustrate an application to monitoring performance against targets for methicillin-
resistant Staphylococcus aureus (MRSA) bacteraemia rates in acute trusts. A government
objective was declared in 2004 of a 50% reduction in MRSA rates by 2008 and, in consequence,
each acute trust was set an explicit target for the number of MRSA cases each year, based on a
constant absolute annual reduction corresponding to 20% of a single baseline year (2003–2004):
we shall comment on this method for setting trajectories below.

After lengthy discussion the ‘underachieve’ threshold was set as 1 standard deviation (SD)
(pÅ = 0:841), and ‘fail’ as 3 SDs (pÅ = 0:999)—see Section 2.4 for further discussion on these
choices. These thresholds were prepublished for different target numbers (Healthcare Commis-
sion, 2007). Consider East Lancashire Hospitals NHS Trust (Health Protection Agency, 2010)
which in 2003–2004 had 63 cases (Fig. 1) and so was set targets for 50, 37 and 24 cases in 2005–
2006, 2006–2007 and 2007–2008 respectively. The underachieve and fail regions are shown in
Fig. 1. In fact in two of those years the trust just missed its target but were still counted as
achieving since they were within 1 SD.

Thus some tolerance is built into the system, and achievement is described as ‘performance
consistent with plan’. Of course a problem with allowing tolerances for such a politically sensitive
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Fig. 1. Critical thresholds for monitoring MRSA counts in East Lancashire Hospitals NHS Trust, with a base-
line of 63 and a target absolute annual reduction corresponding to 20% of the baseline (the trust achieved
its target in 2005–2006 and 2007–2008 when its actual MRSA count was higher than the target): – – –,
observed; , target

target is that it may appear that trusts were being let off lightly or, even worse, most trusts might
apparently achieve the target and yet national rates not decline appropriately. We have found
it helpful to argue that targets should concern the underlying risk that is faced by patients,
and the actual number of cases is only an imperfect measure of that underlying risk. In fact,
in 2005–2006, 56% of trusts achieved the target, 36% underachieved and 11% failed, whereas
in 2007–2008 the proportions were 52% achieved, 39% underachieved and 9% failed. Overall
there has been a remarkable fall in MRSA infections, with the national 50% reduction target
being met in 2008.

2.3. Funnel plots for changes in standardized mortality or incidence ratios
Suppose that we have observed O and expected E counts in each of two periods, and we assume
that the standardized ratio O=E is an estimate of some true underlying standardized mortality
ratio SMR. Exact methods based on conditional inference (Breslow and Day (1980), page 93)
can be used when assessing a target that SMR2 / SMR1 = t since, by conditioning on the total
observed O1 +O2, we have under the null hypothesis that the target has been achieved

O2 ∼binomial{tE2=.E1 + tE2/, O1 +O2}:

We can then obtain the critical limits Ocrit
2 by using the methods that were described in Section

2.2, which can be transformed to critical limits for the observed ratio y= .O2=E2/=.O1=E1/, by
denoting Ocrit

1 =O1 +O2 −Ocrit
2 , and taking ycrit as .Ocrit

2 =E2/=.Ocrit
1 =E1/.

There is an increasing interest in the use of funnel plots as a way of displaying comparative
performance data (Spiegelhalter, 2005b), in which the indicator y is plotted against a quantity
ρ which is inversely proportional to the null variance s2

0, so that ρ = g=s2
0 for some constant

g. The standard t is drawn as a horizontal line. ‘Control limits’ are drawn at t ± ks0, where k
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may, for example, be 2 or 3, with the latter corresponding to the classic Shewhart limits. These
approximately correspond to P-values of 0.025 (0.975) and 0.001 (0.999) respectively. Once the
standard t has been set then the control limits can be ‘predrawn’ as they do not depend on the
data being plotted.

The horizontal scale should be chosen for interpretability: for example ρ=n for proportions
and ρ=E for SMRs. For changes we can use a multiple of the inverse sampling variance 1=s2

chosen to be on an interpretable scale: for example, when considering the ratio of SMRs, 2=s2

is approximately .O1 +O2/=2, and so the x-axis of a funnel plot against 2=s2 could be labelled
as approximately representing average observed counts.

Fig. 2 shows an example of the change in MRSA rates between 2006–2007 and 2007–2008
(Health Protection Agency, 2010), testing for differences from the overall change (t = 0:70).
Out of 168 trusts, 16 (10%) lie outside the central 95% region, compared with 8.4 that we would
expect by chance alone, and three lie outside the central 99.8% region. There is clearly a need for
caution in interpreting these limits owing to multiple testing, and Jones et al. (2008) showed how
the funnel limits can be adjusted to control the ‘false discovery rate’ (FDR)—the proportion of
those trusts labelled ‘significant’ that are expected to be false positive results. Some attention
to the issue of multiple comparisons seems essential: for example the US HealthGrades system
identifies hospitals as one star or five star if they are significantly better or worse than expected
by using a central 90% region, and report that ‘approximately 10% to 15% were 1-star hospitals
and 10% to 15% were 5-star hospitals’ (HealthGrades, 2010). This suggests that between a third
and a half of all identified hospitals are falsely positive.

2.4. Discussion
The mapping of performance measures onto overall ratings is a complex and controversial issue
which we shall not cover here. However, even at a lower level of aggregation, there are impor-
tant questions about the choices of how individual targets have been interpreted in terms of
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Fig. 2. Funnel plot of the change in standardized MRSA rates from 2006–2007 to 2007–2008 for 168 trusts:
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sets of specific indicators and the selection of tolerance thresholds. The Department of Health
set MRSA reduction targets as part of a process to stimulate rapid improvement in the NHS:
an approach that proved successful. Inappropriate statistical methods can, however, lead to
unreasonable application of penalties for not meeting targets (Walker et al., 2008).

Setting an individualized target trajectory for trusts requires a baseline, and if that is subject
to substantial variability then any measures of improvement will be subject to regression to the
mean—see Spiegelhalter (2005c) for a demonstration of this for MRSA data. It is therefore
important that a robust baseline be established, either based on a smoothed estimate by using
data from a number of periods, or if this is not available then one can use empirical Bayes
shrinkage methods to ‘adjust’ for regression to the mean—see Section 4.5. The MRSA projec-
tions were based on a single year and hence trusts who happened by chance to have particularly
low rates in 2003–2004 were penalized. For example, Taunton and Somerset NHS Trust had
37 cases in 2002–2003, were sufficiently (un)fortunate to have a low count of 23 in 2003–2004
which became their baseline, and then for the next three years experienced 40, 41 and 38 cases,
before finally dropping to 17 in 2007–2008, thus failing their target in three out of four years.

It is not straightforward to decide the appropriate degree of statistical tolerance around a
target. A tolerance of 1 SD for underachieve has been used for indicators for which the trust
has been set an individual target and there was felt to be considerable potential for influencing
performance through appropriate interventions: when the standard is a simple national average
or there was seen to be less clear scope for improving performance, greater tolerance has been
allowed and the underachieve threshold has been taken as 2 SDs.

The traditional presentation of estimates and confidence intervals is still widely used for com-
parative performance data such as American College of Surgeons National Surgical Quality
Improvement Programme (American College of Surgeons, 2010). However, it has been claimed
(Kunadian et al., 2009; Mayer et al., 2009) that funnel plots would be a considerable improve-
ment.

3. Screening for inspection: using a common scale for measuring deviation
from a standard

The previous section considered the situation in which the precise value of a single indicator is of
primary importance to assess whether a threshold has been breached. We now consider a some-
what contrasting aim that arose when selecting trusts to inspect: summarizing large numbers of
indicators to assess more informally the idea of the ‘outlyingness’ of a trust.

3.1. Introduction to screening
Instead of exhaustive inspection of all trusts on a rolling basis, a ‘risk-based’ system was intro-
duced by the Healthcare Commission in 2005–2006 to create an inspection regime that was
targeted and proportionate. Briefly, the system comprised three stages. First, the board of each
trust had to make a public self-declaration about whether they were complying with each of a
set of ‘core standards’ (Department of Health, 2004). Second, each of these declarations was
cross-checked against available relevant information to see whether there was a risk of ‘unde-
clared non-compliance’: this is the screening process. Third, a proportion of trusts that were
deemed most at risk were inspected as well as a random proportion of trusts.

From a statistical perspective we needed, for each standard in turn, to identify relevant data
from a wide variety of sources and then to combine the evidence in these data to obtain a mea-
sure of ‘extremeness’ for each trust. The approach recognizes that for some standards there are
little or no relevant data on which to base decisions (Bardsley et al., 2009). It is important to
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note the shift of emphasis from using indicators for direct judgement (as in the previous section)
to using available information simply to direct a set number of annual inspections.

3.2. Z-scores
The basic unit of comparison for all indicators was the Z-score, representing deviation from a
standard on a common scale, which allows combination across different types of indicator by
using a common set of techniques. It will generally be useful to transform both a ‘raw’ indicator
y and a standard t before conversion to a Z-score: we may also want to transform back at the
end for interpretable presentation, which restricts us to easily invertible transformations. For
the moment we assume y and t transformed accordingly, and we discuss appropriate transfor-
mations later. In what follows we assume that all indicators have been coded so that ‘high is
bad’.

The ‘unadjusted’ Z-score is defined as

z= .y − t/=s0 .1/

where s0 is the standard error of y given that the trust exactly meets the standard. Under the
null hypothesis that a trust exactly meets the standard, z has mean 0 and SD 1, and if we assume
normality then P-values 0.025 (0.975) and 0.001 (0.999) correspond to z=∓1:96 and z=∓3:10
respectively, which are very close to 2 and 3 SDs from the standard.

It is important to note that, since we are carrying out a hypothesis test, s0 is the standard error
assuming that the standard is being met and may not necessarily be the same as the reported
standard error s that underlies confidence intervals. The difference between these two standard
errors explains why, for example, a confidence interval may just include the standard whereas
the P-value may indicate that the standard is not being met: the latter is the more appropriate
comparison.

It is also vital to emphasize that many indicators will exhibit substantial ‘overdispersion’, in
the sense that the between-trust variability is far higher than would be expected and perhaps
a majority of observed unadjusted Z-scores will appear extreme. We shall deal with this issue
below.

Details of the calculation of the unadjusted Z-scores for specific types of indicator are shown
in Appendix A. The crucial issue in choosing a transformation of y and t is whether, in practice,
the bulk of the Z-scores follow a roughly normal distribution, even if overdispersed.

3.3. Overdispersion
‘Overdispersion’ occurs when the set of trusts exhibits substantially more variability than would
be expected from assessments of within-trust sampling error and is clearly beyond a small pro-
portion of ‘outliers’.

This behaviour can occur for various reasons. First, indicators that are based on large num-
bers of cases have a precision that can result in statistically significant differences that are not
of practical importance. Second, high overdispersion may reflect indicators that are essentially
determined by policy choices rather than events subject to chance, e.g. measures of processes
that are largely under the control of the trust. Third, overdispersion can result from grossly
inadequate risk adjustment, so that like is not being compared with like. Finally, there will be
apparent overdispersion if there are genuine major differences in performance due, perhaps, to
variable quality of care.

When using a standard based on ‘average’ performance, it may then be reasonable to accept
as inevitable a degree of between-trust variability in performance and to seek to identify trusts
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that deviate from this distribution, rather than deviating from a single standard. In extreme
circumstances it may even be better not to use a statistical methodology but simply to assign
trusts to bands according to thresholds determined by external judgement. Underdispersion
may also occur when an indicator is largely under the control of an institution, say in deter-
mining resources, and there are clear targets to which all institutions are attempting to adhere
closely.

As mentioned in Section 3.2, overdispersion is best handled on a scale in which the distribu-
tion of the transformed indicator is reasonably symmetric. The degree of overdispersion then
needs to be estimated, but in a way that avoids undue influence of outlying trusts, since these
are the very trusts that we are trying to detect. Below we show how this can be achieved by
‘Winsorizing’ a proportion of the top and bottom values. We then explore how overdispersion
might be either multiplicative or additive: the additive model appears usually to fit data better and
so is generally recommended. The significance of observed deviations then takes into account
both the precision with which the indicator is measured within each trust and the estimated
between-trust variability.

3.4. Winsorizing Z-scores
Winsorizing consists of shrinking in the extreme unadjusted Z-scores to some selected percen-
tile, by using the following method.

(a) Rank cases according to their unadjusted Z-scores.
(b) Identify zq and z1−q, the 100q% most extreme top and bottom unadjusted Z-scores, where

q might, for example, be 0.1.
(c) Set the lowest 100q% of z-scores to zq, and the highest 100q% of Z-scores to z1−q. These

are the Winsorized statistics.

This retains the same number of Z-scores but discounts the influence of outliers: an alternative
would be to ‘trim’ the highest and lowest Z-scores.

3.5. Estimation of overdispersion
Following the standard approach of generalized linear modelling (McCullagh and Nelder, 1989)
we first introduce a multiplicative overdispersion factor φ that will inflate the null standard error
to s0

√
φ, i.e. we assume that the reason for the overdispersion is due to underestimation of the

within-trust sampling error. Suppose that we have a sample of I units that we shall initially
assume to be all adhering to a standard based on ‘average’ performance t. An estimate of φ
is

φ̂=∑
I

z2
i =I .2/

where zi is the unadjusted Z-score (1) using t as the target, although Winsorized Z-scores
may be used in estimating φ. A standard test for heterogeneity is given by the statistic Iφ̂,
which has an approximate χ2

I -distribution under the null hypothesis that all units only ex-
hibit random variability around the same underlying performance t. Overdispersion might
only be assumed if φ̂ is significantly greater than 1, although generally such pretesting is to
be avoided.

The ‘adjusted’ Z-scores are then given by

zD = z√
φ̂

= y − t

s0
√

φ̂
:



10 D. Spiegelhalter, C. Sherlaw-Johnson, M. Bardsley, I. Blunt, C. Wood and O. Grigg

The estimate φ̂ might additionally be multiplied by a debiasing factor based on the fact that, if
all the institutions are in control and the only variability is due to overdispersion, the variance
of the Winsorized Z-scores will tend to be less than φ (Spiegelhalter, 2005d). However, we have
found that using this factor leads to somewhat wide limits and hence it has not been generally
adopted.

3.6. An additive random-effects model
As an alternative to the multiplicative overdispersion model that was described above, we now
consider an additive model in which each trust has its own true underlying level ti with E[yi]= ti
and var.yi/= s2

i , so that zi = .yi − ti/=si. An on-standard trust ti is assumed to have a distribution
with

E[ti]= t0,

var.ti/= τ2:
.3/

In other words the overdispersion is due to unexplained factors producing unavoidable vari-
ability between trusts, and so the standard is represented by a distribution rather than a single
point. A standard method-of-moments procedure (DerSimonian and Laird, 1986) can be used
to provide an estimate

τ̂2 = Iφ̂− .I −1/∑
i

wi −
∑
i

w2
i =

∑
i

wi

where wi =1=s2
i , and Iφ̂ is the test statistic for heterogeneity: if Iφ̂<I −1, then τ̂2 is set to 0 and

complete homogeneity is assumed. Otherwise the adjusted Z-scores are given by

zD = y − t0√
.s2

0 + τ̂2/
:

Strictly speaking the standard error s0, which is calculated assuming that the standard is true,
should be adapted to allow for the standard no longer being a single point.

When constructing a funnel plot for multiplicative overdispersion, the control limits are ad-
justed to be t ±ks0

√
φ̂, whereas for additive overdispersion they are t ±k

√
.s2

0 + τ̂2/. If Z-scores
have been calculated after a transformation, then control limits are calculated on the trans-
formed scale, and then the axes should be labelled on the natural scale.

Fig. 3 shows an example comparing the standardized mortality ratios for all adult emergency
admissions in 168 acute trusts in the third quarter of 2006. The highlighted outlying observation
is Mid Staffordshire NHS Trust—this lies outside the upper 99.8% limits only for the additive
overdispersion model. Of equal interest are the trusts that are identified as having better than
expected performance.

From cross-sectional data alone it is difficult to distinguish between additive and multiplic-
ative overdispersion, although techniques have been suggested (Lee and Nelder, 2000). The
distribution of the points in a funnel plot can provide an informal guide, and in practice it is
common to find that the empirical ‘funnel’ fails to continue to narrow for larger institutions, sug-
gesting either inadequate risk adjustment or some small systematic differences between trusts:
in either case additive overdispersion may be reasonable.

For longitudinal data the effects of additive overdispersion become clearer, as trusts that have
high results tend to remain high over time: Section 4.5 shows how we can incorporate both forms
of overdispersion when monitoring multiple series.
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and expected deaths from all adult emergency admissions in the third quarter of 2006 ( , Mid Staffordshire
Trust): overdispersion has been calculated following a square-root transformation (Appendix A.1) but plotted
on the original scale; the percentage overdispersion is defined as 100(
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3.7. Combining Z-scores
When combining the evidence from multiple related indicators, we want to aggregate a set of
Z-scores z1, z2, . . . , zn, with (under the null hypothesis) mean 0, variance 1 and pairwise correl-
ation cij. We may want to Winsorize the zs to prevent a single indicator having too strong an
influence, e.g. by bringing all z-values beyond ±3 back to ±3.

Suppose that a column vector Z has expectation 0 and correlation matrix C. Then the most
powerful test of a shift of the expectation to a vector with all elements equal is

D= .1′TZ/=
√

.1′T 1/,

where 1 is a column vector of 1s, and T is the inverse of the correlation matrix C: D has mean
0 and SD 1 under the null hypothesis and so is the appropriate composite Z-statistic. This can
be expressed as



12 D. Spiegelhalter, C. Sherlaw-Johnson, M. Bardsley, I. Blunt, C. Wood and O. Grigg

D=∑
i

(∑
j

tij

)
Zi

/√(∑
i

∑
j

tij

)

where tij are the elements of T.
Although formally appropriate, this test would involve carrying out very large matrix inver-

sions to obtain appropriate tijs, which is not feasible with the software that is available. The
alternative is to use a different weighting, but one that discounts elements that are highly cor-
related with others. Now, for any arbitrary weights wi applied to the Zis, the aggregate Z-statistic
with mean 0 and SD 1 under the null hypothesis is

Zagg =∑
i

wiZi

/√(∑
i

∑
j

wiwjcij

)

where cij are the correlations, with cii =1. One option for Zagg is the sample mean, leading to
the composite Z-score

√
.nZ̄/

/√(
1+2

∑
i<j

cij

n

)
:

This appropriately downweights sets of highly correlated Z-scores, while allowing low correlated
Z-scores to ‘reinforce each other’: for example, if the Z-scores are uncorrelated the combined
Z-score is Z̄

√
n. However, experience has shown that this can lead to independent Z-scores

having little influence, since essentially only the average correlation was being taken into account.
The current suggestion is to use as weights in Zagg

wi =1
/∑

j

cij

where 0� cij �1, i.e. if cij < 0 then it is set to 0.

3.8. Use of Z-scores in screening
As described in Section 3.1, items that were deemed relevant to a core standard were transformed
to Z-scores, aggregated by using the techniques described above and cross-checked against each
trust’s self-declaration on that standard. The details of the exact process are complex but are
summarized below—see Bardsley et al. (2009) for a fuller exposition.

Over 1700 specific data items from 35 source bodies were available in 2007–2008 to map
to core standards: for example the safety domain comprised nine core standards (e.g. C01a—
‘Incident reporting’) and for acute trusts 154 items from 40 different data streams were used to
cross-check declarations in this domain.

For each trust and each standard, a label of ‘potential undeclared non-compliance’ was
given based on a combination of the trust declaration, the Z-score and a subjective ‘confidence
score’ based on an assessment of the indicator’s quality, relevance and importance. Trusts
were ordered according to the number of standards assessed as potential undeclared non-
compliance and the top 10% of trusts were selected for inspection. A random sample of trusts
that had not been selected for a risk-based inspection (originally 10% falling to 7.5% in 2007–
2008) were also chosen for inspection, which provided a means to test the accuracy of the
risk-based selection process. A certain level of random inspections also meant that there was
the possibility of inspection even for those standards where there was little or no pre-existing
information.
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The inspection process was undertaken by local field staff using a distinct set of criteria and
assessments, concluding with a judgement about whether the trust was ‘compliant’ with the stan-
dard. Standards for which a trust had declared compliance, but that were judged on inspection
not to have been met, were categorized as ‘qualified’. The success of the screening process was
assessed by looking at the relative rates of qualifications in the risk-based and random inspec-
tions. In most, but not all, standards the qualification rate in the ‘high risk’ group was greater
than in the ‘random’ group. Bardsley et al. (2009) showed that in 2006 the overall qualification
rate in the high risk group was 26% and in the random group was 13% (P < 0.008, allowing for
clustering). Where the random sample generated false negative results (i.e. the inspection found
problems), the data used for that standard were used to inform the selection of items for the
next screening round.

The screening process represented a systematic and objective approach to selecting trusts for
inspection and was also successful in integrating information from many other national and
regulatory bodies in an effort to maximize the use of data that had already been collected, while
minimizing the burden of asking for new data. The importance of exploiting the rich variety of
information within operational information systems is relevant to all regulators.

However, the system relies on cross-checking routine data against a public statement by the
organizations themselves that they are or are not meeting required standards. This latter point
has been criticized and seen as a form of self-assessment (Care Quality Commission, 2009c)
though the aim was to make the declarations part of the trust’s own governance procedures
and to ensure that responsibility for compliance lies with the trust itself and not the regulator.
In future the CQC will focus on registration of trusts, with quality and risk profiles bringing
together multiple sources of data for ‘estimating the risk of essential standards not being met’
(Care Quality Commission, 2010). The statistical methods that were developed for screening
are directly applicable to this function.

4. Surveillance

The screening that was described in the previous section was applied within an annual assess-
ment framework, and a natural development is to use multiple heterogeneous sources of data
for continuous monitoring of healthcare providers in the hope of detecting any problems as
soon as possible. We term this process ‘surveillance’.

4.1. Background
There has been substantial recent growth in the demand for surveillance of public health and
clinical indicators. In the USA this has been primarily motivated by anxiety over bioterrorism
following the anthrax attacks in 2001 (Bravata et al., 2004) although any threats to human health
may be included: for example, the Biosense Program of the US Center for Disease Control and
Prevention (http://www.cdc.gov/biosense/index.html) is a major initiative in ‘syn-
dromic surveillance’, where the aim is rapid identification of clustered outbreaks of disease.
In contrast, in the UK the driving motivation behind surveillance of clinical care arises from
‘scandals’ such as the Bristol heart babies (Spiegelhalter et al., 2002) and the Shipman murder
case (Aylin et al., 2003), and the public prominence given to hospital-acquired infections such
as MRSA and Clostridium difficile.

The literature of statistical surveillance is huge and includes extensive coverage of the use
of control charts within statistical process control: see for example Sonesson and Bock (2003)
and Woodall (2006) for relevant reviews, and the papers in a special issue of Statistics in Medicine
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(Fricker, 2011). Here we consider a range of procedures that are applicable between two
extremes: from informal monitoring of a single series to a countrywide system featuring multi-
ple indicators and hundreds of organizations, emphasizing reasonably simple procedures that
nevertheless have recognized statistical properties.

4.2. Informal monitoring of a single series
Suppose that we observe over T time periods a series of repeated observations of an indicator
within a single institution. These would typically comprise observed O1, . . . , OT and expected
counts E1, . . . , ET , e.g. MRSA bacteraemia counts and expected numbers in successive 6-month
periods.

Informal monitoring requires presentation of the data in different formats without specifying
formal thresholds that indicate when ‘unusual’ performance is detected. No single plot will be
adequate and the following options could all be provided.

(a) Longitudinal data summaries: for example, superimposed plots of observed and expected
counts can help communication and spot patterns.

(b) Estimates of current performance: this can be based on the raw data, or smoothed over the
recent history by using, for example, an exponentially weighted moving average (EWMA)
of the ratios O=E, or using a risk adjustment procedure (Grigg and Spiegelhalter, 2007).

(c) Cumulative data summaries: for observed and expected data, we can plot the cumulative
observed minus expected events (O−E) since a specific start time. This is also known as
a variable life-adjusted display (Lovegrove et al., 1999) or cumulative risk-adjusted mor-
tality (Poloniecki et al., 1998) plot. It is a useful display but is not formally optimal for
detecting a step change (Grigg et al., 2003), although limits from more efficient signalling
methods can be superimposed (Sherlaw-Johnson, 2005).

(d) Funnel plots of individual points: these are useful to compare with other trusts but lose the
ordering of the points unless they are connected in time sequence.

Fig. 4 shows an example for deaths following stroke in one of 147 trusts in each of 12 quar-
ters between April 2005 and March 2008. The observed and expected numbers are shown as
raw data, smoothed as an EWMA and superimposed on the EWMAs of the remaining trusts,
the cumulative excess deaths, and a funnel plot in which each quarter provides a point and
the observations for trust 62 (Mid Staffordshire NHS Trust) are shown. The funnel, without
adjustment for overdispersion, fits the data very well.

The early performance for trust 62 is as expected, but there is a strong suggestion of an increase
in the rate of mortality from quarter 10 (July–September 2007), with two individual points lying
outside the 99.8% funnel.

4.3. Formal monitoring of a single series
Formal monitoring procedures for a series are based on a prespecified procedure for sounding
an ‘alarm’, and hence require prior consideration of the basis for the alarm threshold to be
used. There have been a number of recent developments concerning ‘exact’ methods for dealing
with non-normal data such as Bernoulli, binomial and Poisson responses, e.g. risk-adjusted
cumulative sums (CUSUMs) (Steiner et al., 2000) and risk-adjusted EWMAs (Grigg and Spie-
gelhalter, 2007). Although elegant, the methods do rest on precise distributional assumptions
and dealing with overdispersion, random effects, adjustments for multiplicity and so on can
become technically complex. For robust routine use we have therefore found it appropriate
to carry out preliminary transformations and then to use methods based on normal theory.
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Fig. 4. Informal monitoring plots for observed and expected deaths from strokes, trust 62: (a) raw rates
( , observed; – – –, expected); (b) EWMA of O=E; (c) cumulative excess deaths (variable life-adjusted
display); (d) funnel plot of O=E (– – –, 99.8% limits; � - � - � - � , 95% limits)

Essentially, we monitor the ‘naive’ Z-scores (unadjusted for overdispersion) that were derived
in Section 3 rather than the indicators themselves. These aim to provide approximate normal-
ity, and in particular to standardize variance within a trust across time. We note that the early
aberration reporting system that was developed in Biosense also uses standardized Z-scores
with expectations based on the very recent past (Tokars et al., 2009): Szarka et al. (2011) inves-
tigate an alternative adaptive threshold method in which each observed statistic is converted
to a P-value based on a historical empirical distribution for ‘in-control’ data, and then the
P-value is converted to a Z-score by using the inverse standard normal cumulative distribution
function.

To specify a monitoring system for each series, we need to specify the ‘in-control’ behaviour.
For a particular indicator, assume that we have a set zt , t =1, . . . , T , standardized measurements
obtained by using the methods of Section 3, which may have been risk adjusted but which
have not been adjusted for overdispersion since we are examining within-trust performance.
We assume that, for an ‘in-control’ process, zt has an approximate normal distribution

zt ∼N.θ, σ2/

where θ is the target for the trust. Ideally we would like to assume θ=0 and σ2 =1, which would
be so if the data were well behaved, but we allow for the possibility that the in-control within-
trust variance σ2 might not be 1, say reflecting multiplicative overdispersion due to clustering or
insufficient risk adjustment. We also allow for the mean θ being non-zero, say reflecting additive
overdispersion due to unavoidable systematic between-trust variability. With repeated data we
shall have a chance to check these different sources of overdispersion, both within and between
institution: Marshall et al. (2004) essentially assumed θ=0 and so monitored a multiplicatively
overdispersed standardized measure.
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Suppose for the moment that we have estimates or assumed values for parameters θ and σ2

from which we can produce standardized Z-scores

zÅ
t = .zt −θ/=σ: .4/

these will have mean 0 and variance 1 under the null hypothesis of being in control. Formal testing
can then be based on, for example, Shewhart charts that plot adjusted Z-scores zÅ

1 , . . . , zÅ
T with

thresholds set at, for example, ±3, EWMAs of Z-scores (Szarka et al., 2011) or the ‘tabular’
CUSUMs that are described below. Formal control limits could be set around the cumulative
observed − expected (variable life-adjusted display) plot, but one must be wary of methods that
‘build up credit’ and lose sensitivity to recent changes in performance. Sherlaw-Johnson (2005)
has shown how this can be avoided by mapping CUSUM limits onto the variable life-adjusted
display, which is a technique that is widely used in Queensland, Australia (Clinical Practice
Improvement Centre, 2008). An alternative control procedure for such plots (Sismanidis et al.,
2003) tests for recent changes but makes no allowance for the repeated testing taking place
within each series.

4.4. ‘Tabular’ cumulative sums
Tabular CUSUMs plot the cumulative log-likelihood ratio where the likelihoods are condi-
tional on a fully specified null and alternative hypothesis, constrained to lie above 0 (Steiner
et al., 2000; Grigg et al., 2003). These are less intuitive than the informal methods but provide a
more rigorous basis for concluding that a shift in performance has occurred. We shall consider
the choice of an alternative hypothesis, the setting of thresholds, their interpretation and the
transformation of an observed CUSUM to a P-value.

Following suitable transformation to a standardized ZÅ-score (4), the null and alternative hy-
potheses are assumed to be

H0 : zÅ
t ∼N.0, 1/,

H1 : zÅ
t ∼N.δ, 1/

where δ is the alternative hypothesis that is discussed below. The log-likelihood ratio CUSUM
contribution from the tth observation is then

LLRt =max{0, LLRt−1 + δ.zÅ
t − δ=2/},

where LLR0 =0. We note that the CUSUM never drops below 0 and only increases if zÅ
t > δ=2:

i.e. the observed ZÅ-score is at least half of the value in the alternative hypothesis.
A difficult issue is selection of an alternative. For fixed zÅ

t , the maximum contribution to the
log-likelihood ratio is obtained when δ=zÅ

t , i.e. an observation provides the maximum evidence
for an alternative hypothesis set exactly equal to the observation. CUSUM charts are generally
recommended for smaller δ that require cumulative evidence: Shewhart charts are sufficient for
larger δ, say greater than 3. The current surveillance system takes δ = 2, reflecting interest in
performance more than 2 SDs above that expected.

Several criteria for setting both ‘warning’ and ‘alarm’ thresholds have been suggested: we
could base them on the average run length before specific alternative hypotheses are detected,
the power to detect a difference over a fixed run length, and so on—see Woodall (2006) and
Fricker (2011) for discussion of metrics for comparing surveillance schemes. Grigg and Spiegel-
halter (2008) have shown that the normal CUSUM can be transformed to a P-value under the
null hypothesis of a steady state, and then standard methods used to decide a suitable threshold
for the P-value. Default thresholds of 3 for alert and 5 for alarm have previously been suggested:
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see Bottle and Aylin (2008) for a detailed discussion of use of risk-adjusted CUSUM methods
for monitoring.

4.5. Handling multiple series
The majority of developments within statistical process control is concerned with monitoring a
single series, with the recognized problem associated with repeated examination of accumulating
data. In the healthcare context we have the major additional issue of multiplicity of institutions
and indicators: for example the current surveillance system has around 1200 CUSUMs being
simultaneously monitored in each of 160 acute trusts. This introduces severe problems in multiple
testing and unexplained variability.

We consider a single indicator zit being monitored in each of I trusts at time point t. We allow
each trust i to have it own ‘local baseline’ θi, which we assume is distributed around a national
standard θ0, so that the whole model is

zit ∼N.θi, σ2/, θi ∼N.θ0, τ2/:

θ0 should be 0 if using reasonable Z-scores, whereas τ2 measures an ‘acceptable’ level of additive
overdispersion. However, we note that this representation, in which the Z-scores are given a
random-effects distribution, is not exactly compatible with the cross-sectional additive random-
effects model in equation (3) which is based directly on the performance indicators. This shift to
Z-scores is to try to ensure a reasonably common sampling variance for all trusts and all time
points.

Grigg et al. (2009) described methods for estimating the parameters of this model from base-
line data, say two observations on each trust. The variance parameters σ2 and τ2 should be
estimated after Winsorizing, trimming or some other robust estimation method, to produce
robustness against the very outliers that we are seeking to detect. Trusts could be stratified into
types that might be expected to show similar variability over time, and a separate σ2 could be
estimated for each stratum. An empirical Bayes shrinkage estimate of the θis is appropriate to
adjust for regression to the mean. Over time these estimates can be continually updated, whereby
new parameters are based on a moving window of past data.

As Grigg et al. (2009) pointed out, two types of monitoring are then possible: a local compar-
ison of each trust’s data with its estimated local baseline θ̂i, and a relative assessment of whether
the current performance is divergent from the overall population of trusts. Local monitoring
can be based on the standardization that is used for a single series in Section 4.2, so that

zÅ
it (local)= .zit − θ̂i/=σ̂: .5/

Relative monitoring is more complex. One formulation of relative monitoring was provided by
Grigg et al. (2009), who assumed the alternative hypothesis that trust i is not from the same
population as the other trusts, but from a population that has been ‘shifted’ upwards by γ
population SDs, so that

H0 : zit ∼N.θ0, σ̂2 + τ̂2/,

H1 : zit ∼N.θ0 +γτ̂ , σ̂2 + τ̂2/:

The contributions to the log-likelihood ratio are no longer independent under the null hypoth-
esis, but Grigg et al. (2009) showed that a standard CUSUM based on

zÅ
it (relative)= .zit −θ0/=

√
.σ̂2 + τ̂2/ .6/

can perform well: this is essentially the approach of Marshall et al. (2004).
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Alternatively, we could test an ‘extreme’ simple null hypothesis for θi , say θH =θ0 +2τ̂ . Then
a relative Z-score

zÅ
it (extreme)= .zit −θH/=σ̂ .7/

could be analysed by using the standard CUSUM that was described above. This essentially
tests whether a trust is operating at a level importantly above what is considered ‘just tolerable’.

Fig. 5 shows the formal monitoring methods applied to the data that were informally plotted
in Fig. 4. Alerts for both a change from baseline and systematic deviation from the population
would be triggered in period 10, with alarms in period 12.

4.6. Thresholds for multiple series
Setting thresholds for many thousands of CUSUMs is a difficult task and many options have
been tried by us and others. There are strong connections with areas in which vast numbers of
hypothesis tests are being carried out, such as functional magnetic resonance imaging in brain
scanning and microarray data for gene expression analysis, which have driven recent advances
in statistical methods for dealing with extreme multiplicity. In all these areas we expect many
null hypotheses to be false and so it is not appropriate to try to control the probability of a single
false positive result occurring (known as the familywise error rate). Instead the aim is to control
the proportion of false positive results out of the signals that are identified, which is known
as the FDR. Jones et al. (2008) showed how the thresholds in funnel plots can be adjusted to
control the FDR, whereas Marshall et al. (2004) looked at controlling the FDR over a limited
time period.
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Fig. 5. Formal monitoring plots for observed and expected deaths from strokes between April 2005 and
March 2008 previously shown in Fig. 4, trust 62 (CUSUM alert and alarm thresholds of 3 and 5 are shown):
(a) Shewhart plot of the cross-sectional ‘local’ Z -scores (5) compared with the trust’s own baseline; (b) ‘local’
CUSUM accumulating the local Z -scores against the trust’s own baseline; (c) CUSUM versus ‘population’
accumulating the ‘relative’ Z -scores (6) compared with the overall population average; (d) CUSUM versus
‘just tolerable’ accumulating the ‘extreme’ Z -scores (7) compared with the high end of the population of trusts
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Our preference is to turn everything into P-values (Grigg and Spiegelhalter, 2008) and then to
use an FDR procedure as demonstrated in Grigg et al. (2009). However, in practice this means
that the critical thresholds respond to the data and hence change over time, which can make the
technique difficult to justify to a general audience. From experience we have found that using
the P-value method to control the proportion of false positive results to below 10% generally
arrived at thresholds near p=0:001, and so this fixed choice has now been implemented.

4.7. Implementation issues for a surveillance system
Some of the potential difficulties in implementing a surveillance system in healthcare are revealed
by considering the case of serial murderer Harold Shipman, a general practitioner who killed
over 200 of his (mainly elderly) patients between 1975 and 1998, and was only finally caught
because of a badly forged will. The resulting public inquiry chaired by Dame Janet Smith natu-
rally considered whether he could have been caught earlier and commissioned a team to examine
the statistical issues in detail (Aylin et al., 2003), as well as taking additional evidence about
formal monitoring schemes (Spiegelhalter et al., 2003).

The statistical analysis showed clearly that Shipman could have been detected earlier if data
had been collected and examined, in particular by using risk-adjusted CUSUMs allowing for
multiple comparisons. However, a pilot investigation showed that, with only rudimentary risk
adjustment, many doctors would signal with apparently raised mortality rates (Aylin et al.,
2003), which turned out to be due to blameless behaviour such as looking after elderly patients
in care homes (Mohammed et al., 2004). Nevertheless, Dame Janet Smith recommended that
surveillance systems should be established saying ‘in my view, the Department of Health must
now make provision for it to be done’ (Shipman Inquiry, 2004).

Clearly, one of the challenges of implementing a surveillance system is that, if not handled
carefully, it could lead to false accusations generating unnecessary anxiety for patients and injus-
tice to clinicians. Resolving these delicate issues is not simply a technical problem of choosing
statistical methods and setting appropriate thresholds for action. Nevertheless, we do feel that
it is vital that statistical methods play a strong part, in both

(a) the exploratory stage—alerting a human that something ‘interesting’ seems to be going
on so that a planned follow-up strategy can be begun—

(b) the confirmatory stage—after careful data checking, to decide whether the data are suffi-
ciently extreme to form part of the evidence in a formal review.

On the basis of these principles, in 2007 the Healthcare Commission began a process for gen-
erating and following up mortality alerts. This surveillance programme was reviewed after the
first year (Care Quality Commission, 2009d) and a recommendation made that it be contin-
ued and expanded to other settings and a wider array of outcomes. This programme has been
subsequently taken up by the CQC.

The surveillance system scans across groups of patients defined by their healthcare resource
group on admission and triggering alerts based on a CUSUM approach. Given that there are
about 1200 healthcare resource groups split between elective and emergency care and 160 acute
trusts, there is potential for scanning around 200000 CUSUMs at a time. In reality, however,
because of low numbers, some healthcare resource groups are grouped into baskets of related
conditions. This process generates about 30 alerts every quarter. Other alerts for high mortality
are received by the CQC from the Dr Foster Unit at Imperial College. These are generated by
using a slightly different CUSUM method, where the risk of each individual patient is estimated
from their clinical condition and characteristics on admission (Bottle and Aylin, 2008).
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All alerts are then subject to internal scrutiny by the CQC to identify whether they are likely
artefacts of the way that individual organizations record their data or due to casemix or organi-
zational issues that are not adequately addressed by risk adjustment. After such an assessment,
a decision is made whether or not to follow them up with the trust concerned. For example,
there were 85 alerts between August 2007 and July 2008, of which 42 were pursued further with
the trust (Care Quality Commission, 2009d). The engagement with the trust is initially in the
form of a request for further information which in many cases can adequately explain the alert.
On occasions, the alerts prompt trusts to review their own care processes, to recognize where
improvements could be made and to respond with a plan of actions that hope to address these.
Many of these are then monitored by CQC’s regional compliance teams. In most cases alerts
do not reappear after an engagement has taken place and sufficient time has been allowed for
improvements to be implemented.

On rare occasions, a combination of multiple alerts and poor responses has led to an escala-
tion of concerns. For example, Mid Staffordshire NHS Foundation Trust had been signalling
on both Dr Foster’s and the Healthcare Commission’s surveillance systems since mid-2007 for a
variety of outcomes: after repeated claims by the trust that these were due to coding difficulties
an investigation began in March 2008 which led to conclusions of sustained excess mortality,
particularly for emergency admissions, and a catalogue of organizational failures (Healthcare
Commission, 2009).

The identification of a Mid Staffordshire Trust type of problem, however, needs to be balanced
against the primary aim of surveillance as a system for identifying concerns within organizations
before they reach such a stage. It is, perhaps, notable that in 2009–2010 approximately 30% of
mortality alerts handled by the CQC led to an improvement plan being implemented by an
NHS acute hospital. A list of all mortality alerts that have been closed as outlier cases, together
with reasons for closure, are published every quarter by the CQC (Care Quality Commission,
2011).

5. Discussion

The NHS is one of the largest and most complex organizations in the world, employing over a
million people. Over the past few years there has been an increased awareness and focus on the
need for services that are effective and safe. Though both these concepts are difficult to measure
unambiguously and it is impossible to ensure absolute safety or top quality in every process,
it is reasonable to expect that systems should be in place that can rapidly spot where serious
problems may be occurring.

The regulator’s dilemma is then how to ensure the safety and effectiveness of services, yet
without being overly prescriptive or intrusive to local staff. In addition a regulator needs to
promote openness and accountability in healthcare such that assessments of the quality of care
are accessible to the public—yet avoid making inappropriate and hasty judgements of complex
issues. The annual health check had the problem that it was retrospective—a summary of what
the regulator assessed the previous year or before. Reconciling these rather complex assessments
with current experience in an organization is a major concern.

The surveillance process can, in contrast, be more topical. Formal monitoring clearly should
have an important part to play in identifying emerging concerns, and in this paper we have
suggested a range of techniques that may help in this complex task. The success of these meth-
ods depends crucially on the availability of complete, good quality and timely data. Ensuring
such data can be complex and resource intensive, and unfortunately is not generally seen as a
high priority. The burden on staff must be minimized and one way to do this is to exploit the
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operational data that are collected within the systems themselves. In theory information that is
useful for regulation should also be important for the management of local services.

A regulator needs to recognize that its own methods and data sets are open to scrutiny. The
Healthcare Commission was proactive in publishing the details of the methods that it used in
varying levels of detail, but there were situations where the timing of publication could poten-
tially hamper the regulatory process and information was delayed. For example the screening
data sets were not publicly released until inspections had been completed; rating scores were
released for all trusts at the same time.

Of course the statistical issues form only one aspect of the challenge of improving the quality
and safety of healthcare. There are major, and sometimes conflicting, demands from govern-
ment, professionals and patients, and an increased expectation of transparency as demonstrated
by the rise of Freedom of Information requests. This means that data collection and analysis,
which have previously been viewed as rather a ‘backroom’ task to be carried out away from
external scrutiny, are now at the forefront. Statisticians should relish this opportunity to show
the value of their work.

Appendix A: Constructing Z -scores for different types of data

A.1. Indirectly standardized rates
Consider a standardized rate SMR = O=E based on an observed count O and expectation E. We assume
that E is the target count, and a Poisson assumption implies that for the untransformed indicator SMR
the standard is t =1, with s0 = 1=

√
E . Options for analysis include the following.

(a) Z-scores based on inverse normal transformation of exact P-values (Section 2.2): however, in poorly
controlled circumstances the exact Poisson assumption is unlikely to hold for count data owing to
overdispersion, and so reliance on these properties may be inappropriate.

(b) The untransformed unadjusted Z-score is

z= .O−E/=
√

E:

Suppose that we have two trusts which both have a standard of E=4 adverse events, and one trust
observed O=1 and the other O=16. They would receive Z-scores of −1.5 and 6 respectively, which
strongly emphasizes the importance of the high compared with the low count.

(c) A logarithmic transformation to an indicator y = log.O=E/ gives a standard t =0, s0 ≈1=
√

E: this
leaves open the question of what to do about 0 counts, and options include plugging in some small
number, say minimum( 1

2 , E=2). We have found that this transformation can overcorrect low counts,
leading to a long negative tail that has an undue influence on critical limits for high counts when
fitting a symmetric distribution. For example the trusts described above would have z-scores of
± log.16/=±2:77 which gives the high and low counts equal weight.

(d) A square-root transformation so that y =√
.O=E/ gives a standard t =1, and s0 ≈1=2

√
E and so

z=2
√

E.y −1/ = 2.
√

O−√
E/:

Hence the trusts described previously would have z = −2 and z = 4, which seems reasonable. In
theory the square-root transformation is approximately variance stabilizing if the sampling vari-
ance is proportional to the mean, which may not hold in general for count data, and some more
complex transformations could be explored that might improve symmetry, normality and constant
variance. However, we have found a simple square-root transformation robust to a wide range of
empirical situations and has the benefit of being easily invertible.

A.2. Proportions
Consider an observed proportion r=n, with a standard proportion p. The binomial assumption implies
t =p, and s0 =√{p.1−p/=n}, and options again include

(a) Z-scores based on inverse normal transformation of exact P-values (Section 2.2),
(b) untransformed unadjusted Z-scores
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z= r=n−p√{p.1−p/=n}
and

(c) an empirical logit transformation.

The options have the same difficulties as outlined in Appendix A.1, and so we generally have adopted

(d) an inverse sine transformation y = sin−1{√
.r=n/}, which gives a standard t = sin−1

.
√

p/, and s0 ≈
1=2

√
n, and so

z=2
√

n[sin−1{√
.r=n/}− sin−1

.
√

p/]:

A.3. Ordered categorical scores
Consider a categorical response which is ordered so that ‘high is bad’. We adopt a normal scores approach
by assuming that the categories are due to grouping of a ‘latent’ normally distributed quantity, so that the
labels given to the categories are completely irrelevant, and all that matters is the proportion in each cate-
gory. First the ‘cut-offs’ in a standard normal N.0, 1/ distribution are found that would give the observed
proportions: for example, if a three-category response had observed proportions 70%, 20% and 10% in
the three categories, this would represent cut-offs of 0.52 and 1.28, which divide a standard normal dis-
tribution into the required proportions. We then assign a Z-score to each category corresponding to the
mean N.0, 1/ response within that category, using the result that, if Z ∼N.0, 1/, then

exp.Z|a<Z<b/=− {φ.b/−φ.a/}
{Φ.b/−Φ.a/}

where φ.x/ is the standard normal probability density, and Φ.x/ is the standard normal distribution func-
tion. For the example above, the categories with proportions 70%, 20% and 10% are assigned Z-scores of
−0.50, 0.86 and 1.75 respectively. We note that the final Z-scores do not depend in any way on the category
labels or in regrouping of the categories.

A.4. ‘Continuous’ data
A minority of indicators are continuous, comprising mainly patient survey results and length-of-stay sta-
tistics. We assume an observed mean y with standard error s, with standard t. The unadjusted Z-score is

z= .y − t/=s;

if the data are provided in terms of a 95% confidence interval (LCL, UCL), then s may be obtained from
s= .UCL−LCL/=4.

A.5. Change data
Change is generally measured relatively and for indirectly standardized rates we shall have available an
observed standardized rate ratio RR = SMR2/SMR1with a target of t; for example t would be 0.8 if a 20%
risk reduction were sought between period 1 and 2. If there is no overdispersion we can use the exact con-
ditional procedure in Section 2.3, but in general we need to use a logarithmic transformation y= log(RR),
since any Z-score needs to be invariant to which indicator is used as the baseline denominator. The target
is then log(t) and the standard error is taken as s ≈√

.1=O1 +1=O2/ (or, more accurately, we could have
an estimate s0 based on estimating the SMRs under the null hypothesis). If either O1 or O2 is 0 they can
be changed, for example, to a suitable ‘small’ number such as min(non-zero O1 or O2)/10. We note that if
O1 and O2 are of similar size then s≈2=

√
.O1 +O2/.

When considering changes in proportions we note that odds ratios are not generally used as a measure
of change in this context and instead we consider a change from a proportion p1 = r1=n1 to p2 = r2=n2,
with summary rate ratio RR = p2=p1. The indicator is y = log(RR), and the standard error is taken as
s=√{.1−p1/=.n1p1/+ .1−p2/=.n2p2/} .

A.6. Ratios of counts
We may have available a ratio indicator of the form r = O1=O2 where O1 and O2 are counts, such as
patients per general practitioner—this can just as easily be defined as general practitioners per patient. We
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can adapt the methods that were described in Appendix A.5 for changes in SMRs by simply assuming that
E1 = E2, although not with a target of 1. When expected counts E1 and E2 are available, we essentially
have a ratio of SMRs, r = .O1=E1/=.O2=E2/.

A.7. Incorporating qualitative data
Intelligence derived from qualitative sources was also included in the data sets. These sources included
commentaries from local stakeholders such as patient and public involvement forums, as well as infor-
mation from investigations and the local operational staff of the regulator. Evidence from these sources
was useful where it related to a specific core standard(s) and organization. In these cases evidence was
subjectively coded onto a ‘Z-like’ score between –3 and 3, with a high positive score representing a strongly
negative comment, using a simple coding framework describing key factors in the evidence. The coding
results were subject to some test for interrater reliability. In some circumstances evidence could be given
an overriding weighting. These cases were agreed by a small analytical panel.
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Discussion on the paper by Spiegelhalter, Sherlaw-Johnson, Bardsley, Blunt, Wood
and Grigg

Deborah Ashby (Imperial College London)
What are the indicators for a good discussion paper for a Royal Statistical Society Ordinary Meeting?
Ideally it covers a ‘big’ issue for society, has statistically challenging aspects, generalizability to other areas
and perhaps makes one reflect a little more deeply on current developments in statistics in its widest sense.
This paper performs well on all indicators.

Is it a big issue? From time to time my father phones me to tell me about something he has read in
the newspaper: Southend Hospital receiving three stars was one that sticks in my mind. Healthcare is
important to people, so having some validation that local care is up to par matters. Equally, if there are
problems, they need to be identified. So it is a big issue to him, which is good enough for me. But do the
public trust these pronouncements? What do they actually mean? That is the thrust of this paper.

I said that I wanted some technical challenges. Many are addressed and I shall raise one more: that
of assumed independence of units. Typically hospitals are ranked against each other, assuming that they
contain sets of patients with no overlap. However, in some areas of medicine patients can be transferred
between units, raising complex dependences between units, as well as issues of selection of patients into
units. This is especially true in neonatal units, where babies can undergo multiple transfers. These units
are quite rightly under scrutiny for performance, but the dependences need to be accounted for, and my
colleague Shalini Santhakumaran has recently registered for a doctorate to explore this further.

How generalizable is this work? This paper is very much in the healthcare setting, but the authors allude
to wider applicability. Have these ideas any parallels in the education sector in assessment of schools?
Social services are an area of huge public interest, from child protection through to the increasing burden
of care of the elderly. Could greater application of such principles help to maintain and improve stan-
dards without generating a huge bureaucracy? Do they have applicability in the financial sector to identify
institutions at risk of failing?

I promised some wider reflections. My own work is largely in clinical trials and drug regulation—both
the practice and the science of it. Not so long ago, it was shrouded in secrecy, and the usual cycle of
events was that new drugs came onto the market surrounded by fanfare, and then sooner or later problems
were reported, often leading to a ‘knee-jerk’ reaction to pull the drug from the market. There have been
three big changes in recent years: the first is that we now work under much greater transparency, with
assessment reports going into the public domain. The second is that doctors, other health professionals
and patients can all report adverse events after taking medicines, and these reports are now routinely
monitored by using principled statistical methods—every month the Commission on Human Medicines
in the UK receives charts plotting reaction rates along with their empirical Bayes geometric means. The
third is that there is an expectation that prospective monitoring is needed, and so drugs come in with a
risk management plan, which means that further studies and appropriate surveillance are planned in. And
a corollary, and possibly a cause, of all this is the much greater involvement of statisticians at all stages
and levels in the process.
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These changes have been hard enough in the regulation of medicines, which is a relatively well-defined
area where statistical principles have for a long time received at least some recognition.What is interesting
is how strongly they are paralleled by the developments that are charted in this paper, in territory which
seems to me infinitely messier and more challenging.

The paper covers three different aspects: ratings based on measures that matter directly, such as mor-
tality rates, screening for inspection that acts as an alert system to prompt a more intensive investigation
and surveillance to pick up problems as they begin to emerge in order to do something about them and
to correct them. I find a rather nice analogy here between terminal care of patients, treatment of disease
and preventive measures. All three are necessary, but the shift towards prevention both in drug regulation
and in healthcare regulation more widely is very welcome and made more possible by work such as that
in this paper.

Professor Spiegelhalter and his colleagues have done a great service to statistics by engaging in these
areas and then bringing together a scholarly exposition of these issues; the challenge is now to other mem-
bers of the Society to engage equally in other domains, and to borrow from and to adapt the approaches
in this paper. For doing this work, and bringing it so clearly to our attention, it gives me great pleasure to
propose the vote of thanks.

Sheila M. Bird (Medical Research Council Biostatistics Unit, Cambridge)
This paper is a seminal reference on statistical methods in healthcare regulation. Many were developed
by the authors, whose combined experience of their implementation at the Healthcare Commission (HC)
is immense. Deep statistical thinking is translated for applications, and arguments virtuously veiled. Just
getting ‘consistent with target’ adopted into practice (see Bird et al. (2005)) is no mean achievement. The
Scottish Prison Service nearly had a riot—by governors—because of traducing this!

Other light touches leave a lesser legacy. I willed more on data quality, interpreting overdispersion,
rational target setting, subject matter insights and learning cost effectively from inspections.

Rating organizations was by assessing performance against a known target. Deciding cost efficiently whom
to inspect—not ‘everyone every year’ but risk based plus random (see Bird et al. (2005))—combined indi-
cators, both quantitative and qualitative, to screen for potential undeclared non-compliance. Quarterly
monitoring sought emergent problems within organizations.

But targets are not known if measured from an estimated baseline and their setting from on high may
be awry as illustrated by annual methicillin-resistant Staphylococcus aureus set targets which reduced by
13 from baseline 63 to 24 over 3 years to give a 50% reduction!

Standardization was by readily reversed transformation to possibly overdispersed, Winsorized Z-scores
that measure deviation from ‘targets’. Overdispersion—multiplicative or additive—was typically dis-
allowed when monitoring within organization. Overdispersion doubled the null standard error for observed
versus expected deaths of adult emergency admissions whereas, for deaths after stroke, a covariate-adjusted
funnel plot without overdispersion fitted well.

Other performance monitoring measures (see Bird et al. (2005)) are improve the quality of core data,
reduce variation and garner subject matter insights.

Data quality: not all statisticians share the authors’ relish for messy or noisy data. Some argue that
time and treasure are better invested in sorting out the data—specialty by specialty—with subject matter
and statistical expertise, deployed as a joint enterprise, so that data are ‘trusted’ sufficiently to yield sub-
ject matter insights. If not ‘trusted’ in that sense, are they sufficiently trustworthy to indict institutions
or individuals? Costly, post-Shipman investigations into general practitioners whose practices with high
mortality discovered only innocent explanations (mostly, a hospice for the dying) which, a priori, were
surely far more likely than a cadre of general practitioners with murderous tendency.

The HC’s final year cost £68 millions. By the standards of the National Institute for Health
and Clinical Excellence that should buy 3500 quality-adjusted life-years through treatment or nearer
10000 by prevention. Did it?

Risk-based inspections—being Bayesian: did feedback from inspections or screening alarms update the
HC’s prior belief that systematic bias (data quality or other reason) ‘explained’ outlying performance rather
than ‘excellence or direness’? Silence...: puzzling was the 26% versus 13% qualification rate in 10% risk-
based versus similar number random inspections, as Bardsley et al. (2009) admitted that 5/44 standards to
be checked per trust were chosen ‘either by the highest risk estimates (risk-based) or at random (randomly
selected visits)’. Did risk-based inspections yield a qualification rate that was higher than expected, or just
‘higher than controls’? Was there a model-based expectation? If qualification rate were proportional to
Poisson screening count with mean 5, and I assigned trusts with the highest 10% of screening counts to
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risk-based inspection, their expected qualification rate would be twice that of trusts randomly selected
from the remaining 90%.

Overdispersion—should reduce—but was accepted as a stratum-specific nuisance factor. When a specialty
self-monitors,over timetypicallyvariationreducesand performance increasesbecausebestpractice is shared
and management improves through innovation. Did overdispersion reduce, and performance improve, over
the HC’s tenure? And, if so, was the improvement because of the HC or just monitored’ by the HC?

Overdispersion—what is behind it: did the HC develop any sense of how much over dispersion was
‘acceptable or expected’ for different specialties? Tonight’s authors could offer immense insight by analy-
sing formally their φs or τs!

Quarterly alerts or alarms: unlike the HC’s report on the Mid Staffordshire Trust (Bird, 2009), tonight’s
funnel plots properly display the performance of all trusts and dependence on whether overdispersion is
multiplicative or additive. Designed so that a manageable 30 alarms ‘pinged’ per quarter, only 10% to
be false discoveries, half the pings were resolved within the HC, apparently without notifying the trust.
When notified, 30% of trusts put forward a remedial plan which took effect quickly, as mainly different
indicators signalled in successive quarters. I commend a documentary account of HC quarterly alerts:
which trust or indicator pinged, trust referral, how actioned—was data quality to blame?

False negative results: what has inspection delivered in a timely manner that was not forewarned locally?
Shipman, Bristol, Mid Staffordshire Trust were late, forewarned locally, or both. The HC’s investigations
at St Georges and Papworth were timely because transplant teams chose to call them in. In a truly shared
enterprise, trusts should inform the regulator about local issues that regulatory scrutiny has overlooked
so that scrutiny improves. Did the HC achieve shared enterprise status?

With pleasure, I second the vote of thanks on a paper of outlying high quality whose methods, if widely
dispersed, will be for the betterment of performance monitoring.

The vote of thanks was passed by acclamation.

Ian Hunt (Edinburgh)
Spiegelhalter and his colleagues set out to ‘pay particular attention to the problem of simultaneously
monitoring over 200000 indicators for excess mortality’ (first page). Unfortunately there is no mention of
the main inferential problem caused by ‘massive multiplicity’: the ability of frequentist tests to discover
interesting cases (‘power’), for a given error rate, typically plummets as the number of hypotheses increases.
Addressing power was a central recommendation from the Working Party on Performance Monitoring in
the Public Services (Bird et al. (2005), pages 7–8). Do the manifestly frequentist methods that Spiegelhalter
and his colleagues recommend provide the best, or even good, power to detect excess mortality? We are
told that extreme cases like the Mid Staffordshire NHS Foundation Trust show up (page 20). But can the
methods identify moderate, developing or chronic cases?

For initial surveillance purposes (‘the exploratory phase’) a frequentist is likely to investigate the indica-
tors with the most extreme ‘Z-scores’ first. Formal power may not be such a concern: in recent times 30%
of investigations have led to improvement plans (page 20). But formal ‘confirmatory phases’—manage-
ment review processes, court room proceedings and so on—require a higher mark of evidence than raw
Z-scores. Without power a frequentist statistician is uncomfortable. She must formally convey that there is
little statistical difference between many indicators and cases (see David Bartholomew’s comments about
publicly communicating uncertainty in Goldstein and Spiegelhalter (1996), page 428).

Would a Bayesian approach, dealing directly with the probabilities of hypotheses, be preferable? Certain
Bayesians have said that the problem with multiple hypotheses ‘does not really exist’ (Lindley (1997), page
572) or just ‘doesn’t come up’ (Gelman, 2009). But to make formal inferences a Bayesian must invoke
a probability distribution over the entire hypothesis space. This can be problematic and controversial,
especially with many related hypotheses (even basic probabilistic structures of hospital mortality rates
are disputable (Austin, 2009)). ‘Science is choking on the multiplicity problem’ (Berger (2011), page 4).
So, I fear, is mortality performance monitoring. And I do not think Bayesianism offers a methodological
panacea.

So how might the ability to discover interesting cases be enhanced? First, consolidate the indicators into
logical or meaningful groups—thus reducing the number of hypotheses while still using all the data (Efron
calls this ‘enrichment analysis’ (Efron (2008), page l8)). Secondly, remove indicators that are unlikely to
detect serious problems. Thirdly, be realistic about the limits of formal statistical inference methods (Bayes-
ian or frequentist) and the evidential role of statisticians: real discoveries are made by human experts, not
by mathematical methods.
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Robert Grant (St George’s University of London and Kingston University)
Professor Spiegelhalter and his colleagues have provided a lucid and comprehensive review of work on
this topic in recent years. There are two aspects which I would like to focus on: transformation to Z-scores
and the cumulative funnel plot.

The non-linear transformations to achieve approximately normal Z-scores are well known but a prob-
lem arises when combining multiple indicators into a single test for divergence as suggested in the paper (or
equivalently forming a composite indicator). Indicators measured on different scales, such as standard-
ized mortality ratios, waiting times and proportions, will have different non-linear transformations. The
weights that are accorded to improvements on the various indicators are not fixed but rather functions of
the observed level of compliance. A logistic transformation provides further reward for an improvement
in hospitals already doing well (and, paradoxically, those doing badly) and little reward for the same
improvement in those near the 50% mark. This could be seen as unfair or opaque, providing a clinician
who is reluctant to admit mediocre performance with the excuse that they need to resist change, and clinical
credibility is essential if our efforts are to bear fruit. The authors suggest that the fairest solution may be
to weight indicators (or their Z-scores) according to the unique contribution that each makes to some
metric such as generalized variance—essentially a principal components analysis—but this could also lack
construct validity for clinicians as the weights could differ substantially from the perceived clinical impor-
tance. Exploring the effect of different weights on hospital results will encourage transparency and user
engagement. A Monte Carlo simulation of weights ranging between the clinical importance, equal weights
and those produced by a principal components analysis will easily provide a measure of uncertainty.

Secondly, I would recommend wider adoption of cumulative funnel plots which allow for the earliest
possible detection of divergence from a standard of care and investigation of the reasons, in a readily
understood format that explicitly displays the uncertainty in the estimates. The confusing path that is
traced out in Fig. 4(d) would be untangled into a line moving from left to right as cases accumulate, if
the plot was of standardized mortality ratios on the vertical axis, against the number of relevant cases
on the horizontal. Such a plot also helps to spread awareness of the message that large numbers of
data may be needed to compare performance, and that periods of organizational change can distort the
results.

Thomas King (University of Southampton)
Two roles for statistics are presented: accountability and surveillance. The former is by design quite explicit
but is acknowledged to be focused on failure (even if this is sometimes termed ‘non-compliance’). There are
two categories: ‘failing’ and ‘not failing’, with the statistical question being how to discriminate between
the two by using the available data. The concept of the failure, too many deaths, too many infections, or
even underachievement against too many indicators, can be considered accepted.

The remark that indicators might allow determination of success by being at the opposite end of the
scale from failure is flawed. There is some evidence that public opinion is negative about institutions
scoring badly against performance indicators but is disinterested in the distinction between mediocre
and outstanding scores (Boyne et al., 2009). Public accountability should be an inclusive construct and
Young (2000) made it clear that engagement with corresponding narratives is necessary. If the public
does not identify success with the significant absence of failure, then statisticians should not presume to
do so on their behalf. Thus a separate, possibly locally constructed, indicator of success may be more
appropriate.

Surveillance is conceived as a collaborative idea with early intervention and the best use of information
at its heart. However, this requires a fair standard of statistical literacy at all levels of clinical governance
which is thought not to be the case within the National Health Service (Advisory Committee on Math-
ematics Education (2011), page 22). Furthermore, this may conflict with the accountability if the same
information is deployed with the expectation that a non-expert board can use it to demand executive
action. Moreover, for this to foster public accountability, the public would need to understand the nature
of this accountability, which is rather doubtful (King, 2011).

Statisticians are not so much presented with an opportunity as a responsibility: statistics can easily
become rhetorical devices (Young (2000), page 79; Simpson and Dorling (l999)). Success and failure in the
public sector are political constructs and statisticians should not attempt to construct political instruments
for which they have no mandate. Our responsibility is to facilitate public understanding of the assumptions
that are used in such instruments, giving a clear representation of the uncertainty they contain. The present
paper is only a small step in this direction, leaving questions about identifying the cause of overdispersion
and how to pursue formal accountability in the face of uncertainty.
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Fig. 6. Detection of outliers and unsuspected structure—forward plots of minimum squared Mahalanobis
distances for inhomogeneous multivariate normal data of dimension 5; the samples contain 100 observations
with variance 1, 100 with variance 3 and 10 with variance θ equal to (a) 3, (b) 5, (c) 7 and (d) 9; 1% and 99%
pointwise envelopes; in (a) and (b) masking causes the largest value to lie within these bounds; for all values
of θ departures are clearest around mD180

A. C. Atkinson (London School of Economics and Political Science) and M. Riani (Università di Parma)
This interesting paper describes the work of many years on important and complicated problems involv-
ing much specific detail. We discuss the treatment of outliers (Section 3.4) and outline a second applica-
tion involving monitoring and surveillance of large amounts of heterogeneous data.

The detection of outliers and unsuspected structure depends on obtaining parameter estimates free of
departures from the null model. In the forward search (Atkinson and Riani, 2000; Atkinson et al., 2004)
subsets of the data of increasing size are used in fitting, starting from a subset that is robustly chosen to
be outlier free; outliers enter towards the end of the search.

As an example related to the sums of squared Z-scores in the authors’ equation (2), we simulated
samples containing observations from three different five-dimensional multivariate normal distributions
with independent observations: 100 with variance 1, 100 with variance 3 and 10 with the four different
values shown in Fig. 6. As an outlier detection procedure, Riani et al. (2009) monitored the sequence
of minimum squared Mahalanobis distances among observations that were not used in the subset for
parameter estimation.

The plots include pointwise 1% and 99% bounds calculated from order statistics. Figs 6(a) and 6(b)
show the results when the third variance is 3 and 5. At the end of the search, i.e. when all observations are
used, the largest Mahalanobis distance lies within the bound, so, owing to masking, no outliers would be
detected. However, the curve for smaller subset sizes shows systematic evidence of departure. This feature
is similar in all plots; only in Figs 6(c) and 6(d), when the third variance equals 7 and 9, is the largest value
outlying.

Masking is more severe in the analysis of mixtures of regression lines that occurs in investigations
into the detection of fraud in international trade (Riani et al., 2008). The data are simple regressions of
price against quantity for a single good, but prices vary between firms; false declarations of price are
used in tax evasion and money laundering. The challenging statistical problem is to disaggregate the
data into regressions for each supplier, perhaps in the presence of outliers, and then to determine which
transactions are fraudulent. As in monitoring the National Health Service, there is a vast amount of
data which need to be analysed in a semi-automatic way. In addition, it is important not to create false
positive results, since the mechanism of prosecution for fraud is cumbersome. If statistical methods are
to be helpful they need to highlight cases from which successful actions can flow.

Axel Gandy (Imperial College London) and Jan Terje Kvaløy (University of Stavanger)
We congratulate the authors on this excellent paper which points to numerous further challenges. We
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comment on one challenge that was not discussed in detail in the paper: handling of estimation error of
the target, or standard or in-control distribution.

As an example we consider funnel plots in the following simple situation. Suppose that observations are
normally distributed and that we have n independent past observations Y1, . . . , Yn to estimate the unknown
mean μ and variance σ2 by the sample mean and variance .μ̂, σ̂2/.

For a hospital with m observations, the limits of the funnel plot based on the estimated observations
are μ̂± σ̂k=

√
m, where k is some quantile from the normal distribution. The actual coverage probability

conditional on these estimates can be computed explicitly. It depends on .μ̂, σ̂2/ and is thus a random
variable.

In Fig. 7(a) the grey curves are funnel limits based on two separate realizations of the past observations
Y1, . . . , Yn with n=1000, using μ=0 and σ=1. The points are 100 realizations of new data with μ=0, σ=1
and m∼Unif.{10, . . . , 999}/. The horizontal lines are the estimators μ̂. For the broken curves, where the
estimate μ̂ is close to the truth, most points lie within the funnel. For the full line, where the estimate μ̂ is
a little off, more points than expected lie outside (mostly above) the funnel, i.e. we obtain too many false
alarms.

We ran repeated simulations with the same set-up. The grey curves in Figs 7(b) and 7(c) are the
cumulative distribution functions of the coverage probability for units of size m = 100 and m = 1000
respectively. Estimation has a considerable effect, and the impact of the estimation is worse for the larger
m.

To correct the coverage probabilities of the funnels, one can construct pointwise tolerance intervals,
e.g. guaranteeing that the nominal coverage probability is achieved in 90% of the cases. These tolerance
intervals can be constructed via a bootstrap method similar to that described in Gandy and Kvaløy (2011)
or by approximate methods. The black curves in all diagrams of Fig. 7 show the corresponding information
for these corrected funnels. In particular Figs 7(b) and 7(c) show that the nominal coverage probability is
achieved in 90% of the cases.

Obviously the influence of estimation will vary in different scenarios, but it will be an issue in all methods
discussed in the paper.

Woody Caan (Anglia Ruskin University, Cambridge)
It is very useful to see in the paper how public bodies like the Care Quality Commission address health
service needs like the ‘rapid detection of emerging problems’. As a member of the Statistics User
Forum, I wonder how official ‘rating’ will change when the government transparency agenda means
publishing more data revealing the performance and quality of public services (Williams, 2011). Above
all, will the behaviour of service users change (e.g. more litigation) or will the complexity of the regulation
processes go right over the heads of the UK population, whose protection from harm is a regulator’s
duty?

This fascinating paper evokes two rather naive thoughts, in the mind of a former National Health Service
manager who struggled with many a ‘rather volatile indicator’.

The first is technical: the use of distributions such as Poisson. I collected many ‘counts of adverse
events’ such as violence in hospitals (Powell et al., 1994). Often these counts were not independent
‘events’, because of the phenomenon of the ‘nightmare shift’. Once things began to wrong on the
ward, a concatenation of escalating events was common, often involving the same people during a
short period in one place. If a combustible mix of participants were present and something ignited
them (e.g. racist taunts or petty bureaucracies) then violence bred violence. Aggression was not the only
event that was clustered in such awful shifts. Later we found medication errors could often proliferate
during one shift in one unfortunate ward.

The second thought is game playing by National Health Service organizations, which are well aware of
the measures that are important for a good rating. Hypothetically if, say, a provider needed three stars
for approval of a huge private finance initiative, but internally they knew current waiting list measures
risked reducing their stars, then delaying such bad news to after the decision time for approval could be a
temptation. Multiple examples of ‘adjustment’ of National Health Service data were first reported by the
National Audit Office (2001). In the next few years government policy favours ‘diversification’ of health-
care providers. Within that competitive arena, what ‘adjustments’ might managers in failing hospitals try
to get away with?

Margaret Eames (Acorns Public Health Research Unit, Hatfield, and Imperial College London)
How can statisticians contribute to the new role of the Care Quality Commission (which replaced the
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Healthcare Commission in April 2009) with its wider remit, to include regulation of social care besides
health in England?

I am a statistician. I was Head of Public Health Intelligence providing health statistics to improve public
health across Hertfordshire and Bedfordshire for 7 years, championing careers in public health intelligence
for the National Health Service (NHS), and then working for the Healthcare Commission—as a public
health development manager. I was in the Healthcare Commission preparing for the transition to the Care
Quality Commission in 2009. Shaping the nature of the data collected for monitoring effective and safe
social care nationwide is a challenge, perhaps more than health.

Social care regulation, alongside health as part of the Health and Social Care Bill, needs more care-
ful thought, design and integration with health statistics regarding common definitions, for safety in the
future. The linkage of social care with health could enable more effective regulation to prevent the abuses
we have seen recently in the national media (e.g. the ‘Baby P’ death in Haringey, and the recent Panorama
programme on Winterbourne View home, near Bristol).

Statisticians have an important role in designing objective questions, information technology systems
and both quantitative and qualitative measures which can keep managers more accountable for the social
care and service they deliver.

The measures themselves should include the effective linkage with health information in a locality,
when requested to inform an enquiry. For example, with Baby P, it should have been possible for the data
held on Baby P’s injuries, by two different hospital accident and emergency departments, in the vicinity
of Haringey, to be linked by using his NHS number. This was not connected (until too late, after he
died).

When abuse is suspected this linkage should be a local routine public health intelligence information
technology facility, enabled confidentially and safely for the protection of a vulnerable person, when the
relevant social work department or whistle blower makes this request. This public health intelligence link-
age could have saved a life in the case of Baby P. It has not been a priority in information technology for
‘connecting for health’ to enable this to date, but this could save lives in the future.

Hospital identification numbers (unique to one hospital) to identify patients are not enough—it is
essential that the NHS number, now well defined and actively used by general practitioners, is recorded
in hospitals to enable this linkage. Even if the ‘whole NHS Spine’ project is incomplete, this local linkage
is very possible. Each local public health intelligence department (working with the local authority) could
enable linkage, when several accident and emergency departments are accessible.

We could be more intelligent in defining appropriate standards of care, and procedures to enable pre-
vention of some of the abuses that we have seen lately.

The following contributions were received in writing after the meeting.

Elja Arjas (University of Helsinki and National Institute for Health and Welfare, Helsinki)
In Section 2.2 the paper has the following interesting sentence:

‘We have found it helpful to argue that targets should concern the underlying risk that is faced by
patients, and the actual number of cases is only an imperfect measure of that underlying risk’.

I wonder whether it would be possible to formulate this understanding explicitly in terms of a statisti-
cal model, by viewing the problems of rating, screening and surveillance from the perspective of state
estimation, or filtering. When suitably tuned, such a model could then also reflect what is believed
about the dynamics of the underlying risk processes, for example, in how rapidly the risk levels in a
considered unit or trust could be expected to change. A natural way to express the information that is
contained in the latent risk level variables in terms of observables would be by issuing predictive distribu-
tions of the outcome variables that are being monitored, for example, annually and always predicting 1
year ahead in time. I should think that by making use of the extensive data that already exist, and possibly
aided by simulation experiments for studying the sensitivity of the method, it would be possible to calibrate
it to a level where such predictions would be realistic. More elaborate versions of the model could involve
covariate information, and possibly allow for multivariate responses. A particular asset of these methods
would be the concrete interpretation of their results: they would express, in terms of probabilities, what is
to be expected next year when assuming that there is no outside intervention.

Dankmar Böhning (University of Southampton)
I congratulate the authors on a very interesting paper on continuous screening of healthcare indicators.
I would like to comment on an important aspect and contribution of the paper, namely the construction
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of an adjusted Z-score which incorporates an overdispersion estimate τ̂ 2 based on the additive DerSim-
onian–Laird (DL) model. The estimate τ̂ 2 plays an important part in the construction of the adjusted
Z-score. Hence it seems desirable to have a reliable estimate of τ̂ 2 available. In the case that the underlying
data are standardized mortality ratios SMRi = Oi it might be valuable to consider some of the estima-
tors that were discussed in Böhning et al. (2004) as alternative to the popular DL estimator of τ 2. Here
a class of unbiased estimators for τ 2 is defined as Σi αiWi=Σi αi, where Wi = {.Oi − Eiμ/2 − Eiμ}=E2

i

and αi are non-negative and non-random. Note that E.Wi/ = τ 2. This class provides a flexible family
of simple, non-iterative and unbiased estimators for τ 2 which remains well defined under sparsity or
zero counts Oi. Here μ is the mean over θi =E.SMRi|trust i/, the conditional mean of the standardized
mortality ratio in trust i. To be more precise, it is assumed that θi has a distribution with mean μ and
variance τ 2. If internal indirect standardization is used μ= 1 necessarily; for external indirect estimation
it can be estimated as ΣiOi=Σi Ei. Various weights are considered in Böhning et al. (2004) including equal
weights, αi =Ei and αi =E2

i . In a simulation study τ̂ 2
2 =Σi EiWi=Σi Ei compared well with other estima-

tors including the DL estimator. If there is still interest in using the DL estimator it is important to use
the right form of the variances which are inversely involved as the weights wi used in the construction
of the DL estimator. Note that var.SMRi|trust i/ = θi=Ei which could be estimated as SMRi=Ei. How-
ever, this form is critical and leads to a breakdown of the estimator when Oi = 0. Instead, as argued
in Böhning et al. (2002), a population-averaged version of the variance needs to be used, leading to
E.θi=Ei/ =μ=Ei which contributes largely to the stability of the estimator and, I believe, is also used in
the paper.

Michael J. Campbell, Richard M. Jacques, James Fotheringham, Ravi Maheswaran and Jon Nicholl
(University of Sheffield)
Recently our group in Sheffield have been evaluating a new summary hospital mortality index SHMI on
behalf of the Department of Health (Campbell et al., 2011). This is related to the Dr Foster hospital
standardized mortality ratio HSMR but based on deaths in hospital and within 30 days of discharge from
hospital. It uses only age, sex, type of admission and Charlson comorbidity as variables to standardize by,
as the inclusion of other variables does not add additional discrimination in the performance of trusts. We
were interested to see the contrast in the multiplicative and additive methods of defining the funnel plots
for overdispersion that were given in Fig. 3 of the paper. We believe, on empirical and theoretical grounds,
that additive overdispersion is probably more appropriate. Fig. 8 shows the expected deaths and SHMI
from all admissions to non-specialist trusts for 2006–2007, and also shows Mid Staffordshire Trust as an
outlier, along with four others. We can see that the points for SHMI do not really become much closer as
the expected deaths increase, which suggests an additive model. Also we might expect uncertainty due to
inadequate risk adjustment to add on the log-scale, as we usually model the data as a log-linear model for
a Poisson outcome.

In view of the weight that hospital managers will attach to whether their hospital is above or below the
line it is important to be clear on the calculations. We note that in Fig. 3 a square-root transformation was
used. Is this based on an empirical inspection of the data or simply because a square-root transformation
stabilizes variances for counts? Also in Fig. 3 we assume that you set q=0:1. Does that mean that 20% of
the points have been Winsorized? Do you have any views on the relative merits of trimming or Winsoriza-
tion? In practice these lines will be used simply to decide, along with other information, which hospitals
merit further inspection. Since additive overdispersion results in parallel warning lines as the expected
values increase, this essentially reduces to a ranking exercise, except that some of the smaller hospitals can
get away with higher SHMIs.

J. E. Chacón and J. Montanero (Universidad de Extremadura, Badajoz)
We congratulate the authors for this comprehensive work where several methodologies are considered
with the aim of evaluating the efficiency of healthcare organizations. Depending on the specific goal, these
methodologies are organized into three categories, which at the same time share some common elements
and challenges.

Within the first category the goal is to analyse a single quality indicator from which, under some con-
ditions, an exact distribution can be obtained in the case that the standard is met. The second category
comprises the joint analysis of several indicators, seeking for a criterion to decide the trusts that will be
inspected. The third category is oriented to monitoring an indicator with the goal of early detection of
deviations with respect to a standard behaviour.

The common tools that are used to deal with these three categories of problem include several kinds
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Fig. 8. Funnel plot showing the expected deaths and summary hospital mortality index from all admissions
to non-specialist trusts for 2006–2007: , Mid Staffordshire Trust

of Z-score adapted for overdispersion effects. These overdispersion effects occur when the observed var-
iability is higher than would be expected, making most Z-scores appear extreme. Since ‘expected’ here
refers to the underlying distribution, which is assumed to be normal, we wonder whether these discrep-
ancies might be because the true underlying distribution could actually have tails that are heavier than
normal.

In fact, as the authors themselves recognize (Section 4.3), ‘some methods do rest on precise distribu-
tional assumptions’, which involve mainly parametric models. We would like to draw attention to a variety
of non-parametric approaches that may help to free us of such assumptions. For instance, funnel plots can
be very useful for detecting outliers and abnormal behaviour, and Duval and Tweedie (2000a, b) intro-
duced a non-parametric version through a trim-and-fill procedure which is based on rankings. Moreover,
smoothing methods have also been shown to be useful to construct non-parametric analogues to classical
Shewhart control charts. The properties of a non-parametric detection method, which was proposed by
Devroye and Wise (1980), have been thoroughly examined in Baíllo et al. (2000) and compared with a para-
metric mixture model approach in Baíllo and Cuevas (2006). A further non-parametric alternative is based
on the use of depth measures, as introduced in Liu and Singh (1993) and Liu (1995), possibly reducing a
high dimensional multivariate problem to a univariate detection task on the basis of the corresponding
data depth measures.

We feel that these non-parametric methods could provide a robust alternative in situations where clear
deviations from normality are present.
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Stephen E. Fienberg (Carnegie Mellon University, Pittsburgh)
As always, it is a great pleasure to read a paper that is focused on real public policy issues, where statisti-
cians have been brought to the table and are making a difference. The authors identify several objectives
for the use of outcomes data: ratings (and possibly rankings), screening and surveillance. In the USA, the
Center for Medical Services has a related mandate to prepare outcomes measures for hospitals under the
2010 Affordable Health Care for America Act, for what we might characterize as a mix of ratings and
screening, and some of the specifics of that mandate include establishing thresholds for outcomes to be
used to reward or publish hospitals for their performance. Our methods also involve forms of standardized
mortality ratios. Thus it was with great interest that I turned to this paper, especially to discover ‘lessons
learned’ from the UK experiences.

Nonetheless, I was surprised in many ways by the heavy focus in the paper on computing Z-scores and
P-values, and the relative absence of formal statistical models for risk adjustment except for that in the
cumulative sum ideas. In much of the US research work on this topic, risk adjustment is carried out in
the context of a formal statistical model, often based on individual level outcomes and their associated
risks. Many of these models are hierarchical Bayesian models because of the natural way that such models
capture different facets of the phenomenon of interest. Comparing US hospital outcomes across hospitals
at the level of specific procedures leads to very sparse data arrays, far too sparse for the direct calculation of
standardized mortality ratios without some form of smoothing. Bayesian hierarchical models provide one
vehicle for such smoothing and the ‘borrowing of strength’ from similar facilities, however we choose to
define them; for example, see Kipnis et al. (2010), Normand and Shahian (2007) and Rascz and Sedransk
(2010). Given Professor Spiegelhalter’s long-standing interests in and development of such models, their
absence here is all the more surprising. Perhaps that is a consequence of how the results of the UK efforts
are being used and by whom.

What are the principles that lead us to methods and models in this domain? Articulating principles and
then developing formal methods that adhere to them but also work in practice is a great challenge. The
present paper gives the statistical profession an opportunity to step back and to reflect on such principles
as empirically driven efforts to regulate healthcare move forward.

Andrew Gelman (Columbia University, New York)
I applaud the authors’ use of a mix of statistical methods to attack an important real world problem.
Policy makers need results right away, and I admire the authors’ ability and willingness to combine several
modelling and significance testing ideas for the purposes of rating and surveillance.

That said, I am uncomfortable with the statistical ideas here, for three reasons. First, I feel that the
methods proposed, centred as they are around data manipulation and corrections for uncertainty, have
serious defects compared with a more model-based approach. My problem with methods based on
P-values and Z-scores—however they happen to be adjusted—is that they draw discussion towards
error rates, sequential analysis and other technical statistical concepts. In contrast, a model-based ap-
proach draws discussion towards the model and, from there, the process being modelled. I understand
the appeal of P-value adjustment—many quantitatively trained people know about P-values—but I
would much rather draw the statistics towards the data rather than the other way around. Once you
have to bring out the funnel plot, this is to me a sign of (partial) failure, that you are talking about
properties of a statistical summary rather than about the underlying process that generates the observed
data.

My second difficulty is closely related: to me, the mapping seems tenuous from statistical significance
to the ultimate healthcare and financial goals. I would prefer a more direct decision theoretic approach
that focuses on practical significance.

That said, the authors of the paper under discussion are doing the work and I am not. I am sure that
they have good reasons for using what I consider to be inferior methods, and I believe that one of the
points of this discussion is to give them a chance to give this explanation.

Finally, I am glad that these methods result in ‘ratings’ rather than ‘rankings’. As has been discussed
by Louis (1984), Lockwood et al. (2002) and others, two huge problems arise when constructing ranks
from noisy data. First, with unbalanced data (e.g. different sample sizes in different hospitals) there is
no way to obtain reasonable point estimates of parameters and their rankings simultaneously. Second,
ranks are notoriously noisy. Even with moderately large samples, estimated ranks are unstable and can be
misleading, violating well-known principles of quality control by encouraging decision makers to chase
noise rather than understanding and reducing variation (Deming, 2000). Thus, although I am unhappy
with the components of the methods being used here, I like some aspects of the output.
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Ronald B. Geskus (Academic Medical Center, Amsterdam)
As a medical statistician working in a different research area, I have read the description of the statistical
methods in healthcare regulation with great interest. The issues and solutions are not only relevant if the
unit under consideration is a trust, but also if it is a patient with a chronic disease. The development of
personal health systems has made remote monitoring and treatment become increasingly important in
chronic disease management. Information on the clinical condition of a patient is collected via stationary,
portable or implantable devices, which can provide information on many variables of interest. For a single
indicator (marker), it can be observed whether a threshold has been breached. Information from several
variables may be combined to screen for patients with elevated risk profiles. Continuous monitoring allows
for the detection of patients who show a sudden change in risk profile. For such patients, further inspection
by a healthcare professional is needed.

The authors give a detailed description of the use and relevance of Z-scores. In the monitoring of
performance against some standard, a trust can be observed to achieve, to underachieve or to fail. The
calculation of these regions incorporates the role of chance. The authors explain the calculation of critical
thresholds based on pointwise (e.g. yearly) methods. For example, in Fig. 1, the East Lancashire Hospitals
Trust is observed to fail in 2006–2007. I wonder whether improvement can be obtained if the regions are
determined on the basis of combined performance over the years. For example, if the number of meth-
icillin-resistant Staphylococcus aureus infections had been consistently above the target, but still in the
‘achieve’ area in all three years, would that not be indicative of underachievement?

Unfortunately, later sections were more difficult to understand for someone who is not experienced in
the methods that are described. Some statements are not explained in detail. It is not clear to me why
a funnel that fails to narrow for larger institutions warrants the use of a model for additive rather than
multiplicative overdispersion. In the section on surveillance, the cumulative sum method is given plenty
of attention, but its rationale is not described in much detail. What is the difference between Fig. 5(c) and
Fig. 5(d), apart from the choice of γ =2 in the latter?

Hanna K. Jankowski (York University)
This work deals with the difficult topic of statistical methods in healthcare regulation, and I congratulate
the authors on an interesting and thought-provoking paper.

One example given in the paper is that of performance monitoring for methicillin-resistant Staphylococ-
cus aureus bacteraemia rates in trusts. With the desire of reducing the number of outbreaks, the objective
was set of a 50% reduction in rates in 3 years, or a 20% reduction per year. The annual reduction was
set as an absolute reduction relative to a single baseline rate. As mentioned by the authors, it is crucial
that a robust baseline be established, and it is doubtful that the results of a single year would meet such
a requirement for an individual trust. This issue was considered more extensively in a previous work of
Spiegelhalter (2005).

A suggestion made by the authors is to consider instead an individual baseline by using data from a
number of periods. As a simplification of the problem consider the following set-up: the number of cases in
an individual trust is a Poisson process with constant rate λ in all previous years, Y−1, Y−2, . . . , Y−6. Under
the null hypothesis that the trust has decreased their rate by 20%, the number of cases this year becomes
Poisson distributed with rate λ0 =0:8λ. We consider the probability that

P.Y>yÅ|λ0/ .8/

and compare it with the same probability when λ0 is estimated as 80% of the previous years’ average, con-
sidering anywhere from 1 to 6 years into the past. The value yÅ is taken as the critical value for pÅ =0:841.
When the baseline rate is estimated on the basis of previous years, probability (8) was estimated based on
B=100000 samples. The results are shown in Fig. 9 for various values of λ. It seems that, in this simplified
setting, at least 4 years are appropriate to reduce the additional variability caused by estimation of the
baseline rate.

N. T. Longford (SNTL and Universitat Pompeu Fabra, Barcelona)
The paper reflects the view that statistics is about collating, quantifying and operating with evidence, i.e.
with incomplete information. The evidence is used to assist the client (the Care Quality Commission) to
decide which units to inspect, in what circumstances to apply contingency measures and whom to assign
which grade. In an alternative perspective, the role of statistics is to make purposeful decisions in the
presence of uncertainty (due to limited workloads of the units assessed). The qualifier ‘purposeful’ refers
to serving the best interests of the client.
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Fig. 9. True values ( ) of the probability (8) for various values of λ along with the probabilities when the
baseline rate is estimated by using averages from previous years: the number of years in estimating the
baseline is taken to be anywhere between 1 and 6 ( , 1 year; – – –, 2 years; . . . . . . ., 3 years; � � � �,
4 years; — —, 5 years; � — �, 6 years)

Central to an analysis that would be in accord with this perspective is a declaration of the losses due
to the incorrect decisions that can be made. This imposes an additional burden on the analyst and the
client, to elicit the loss functions (DeGroot, 1970; Lindley, 1985, 1998), or plausible sets of loss functions
(Longford, 2010, 2011). With these functions, the solutions are actual proposed decisions, closely tailored
to the remits and priorities of the client, avoiding arbitrary settings (the level of significance) and inter-
ventions in the analysis (being ‘tolerant’). They ameliorate the issue of multiplicity, because (plausible)
expected losses are evaluated instead of hypothetical probabilities. The non-statistical (qualitative) version
of a declaration of loss functions is an integral part of transparency in how the Care Quality Commission
conducts its business.

Within the confines of statistical methodology, it suffices to say that a P-value is singularly unsuited for
making decisions (Lindley, 1998), because its derivation is not informed by its subsequent use—pursuing
a course of action (or adopting a model subsequently regarded as valid). Hypothesis testing and similar
procedures, including information criteria, are oblivious to the consequences of the erroneous decisions
(Longford, 2005).

With the (plausible) loss functions, a unified methodology can be developed for screening, rating and
surveillance, because the analyses for these three kinds of activities differ only by the features of these
functions: false positive results are associated with relatively small losses in screening and high losses in
surveillance, and rating represents an intermediate case.

An important conclusion of Spiegelhalter et al. (2002) is that the selection process, in this case the
within-unit casemix distributions, may be a confounder in the comparisons of the units. It should have a
prominent role in any analysis that aspires to compare like with like.

Thomas A. Louis (Johns Hopkins Bloomberg School of Public Health, Baltimore)
This paper is essential reading for all producers and consumers of healthcare regulation. I strongly endorse
most of the authors’ principal points and methods. I highlight a few of these and offer some elaborations.
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Fair comparison: yes, a fair comparison ‘must accommodate the vagaries of chance’, but it also must
use a valid basis for comparison and address the relevant target. Valid expected values are essential, and
procedures must make an effective trade-off between signal and noise. When ranking, if uncertainties vary
over units, hypothesis-test-based ranks tend to put the low variance units at the extremes; use of direct
use of estimates has the opposite tendency. Best estimates directly address ranks, finding the appropriate
balance (see Lin et al. (2006)).

Modelling goals: in developing expected values, the goal is not to find the ‘best fit’; it is to produce values
that support the counterfactual inference, ‘if all hospitals treated the same mix of patients (or treated the
same patients) how would they compare?’. Therefore, an appropriate expected value model accounts for
patient-specific attributes at admission that associate with outcome; it should not adjust for post-admission
events or hospital level attributes. These produce part of the residual variation and constitute the ‘hospital
effects’ to be compared.

Appropriate targets: yes, ‘. . . targets should concern the underlying risk that is faced by patients, . . . ’.
Consequently, statistical methods should directly address those targets. For example, estimates of ranks
should be guided by a ranking-specific loss function; histogram estimates by histogram-specific loss. See
Gelman and Price (1999), Lin et al. (2006) and Paddock and Louis (2011) for issues and examples.

Use of Z-scores: though use of Z-scores is prevalent, I encourage replacing them with estimates of target
parameters .θs) with associated uncertainties (σ2s). Happily, these can be produced from the Z-score and
its denominator D: θ̂ =Z=D; σ̂2 =1=D2.

Role of shrinkage: use of shrinkage estimates has been criticized for modifying the data (including chang-
ing ranks) and hiding outliers. It is challenging and essential that we demonstrate the benefits of careful
hierarchical modelling and consequent shrinkage in producing inferences that are more stable and fair
than those available from direct estimates.

Robustness: is absolutely necessary in collecting and preparing input data, in developing expected values
and in developing comparisons. When comparing a large number of providers, robust Bayesian methods
increase credibility of hierarchical modelling (see Lin et al. (2009) for an example).

Jorge Mateu (University Jaume I, Castellón)
The authors are to be congratulated on a valuable contribution and thought-provoking review paper.
Healthcare regulation strategies set a key point in modern societies and receive important funding at
national levels. The systematic collection of any kinds of data, and their corresponding analysis, has
become essential to the planning and evaluation of public health practice. I shall focus my discussion on
the context of space–time surveillance, which is a modern and timely topic in this area.

The authors focus basically on non-spatial, purely temporal methods derived from quality control ideas
to monitor a stochastic process in time. In general control chart techniques are not sensitive to small changes
in the process, although this is not so with the cumulative sum method (Frisén, 2003). However, these
methods assume that data are independent in time, which is not a realistic assumption in many applications.

Realtime health outcome data are becoming more widely available and present interesting challenges
for statisticians. Realtime epidemiology is the study of health outcomes in their natural setting and within
a timescale, and it is often concerned with spatial (and/or temporal) variation (Lawson and Kleinman,
2005). Within this context, early and outbreak detection of anomalies in the observed pattern of incident
cases is of key importance. Possible sources of data in a surveillance system come from general practi-
tioners (with associated problems when reporting cases) and, in the UK system, from the National Health
Service, which often gives date and location recorded for each call, but the spatial and temporal pattern of
usage is unknown. In such cases, spatiotemporal statistical modelling improves the early disease outbreak
and detection of anomalies (Diggle et al., 2005). These statistical approaches must deal with the adjustment
for temporal and spatial variation, the unknown time, place and size of an emergent cluster or the lack of
suitable population-at-risk data (Assunção and Correa, 2009). As with screening and surveillance method-
ologies, classical methods for (space–time) cluster detection can be retrospective or prospective in nature. In
the latter case, an events database is updated regularly and then an algorithm should be run to help to decide
on the emergence of localized space–time clusters. In this latter approach, if one statistical test is carried out
every time the database is updated, we face a severe multiple-testing problem with too many false alarms
for clusters. Solutions can now be found in the literature (Diggle et al., 2005; Assunção and Correa, 2009).

Kerrie Mengersen (Queensland University of Technology, Brisbane), Tony Morton and Geoffrey Playford
(Princess Alexandra Hospital, Brisbane) and Ian Smith (St Andrews Medical Institute, Brisbane)
This paper charts a long journey of achievement in both biostatistics and healthcare. It clearly provides
the foundation for further biostatistical innovation, such as more appropriate representation and interro-
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gation of heterogeneity, improved methods for quantifying, combining and interpreting process measures
and better ways to deal with multiple comparisons. However, we raise here a concern about the general
direction of the journey itself, in particular the plethora of centrally mandated ‘indicators’ that have made
these state of the art statistical methods necessary.

Our overarching aim is to make hospitals safer. This requires trust, which in turn requires transparency.
Monitoring and reporting are necessary components of public trust. However, the public needs to know
that the ‘top-down’ process of centrally counting adverse outcomes after they have occurred is indeed a
cost-effective way of improving safety. Despite nearly 30 years of quality improvement implementation,
there is much conflicting evidence (Millar, 2011; Houstein et al., 2011; Runciman, 2011; Pratt, 2011; Jain
et al., 2011; Huskins et al., 2011; Pronovost et al., 2011; Benning et al., 2011a, b; Landrigan et al., 2010;
Vincent, 2010). For years, the Princess Alexandra Hospital has released its annual infection report to the
media: a ‘bottom-up’ initiative.

Trust and transparency are not only the mandate of the healthcare funders and consumers, but also of
the healthcare practitioners. There are strong benefits in moving the monitoring process as close as possible
(physically and temporally) to the point of care and carefully selecting relevant processes and outcomes
(Smith et al., 2011; Carthey et al., 2001). As demonstrated at the Princess Alexandra Hospital and the St
Andrews Medical Institute, if the motivation for this process comes from those delivering the care, and
if it is internally constructed and managed, then unexpected changes can be detected relatively quickly;
there is ownership; gaming becomes a non-issue; data error is minimized; data are used to learn how to do
better rather than ‘proving’ compliance; people can concentrate on what they know makes a difference.

However, what shines through most is that good systems produce good hospitals. Modern hospitals are
complex systems with emergent behaviour that depends on the interaction of a myriad of agents (Morton,
2011; Waterhouse et al., 2011; Johnson, 2007). If we can better understand these systems, perhaps we can
begin to influence this behaviour in more useful ways. To become safer, we have to take a positive approach
and find out what causes ‘safety’.

The paper thus brings us to a crossroads. We know that, to have safe hospitals, we must have safe hospi-
tal systems. Statistical analysis and modelling are fundamental to understanding these. However, instead
of doggedly pursuing top-down indicator collection, the paper might equally motivate dedicated hospital
surveillance staff and gifted statisticians to find new or complementary paths to creating safer hospitals.

A. F. Militino and M. D. Ugarte (Universidad Pública de Navarra, Pamplona)
This is a paper that deals with a real challenge for statisticians: to convince practitioners, health authorities,
politicians and, possibly, the general audience of the necessity of using statistical procedures for healthcare
regulation. In this sense, we find this paper very stimulating and we congratulate the authors for writing
the paper to try to clarify some aspects about the role of statistics in this matter.

We see three important points here: first, how to define precisely the target, which clearly is not a statis-
tical question; second, how to transform this target into numerical language and, third, how to estimate
the indicators proposed. The authors mention anomalies in previous methods, but only because trial and
error revealed discrepancies between evaluated indicators, and verified situations found in practice. But,
how can we improve these indicators?: only by trial and error? Shall we be able to estimate bias, variances
or any other dispersion measurements? In statistical terms only stochastic estimated error can provide
assessment on the quality of the procedures. Lack of data makes it difficult to guess the goodness of these
proposed indicators. Maybe some examples could clarify these items.

There are still a couple of points that we want to discuss. For example, the authors say that the precise
methods discussed in the paper are not necessarily those that will be used in near future regulation duties.
Is this particularly disappointing? Or, in contrast, is it more important to convince first on the necessity of
simple and clear statistical analysis to be understood by non-experts rather than to offer ‘universal’ solu-
tions to the regulation problems? As statisticians we would choose the latter argument. However, which
would other people choose? Perhaps it is not so appropriate to change the procedures at the same time as
the Commissions. The statistical procedures proposed should be simple, clear and as intuitive as possible.
This could then contribute to their maintenance through time. We find that it is far more important first
to educate people (the general public and politicians) about simple statistical concepts such as the notion
of variability and uncertainty measures rather than offering ‘sophisticated’ statistical procedures.

Should we think about a supranational organization that monitors some chosen aspects of the Euro-
pean countries’ national health services such as Eurostat or a similar organism: a type of European Health
Organization? We find this option interesting for being able to compare national health services of the
different European countries.

Which will be the instruments that allow us to compare some key performance indicators?
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Greg Phillpotts (Dorking)
As commented earlier in the discussion, the aspect of data quality does, however, need further work. The
paper covers overdispersion in Section 3.3, but this is only one aspect of the reality of data departing from
theoretical good behaviour. In the National Health Service, information systems often depart drastically
from the norms specified. Thus data for a subset of organizational units may not adhere to data collection
protocols, possibly in relation to a subset of patients or to all their patients. This may result for example in
what appears to be miscoding of case characteristics, or incorrect recording of reference dates or the wrong
reference dates. Other data problems arise from the mutual inconsistency of apparently correct systems in
different healthcare providers, or in subunits within providers. The source data that are required for com-
parisons of performance may have been the subject of many transfers between a wide variety of systems
before being ‘collected’ for performance monitoring. Some of these problems result in haphazard errors
in data, for which assumptions about random error may be appropriate, whereas many are systematic,
resulting in bias, truncation or censoring, alone or in combination. These kinds of problem with data
quality therefore in general give rise to problems throughout the distribution and not simply in relation to
the apparent outliers that the work on overdispersion addresses.

As commented on by Professor Bird, the Society’s Working Party report went further than providing
criticism of performance indicators. The Working Party report also made some specific recommendations
about performance monitoring regimes and it would be helpful if the authors could indicate how far this
work takes forward that wider agenda.

In relation to surveillance, Section 4.7 comments that

‘It is, perhaps, notable that ... approximately 30% of mortality alerts... led to an improvement plan being
implemented’.

I suggest further discussion is needed before it can be seen as ‘notable’ that any particular fraction of alerts
results in some specified action. There is to start with the chance of a false positive result, which may be
high or low depending on the nature of the measure used and the system under surveillance. And, when an
alert has been raised, the reality may be that only a small proportion of cases deserve a particular action
plan. To give the full picture, examination is also needed of the specificity of the surveillance method as
well as its sensitivity.

Emilio Porcu (Universidad de Castilla la Mancha and University of Göttingen), Carlos Alonso Malaver
(Universidad Nacional de Colombia, Bogatá) and Alessandro Zini (Universitá Milano Bicocca, Milan)
We congratulate the authors for this beautiful paper. We have some suggestions that may be considered
by the authors for a more general view of the problem.

(a) The first issue is related to the use of P-values when the sample sizes are not sufficiently large
and thus the asymptotic normality framework does not apply. De Martini (2008), among others,
claimed that the usual classic testing procedures based on test variables (P-values, etc.) are less
stable with respect to an equivalent approach based on the estimated power of the same test, the
so-called reproducibility probability, for which constructive criticism can be found in Shao and
Chao (2002), who noted that the reproducibility probability for a given clinical trial is useful in
providing important information for regulatory agencies in deciding whether a single clinical trial
is sufficient and for the pharmaceutical companies in adjusting the sample size in future clinical
trials. Important evidence in favour of the reproducibility probability method can be also found in
Goodman (1992), who complained that the P-value might lead to too optimistic interpretations of
the test’s result.

(b) We wonder whether seasonal or cyclical components should be kept in mind as a potential source
of variability in the risk of contraction of illnesses.

(c) The assumption of normality is probably overly restrictive and it would be relevant to consider
approaches that allow us to violate the assumption of normality, preserving a certain level of
statistical efficiency.

(d) The score weighting scheme that is proposed by the authors is an important alternative that allows
for a relevant computational gain (they avoid computation of the inverse of the covariance matrix)
while preserving a good level of statistical efficiency. Although we advocate the use of such ap-
proaches and refer to a recent paper for them (Bevilacqua et al., 2011), we consider that the scheme
proposed is far too simplistic and restrictive. It would be important to consider a weighting scheme
that allows us to take into account, for instance, geographical components, or the amount of a
population or some other covariates. Some ideas may be picked up from Bevilacqua et al. (2011).
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E. Marian Scott (University of Glasgow) and J. Campbell Gemmell (Scottish Environment Protection Agency,
Stirling)
We congratulate the authors on a clear and stimulating paper. Although our focus is environmental regu-
lation, there are many connections.

Regulatory framework
With respect to current environmental regulation, the regulator is a ‘data collector and inspector’, but
new developments mirror ‘a risk-based approach, being more targeted and proportionate’. Environmen-
tal regulation is largely about licensing and regulating economic activities that have the potential to pollute
the environment. The ‘norm’ of environmental licensing today is based on four stages—assessment of the
process and the risk that it presents, granting of permission to operate within clearly defined limits, moni-
toring and reporting on performance against the terms of the permit and enforcement. Modern regulation
as described in the Hampton report (Hampton, 2005) advocates proportionate, risk-based permitting
with lesser effort on site visits and monitoring in the light of risk assessment (and perhaps compliance
performance history). This new regulatory practice places a clear focus on results (Sparrow, 2000) where
indicators of success are measurable reductions. All of this resonates (although the language may differ)
with healthcare regulation.

Screening and surveillance
When we consider surveillance and monitoring in the environmental context (with a variety of types of
data, many hundreds of determinands and data quality issues), as well as monitoring of specific processes,
monitoring is also undertaken to report on the state of the environment. In terms of their monitoring net-
work, the Scottish Environment Protection Agency classify sites in three ways: surveilliance, operational
and investigative. Of relevance here is operational monitoring, driven by risk assessments and located in
areas of known risk and investigative monitoring which is responsive to unplanned events and emerg-
ing risks, where the source of the risk (the pressure) is not always well understood. As one example, the
Water Framework Directive requires member states to classify water bodies dependent on ecological and
chemical status. In Scotland this means classifying more than 3000 water bodies (or 25000 km for rivers)
annually (Scottish Environment Protection Agency, 2011).

Who is this for?
Stakeholders in the environment include governments, agencies, non-governmental organizations and the
public. Environmental regulators must deal with considerable uncertainty, large volumes of data and com-
plex environmental interconnectedness, but to communicate the state of our environment, and to license
processes, our tools need also to be ‘straightforward to implement, explanatory to multiple stakeholders
and robust’.

The similarities, we argue, are striking.

Alfred Stein (Twente University)
I have read the paper with great interest, as it contains many novel elements that are to some degree well
explained. At the moment I have the following issues.

The methodology is illustrated with examples from the British health system. It thus contains terms
and notions that may not be available, or only available in a modified form, in other parts of the world.
In the Netherlands, the numbers of trusts may be smaller than in the UK, and in the USA the num-
ber may be larger, whereas the health system in developing countries may be totally different. This also
applies to the records. Although most of it may lead to only a minor change in the paper, I invite the
authors to explain those concepts that are of a clear British character and hold these against the light
of an international audience. This may include a brief explanation where modifications for use in other
countries should be envisaged. Further, the paper does not address the spatial issue. I could imagine
that in the British case a subdivision is made between the four countries, with four baselines instead of
a single one. One may run into problems for Wales, for example, where I suspect that the number of
trusts is substantially lower than in England, but it would be good to see the effects. The paper at this
stage focuses on the number of deaths as an ‘easy’ measurement. This, without doubt, can be extended
to prevalence. But I wonder whether also for a less-well-defined variable, i.e. for less ‘easy’ measurements,
funnel plots are of use and provide important information. Possibly, the authors could comment on
this.

In all, the paper is good to read and offers a range of possibilities for a further extension.
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William H. Woodall (Virginia Tech, Blacksburg)
I congratulate the authors on developing a practical solution to a difficult problem. The false discovery rate
approach to process monitoring, in particular, holds much promise in other applications. The US Centers
for Disease Control and Prevention’s ‘Biosense’ programme (www.cdc.gov/biosense/), for example,
monitors such a large number of data streams that the excessive number of false alarms is a problem.

As far as technical comments are concerned, I only wish to point out some related work in the literature.
Benjamini and Kling (1999, 2007) were the first to use P-values in statistical process monitoring, although
their work was unfortunately never published. Lambert and Liu (2006) used a P-value-based approach
in the monitoring of computer network data. On a different aspect of the methods, Hawkins (1993) used
Winsorization to improve the robustness of cumulative sum charts to outliers in a way that is similar to
that used by the authors.

The statistical approach that is used by the authors is a very good example of what Hoerl and Snee
(2010) and Snee and Hoerl (2011) referred to as ‘statistical engineering’. This concept has been receiving
much emphasis in the USA over the last couple of years. At their outset statistical engineering projects are
characterized by the following seven characteristics.

(a) The solution will satisfy a high level need.
(b) There is currently no satisfactory solution to the problem.
(c) The problem has a high degree of complexity involving both technical and non-technical challenges.
(d) More than one statistical method is required for solution.
(e) Long-term success requires embedding the solution into work processes through customized soft-

ware.
(f) The influence is greater than could be achieved with individual tools.
(g) The solution can be leveraged to similar problems elsewhere.

Statistical engineering projects appear in many fields. Those promoting the concept of statistical engi-
neering argue that study of these types of projects is needed to identify common success factors. Also, they
believe that statistics students should be taught about these practical, high impact projects that require
statisticians to go beyond what is typically presented in textbooks. The value of this framework is yet to
be fully determined, but I believe that it is worthy of discussion within the statistical community.

The authors replied later, in writing, as follows.

We are very grateful for all the comments, whether complimentary or critical. We have tried to group our
response into broad areas.

The basic statistical philosophy
Professor Fienberg raises two separate but vital issues in contrasting our approach with the work of the
US Center for Medical Services. The first concerns risk adjustment. This is barely discussed in our paper
but remains implicit in all our analyses of observed and expected events: the expected counts should be
derived under whatever risk adjustment model is available.

The second issue, which is also raised by Professor Gelman and Professor Louis, concerns the benefits
of a ‘model-based approach’ in contrast with our use of Z-scores and P-values, and in particular hierar-
chical Bayesian modelling in which centre-specific parameters are estimated by using shrinkage methods
and thresholds are based directly on the estimates of these underlying parameters. We would claim that
we do use a model-based approach, in that our additive random-effects models are essentially (empirical)
Bayes hierarchical models. The major difference is that instead of estimation we use a hypothesis testing
framework for identifying outliers. This is deliberate. In the estimation framework, the centre parameters
are assumed to be exchangeable and drawn from the assumed random-effects distribution, and ‘extreme’
cases are identified by examining the posterior probability that a centre parameter exceeds some critical
threshold. Note that it appears inappropriate to use as a measure of extremeness the posterior probability
that the centre parameter is greater than the overall mean, as used, for example, by Rascz and Sedransk
(2010). In an additive random-effects model this is simply the chance that the institution is worse than
average—that it ranks in the worst half of the distribution, which is not of much interest given that we
know that half of all institutions are worse than average. Shrinkage can also obscure outliers, as pointed
out by Professor Louis.

Rather than using a shrinkage estimate based on an assumed encompassing model, we are really inter-
ested in whether the institution is ‘divergent’, i.e. it is not drawn from the overall distribution that describes
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the majority of the institutions. This is a test of a distributional hypothesis and can be based on a P-value—
this approach essentially corresponds to the Bayesian P-values that are promoted by Professor Gelman,
although admittedly we do not fully allow for parameter uncertainty when creating these P-values. See
Jones and Spiegelhalter (2011) for a full discussion of these issues.

Professor Gelman also argues that statistics should be drawn towards the data. We agree, which is why
we much prefer funnel plots of the original data rather than portrayals of shrunk estimates with intervals,
which are likely to be met by considerable suspicion. And, as Gelman and Louis emphasize, rankings are
to be avoided.

Professor Longford and Professor Gelman suggest a full decision theoretic approach with losses for
different decisions. Some implicit loss function lies behind the setting of thresholds and trade-off between
different types of surveillance errors, but we feel that formalizing this would be a step too far for our
collaborators. We acknowledge Ian Hunt’s doubts that full Bayesian methods would really solve the multi-
plicity problem, and we agree that it is more appropriate to aggregate indicators further and acknowledge
limitations of the method.

Specific methods used
The discussants have made numerous suggestions for improvements of the specific methods adopted,
and we would readily admit that we have at each stage tried to select the simplest possible technique and
refinements are undoubtedly possible. Robert Grant raises the issue of non-linear transformations
and their influence on appropriate weighting. We only estimate weights for screening, and we feel that
if weights are to be used as part of an accountable judgement then they should not be obtained statisti-
cally, as they are value judgements that need to be explicit and not hidden behind statistical niceties. But
we agree that cumulative funnel plots are attractive although they make no explicit allowance for multiple
testing.

Some improvements to estimating our ‘in-control’ null distributions are proposed. Professor Atkin-
son and Professor Riani recommend robust estimation of an in-control process by using a sequential
inclusion of cases, and we agree that there are probably better ways than our simple Winsorization. Axel
Gandy and Jan Terje Kvaløy point out that ignoring estimation error in setting a standard can lead
to an anticonservative procedure, but we use plug-in values since in principle the standard should be a
fixed quantity, externally set, rather than an estimate of some underlying parameter. Professor Böhning’s
improved estimators of the random-effects parameters appear admirable since they are straightforward to
implement but, although the non-parametric methods for funnel plots that were suggested by Professor
Chacon and Professor Montanero are a possible replacement for our transformation approach, we have
worked under severe constraints of simplicity and feel that they would be too complex: similarly some
of the excellent suggestions of Dr Porcu and his colleagues may be too sophisticated for the purpose in
hand.

The work on the new SHMI of Professor Campbell and colleagues is very exciting and provides support
for additive overdispersion. In answer to their query, we use a square-root transformation of counts on
both theoretical grounds and because in practice it seems to produce reasonably symmetric ‘funnel-shaped’
distributions.

Professor Caan correctly identifies potential lack of independence of events arising from, say, out-
breaks of methicillin-resistant Staphylococcus aureus, although allowance for overdispersion should pro-
vide adjustment for such clusters. Non-independence of units due, say, to transferred patients presents a
greater problem, as Professor Ashby identifies.

Professor Arjas suggests making targets based on explicit predictions under a null model, with full
allowance for uncertainties. This is certainly attractive, but we would still be faced with specifying bounds
(e.g. P-values) for identifying ‘extreme’ and ‘divergent’ institutions. Finally, Hanna Jankowski’s nice anal-
ysis suggests that historic baselines of 4 years may be appropriate for stable setting of methicillin-resistant
Staphylococcus aureus type targets, whereas Ronald Geskus suggests that consistently just subnormal per-
formance should be identified—this would not happen in the annual scoring system but is exactly what
surveillance is supposed to pick up since cumulative sum methods accumulate such deviations.

Generalization
Our aim has been to develop methods that may be applicable to a far wider range of contexts than those
in which we have been engaged. We are therefore delighted that connections with other areas have been
drawn by the discussants. Professor Ashby suggests that social services could benefit, although Margaret
Eames points out that lack of linkage across institutions may prevent individual cases from being iden-
tified—again an issue of non-independence. Alfred Stein asks about generalizations to other healthcare
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systems, which clearly will differ with respect to their funding and regulatory responsibilities. However, the
ideas seem generic—multiple institutions, variations in casemix, multiple outcomes and indicators, fairly
simple statistical techniques and the need to identify divergent behaviour as soon as possible. Professor
Mateu points out that space–time monitoring also faces the same requirements of robust estimation of
in-control processes and allowance for multiplicity.

The strong connections that Professor Scott and Professor Gemmell make with environmental regula-
tion are compelling and suggest, in a way that was completely unappreciated by us, that the methods could
be generalized into this area. We do hope that this is so.

Cost-effectiveness of regulation
Regulation is supposed to contribute to better healthcare, and it is natural for Professor Bird to ask whether
the process is cost effective compared with other potential uses of resources, and whether investment in
better data would be worthwhile. This would be difficult to establish, as the consequences of different
forms of regulation are hypothetical (although recent experience in the financial sector suggests that ‘light
touch’ regulation can have serious unintended consequences!). She asks whether the higher qualification
rate in risk-based inspections was just a consequence of the higher expected return when picking standards
deliberately rather than at random. This may well be so but still shows that the identification of standards
for inspection yields returns.

Professor Bird also wonders whether all this bureaucracy only identifies crises that were forewarned
locally. We might expect this to be the case, since it is unlikely that any centralized monitoring mechanism
would pick up issues of which there was no local knowledge. What is vital is to identify whether local
proposals for improvement have been made and acted on.

Prospects
Many important questions await further research, such as Professor Bird’s appeal to study the process of
overdispersion—what is behind it and whether it is reducing. She also rightly emphasizes data quality,
which Greg Phillpotts notes affects everything, not just outliers. Phillpotts also queries the extent to which
our work takes the Royal Statistical Society’s Working Party’s recommendations forward (Bird et al., 2005),
whereas Tom King asks where are the indicators of ‘success’ rather than just ‘lack of failure’ and warns
against constructing instruments used for political purposes and the need to improve transparency and
accountability. We feel that we have gone some way in pushing forward the Working Party’s agenda but
admit that we have had limited influence in improving the quality of data for performance assessment, as
the imperative not to add to data collection was strong.

We welcome the experience of Professor Mengersen and colleagues in Brisbane, who express scepti-
cism about improvement arising from top-down quality initiatives. Traditional advice from the quality
improvement ‘industry’ suggests that bottom up is better, with local ownership of data and responsibility
for improvements. We strongly support their call for greater involvement in local projects—however, highly
decentralized ‘audit’ has been rather discredited, and we see a role for a central resource for methods and
central light touch scrutiny.

Finally, we are really grateful for Professor Woodall’s comments and the connection to ‘statistical engi-
neering’, which we admit was a new phrase for us. We would add to the list of desiderata that the statistical
methods that are adopted should be as simple as possible, with robustness and transparency being more
important than optimality under restricted assumptions. In this we follow Professor Militino and Professor
Ugarte’s recommendations that statistical procedures should be ‘simple, clear and as intuitive as possible’.
This means foregoing some sophistication in recognition of the low levels of numeracy that one is dealing
with in many of these areas. We strongly agree that more of these ‘statistical engineering’ ideas should be
promoted in education rather than just the simple single-data-set material that is taught in all statistics
courses. But this will be difficult to teach and examine.

In conclusion, we are gratified by the response to the paper and hope that it stimulates further work in
this area.
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