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SUMMARY

Gentleman & Geyer (1994) discuss the analysis of interval censored data and present results
based on standard convex optimisation theory. Here, this problem is viewed from the perspective
of a mixing problem of indicator functions. Using an analogy with the problem of mixture distri-
butions a variety of results are easily derived, including a characterisation theorem for the maximum
likelihood estimator and various reliably convergent algorithms. Software for the analysis of mix-
ture distributions can be used to find the nonparametric estimate of the distribution function of
the interval-censored survival time. Examples are provided to demonstrate the theory.

Some key words: CAMAN; Interval censoring; Mixture model; Nonparametric estimator of survival time;
Vertex exchange algorithm.

1. INTRODUCTION

The problem and notation are as in Gentleman & Geyer (1994). The unobserved survival time
X is supposed to arise from a distribution F, and to lie in an observed open interval (L;, R;),
corresponding to the last inspection time prior to the life event and the first inspection time after
the life event. Thus, the observable data are open intervals I, ..., I,, with I;=(L;, R;) for i=
1,...,n. The likelihood is defined as [; {F,(R;—) — Fo(L;)}, where the product is taken from 1
to n. Let {s;}7-; denote the unique ordered elements of {0, {L;}}-1, {R;}{-1}. Note that R;= o0 is
possible. If «;; denotes the indicator of the event (s;_;,s;) S I;, pj= Fo(s;—) — Fo(s;-1), then, as
outlined in Gentleman & Geyer (1994), the likelihood can be written as

L=ny xny% ... x1,, (1)

;=01 Py + - . . + % p,e) being the ith contribution to the likelihood. A general introduction to
nonparametric maximum likelihood estimation for censored data can be found in Groeneboom &
Wellner (1992). Finding the maximum likelihood of F, becomes the problem of maximising /:==log L
OVer py, ..., Pm>subjecttop;>0forj=1,...,mand p; + ... + p,, = 1. The problem is to maximise
I(p) in the finite dimensional probability simplex

A={p:=pie;+ ...+ puenlp; =0, j=1,...,m p;+ ... +p,=1},

with e; being the vector having only 0’s except for one 1 at the jth position. Mainly for numerical
purposes, we frequently consider the log-likelihood in its geometric mean version l:=n""I(p).

2. RESULTS
2-1. General

The purpose of this note is to point out and exploit some analogies between the problem at
hand and the problem of finding the nonparametric maximum likelihood estimator of a mixing
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distribution. In a variety of papers, Bohning (1982), Lindsay (1983), Bohning (1989), Bohning,
Schlattmann & Lindsay (1992) and Bohning (1995) developed a theory for the nonparametric
maximum likelihood estimator of the mixing distribution P giving weights p, . .., p,, to parameter
values 64, ..., 8, for some parametric density f(x, ). The problem of finding the maximum likeli-
hood estimator of the mixing distribution is to maximise L*:= [T, {2;f(x;, 8;)p;} over py,..., pn
if 8,,..., 80, are considered known. This clearly points the analogy to (1). We restate the relevant
theorems.

2-2. Characterising the maximum likelihood estimate

As pointed out by Gentleman & Geyer (1994), I(p) is a concave function on A. Define the
directional derivative

©(p, ) = lim {I(1 — 2)p + ag) — Up)}/x

for any p in A and any direction g. Note that ®(p, g)=VI(p)'q—n is a linear function of the
direction g. Here VI(p)' =(d,, . .., d,,)" with d;, = 0l/dp, = X; (o;/n;)- As Gentleman & Geyer (1994)
point out, d, is the sum of 1/5; for all individuals whose intervals, I;, intersect the interval (s;_1, S¢)-
Because [ is concave ®(p, q) = I(q) — I(p), and hence

sup ®(p,q) = U(p) — (p). (2)

Since ®(p, q) = 2;4,;9(p, e;), where ¢; is the jth vertex of A, the inequality (2) becomes

o

D(p)= sup 3" =n>1p)=1p). (3)

1<ksm ;
Clearly, if D(p) =0, p maximises [/ globally. This is known as the general mixture maximum likeli-
hood theorem (Lindsay, 1983), stating that D(p) =0 if and only if p maximises / globally in A.
Moreover, if p, > 0, then ®(p, e;) = 0, in other words Y, (a;/#;) = n. For the geometric mean version
of the likelihood the theorem takes the form: d, = d1/op, <1 for all k=1,...,m, and d, =1 for
those k with p, strictly positive. We demonstrate this theorem with the example given in Gentleman
& Geyer (1994, § 4).

Example 1. Let the data consist of the six intervals (0, 17, (1, 33, (1, 3], (0, 21, (0, 21, (2, 3]. This
leads to the following 6 x 3 matrix of indicators:

A= (“ij) =

O == OO =
[ e =)
_ O O = O

and the likelihood is

6
L= H (o1 P1 + A2 P + i3 P3)-

i=1

We have that
di=1/ps +2/(p1 +p2), d2=2/(p2+ p3) +2/(p1 +D2), d3=2/(p2+p3)+1/ps.

From this it is clear that p = (3,4, 3)" is the maximum likelihood estimate, since d = (6, 6, 6)" meets
the condition of the mixture maximum likelihood theorem. The point (2, 0, 3)" is clearly not the
maximum likelihood estimate, since the partial derivative d, = 8 > 6 at this point. Thus, the likeli-
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Fig. 1. Contour plot of the log-likelihood, log(p,)+ 2 log(1 — py) + 2 log(p; + p,) +log(1l — p; — p2),
for Example 1.

hood can be increased by moving in the direction of the second vertex e,. This can be seen also
by looking at the contour plot of the log-likelihood when it is written as a function of p; and p,
alone:

6
n {1 Py + iy + 03 (1 — py — pa)} = pi(1 — py)*(p1 + p2)*(1 — py — p2).
i=1
The log-likelihood in this case is
I(p) =1log(py) + 2 log(1 — p,) + 2 log(p; + p,) +10g(1 — py — pa).

The contour plot in Fig. 1 clearly encircles the maximum likelihood estimate (3, 3, )"

Example 2. The second example is more challenging. The data are from Finkelstein & Wolfe
(1985) and consist of time intervals in which cosmetic deterioration for early breast cancer patients
treated with radiotherapy occurred in 46 individuals. The intervals are listed in Table 1 in
Gentleman & Geyer (1994). To save space, the corresponding indicator (46 x 14)-matrix 4 = (a;;)
is not given here, but is obtainable from the authors if desired. For these data, it is not possible to
find the maximum likelihood estimate in closed form. Algorithmic approaches have to be applied.

2-3. Algorithms

A simple and reliable algorithm is a version of the EM algorithm (Dempster, Laird & Rubin,
1977) which in this case reduces to the iteration p with jth component pi™=d;p;. The EM
algorithm has the monotonicity property I(p™)>I(p), if p is the current iterate, which ensures
reliable convergence to the global maximum for arbitrary starting values with components all
strictly positive. However, for flat likelihood surfaces, as in this case, its convergence can be rather
slow. In addition, many of the p; might be zero, and, as pointed out by Gentleman & Geyer (1994),
the EM algorithm takes extra time to identify these; in Example 2, 6 of 14 weights are zero.
Gentleman & Geyer (1994) suggest restarting the EM algorithm with the candidate weights set to
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zero. This will speed up the convergence, but it will also run the risk of falsely setting a weight to
zero, such as p, in Table2 of Gentleman & Geyer (1994). Since the EM algorithm does not
change zero weights, it will only maximise the log-likelihood in the corresponding sub-simplex.
Indeed, if we consider p given in column 7 of Table 2 in Gentleman & Geyer (1994), that is
p, =0 in particular, we find that d, = 1:1327, indicating that the likelihood can be increased by
putting more weight on the second vertex.

In mixture models a variety of algorithms have been developed (Béhning, 1989, 1995), the useful
one being the vertex-exchange algorithm. It is defined by the iteration p + opin(€max — €min), Where
‘max’ and ‘min’ are integer indices between 1 and m, p,, corresponds to the weight of the vertex
€min, and « is a monotonic or optimal step-length in the closed interval [0, 17; see Bohning (1989,
1995) for details. The name vertex-exchange algorithm stems from its property of finding a zero
weight in one step (« = 1). Since in this context the possibility of many weights being zero arises,
the vertex-exchange method should be quite useful here as well. The index ‘max’ can be determined
as dp.x =max{d;|j=1,...,m}, whereas ‘min’ can be found as that index for which the partial
derivative is minimised under those with positive weight p;: dyi, = min{d;|j=1,...,mand p;> 0}.

The statistical package c.A.MAN has been developed for the analysis of mixture models (Bohning
et al,, 1992) utilising various algorithms including EM, the vertex-exchange algorithm, and others.
This package computes the nonparametric estimator of the mixing distribution for various densities,
including the option of the known density case (Titterington, Smith & Makov, 1985, p. 152). If
one uses this option, e.g. if one thinks of the matrix 4 = (a;;) as F =(f(x;, 0;)), with 6,,...,6,
known, then C.A.MAN can be used directly without further modification, and the whole variety of
powerful algorithms is available for this setting of interval censored data.

Table 1. Weights and gradient at maximum likelihood
estimate (Maxy <, <, d < 0:000001), I(p) = — 5806002

Jk Dk k

0-7965 0-0000 8
1-0000 0-0818 9
0-7713 0-0000 10
0-9377 0-0000 11
1-0000 0-1209 12
0-9394 0-0000 13
1-0000 0-4656 14

d 2"
1-0000 0-0463
1-0000 0-0334
1-0000 00887
1-0000 0-0708
04722 0-0000
0-8337 0-0000
1-0000 0-0926

NN B W= X

Example 2 (cont). The maximum likelihood estimate given in Table 1 could be identified using
any of the algorithms available in c.A.MAN. Note that, for any algorithm, the iteration was stopped
if max, <<, d; < 0:000001, thus guaranteeing that I( p) < I( p"**™2**) 4+ 10~ x n by inequality (3). The
EM algorithm needs a couple of hundred steps to reach this bound, whereas the vertex-exchange
method identifies the nonzero weights in only a few steps. The estimate given in Table 1 corresponds
to that given by Gentleman & Geyer (1994), as it should. However, it is interesting to observe the
deviation in the fourth digit for weight 12 and weight 14, which is given as p;, = 0-1206 and p,, =
0-4658 by Gentleman & Geyer (1994). This is probably due to the fact that the Em algorithm was
stopped too early: we reached a similar value when using the stopping rule max, <<, d; < 0-0001.
This phenomenon is observed quite frequently in mixture models (Titterington et al., 1985, p. 90).
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