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Geometrical and other constructions of monotone
step-length algorithms
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SUMMARY

This paper considers algorithms for the maximum likelihood estimator of the mixing
distribution of a family of parametric densities. Specific interest is devoted to the
monotonicity of the step-length of the solution. In § 2 we introduce the idea of estimating
the area above the second derivative curve, and in Theorem 1 we relate area-overestimation
to the monotonicity of the associated algorithm. In § 3 we apply Theorem 1 to the
monotonicity analysis of well-known algorithms as well as to the construction of a new
class of monotone step-length choices which is particularly simple in the mixture setting.
Numerical comparisons and refinements in keeping the monotonic step-length from
becoming too conservative are given. Theorem 3 characterizes conditions under which
the Newton-Raphson step is monotonic and, if these conditions fail to hold, states that
the regula falsi step is monotonic.

Some key words: Area estimation; Curvature of mixture likelihood; Monotonicity; Vertex direction method,;
Vertex exchange method.

1. INTRODUCTION

We consider a parametric family of densities f(x, #) with respect to a sample space
X <R, and a parameter space O < R,. Assuming population heterogeneity we observe a
random variable with the mixture marginal density

flx, P)= Jl)f(& )P (do).
Here P is an unknown probability measure corresponding to the distribution of 6 in the
population. This is the usual setting of nonparametric mixture modelling (Lindsay, 1983).
A general introduction is given by Titterington, Smith & Makov (1985). Mallet (1986)
extends the frame to include random nonlinear regression.

The problem is to estimate P via maximum likelihood. Given observations x,, ..., xn
find the nonparametric maximum likelihood estimator P which maximizes the likelihood

L(P)=1I, J f(xi, 0)P(d6) =11,L,(P), (1)
(€]
with L;(P) =] f(x;, ) P(d#), where the integral is over ®, denoting the ith contribution

to the likelihood. The products in (1) are from 1 to N. Observe that I(P)=1og L(P) is
a concave functional on the set % of all probability measures on X. This formulation
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points out the similarity to the D-optimal design problem, where D stands for determinant
(Fedorov, 1972; Silvey, 1980); many well-known theorems can be easily rederived for
the mixture setting. Let P, be the one-point measure which puts all its mass 1 at § and define

Q(s)=log L{(1—s)P+sP,}, se[0,1].
Then the first derivative with respect to s is
Q'(0)=d(6, P)— N,
with

< f(xi, 0)
d(e, P) L)
The Kiefer-Wolfowitz equivalence theorem for mixtures (Lindsay, 1983) states that Pis
a nonparametric maximum likelihood estimator if and only if max, d (6, 13) =N.

This theorem suggests the following algorithmic approach to find P. Consider convex
combinations (1—s)P + sP, with # maximizing d(., P) for current value P. This method
is called the vertex direction method since we are always moving in the direction of a
vertex P, of the probability simplex 2. An alternative to the vertex direction method is
the vertex exchange method, defined for s €[0, 1] by the iteration P+ sP(0*)(P, — P,+),
where 0 maximizes d(., P), and 6* minimizes d(., P) in the support of P. Clearly, if
s=1, P+ P(6*)(P,— P,+) exchanges the ‘bad’ support point 6* with the new point 6.
There are other alternatives to the vertex direction method such as the projected gradient
(Wu, 1978) or the projected Newton method (Atwood, 1976, 1980). These procedures
are compared in detail empirically with examples from optimal design and mixture
likelihood by Bohning (1985) with results in favour of the projected Newton and the
vertex exchange method; in terms of convergence rate, the Newton was slightly superior
to the vertex exchange method, whereas the vertex exchange method is superior in
numerical complexity. Silvey, Titterington & Torsney (1978) suggest an algorithm for
optimal designs on a finite design space, of which the analogue in the mixture setting
with finite, fixed support is an EM algorithm (Dempster, Laird & Rubin, 1977). In §2
we offer a class of monotonic step-length choices for any feasible direction h; here
feasible means P+ she & for all s€[0, 1]. We observe an important geometric property
of the mixture likelihood function. Define Q(s)=1og L(P+sh), s€[0, 1]. We have

v N [f(x, 6)h(d6) }2<
Ql=-2, {If(x.-, 0P+ sh(ds)] =
o X[ [ fxi, 0)h(d8) }“<
Q"(s)=-6 % {If(x.-, o)P+sh(an)] ="

i=1
showing that Q is concave and has a concave second derivative.

2. AREA ESTIMATION AND MONOTONICITY

In this section we offer another interpretation of the Newton-Raphson algorithm as
an area estimation algorithm. Consider

A(s)= j Q"(t) di = Q'(s) — Q'(0),

the area above the curve Q" from 0 to s. Specifically, for the line maximizer § we have

A(5)=Q'(3)-Q'(0)=-Q(0). (2)
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Equation (2) allows an interesting perspective: although we do not know §, we do know
A(S), the area above Q" from 0 to §: it is —Q’(0).

Algorithms differ in the way they estimate A(s). Let a(s) denote the estimate of A(s).
Then many well-known algorithms can be reproduced by equating a(s) with the ‘true’
A(8) =—Q’(0) and solving it for s. The estimating equation is

a(s)=A(8) =-Q(0). 3)

As an example consider the Newton-Raphson algorithm. It uses the rectangular estimate

anr(s) =sQ"(0)

namely the box with height Q"”(0) and length s. Equation (3) then gives the usual
Newton-Raphson iterate. We are able to give a simple condition for the step-length to
be monotonic. It connects the idea of area overestimation with the monotonicity of an
algorithm.

THEOREM 1. Let
a(s)<A(s) forallse€[0,1]. (4)
Then s defined by the estimating equation (3) is monotonic.

Proof. We have a(s)< A(s) for all s. In particular this is true for s satisfying (3).
Denote this by s*. Then A(s*)= a(s*)= A(S). Since A is strictly decreasing we have
0<s*<3§, implying Q(0)< Q(s*). O

Note that A(s) <0. Geometrically, the condition (4) means that the area above the
curve is always smaller than the estimated area. In the case of ang this condition is met

if inf, Q"(¢) = Q"(0).

COROLLARY. Let area satisfy the continuity condition a(s)—> 0 if s > 0. Also, let {P,} be
any sequence of the type P, , = P, +s,h,, where h, is either the vertex direction or the vertex
exchange method, and s, is the step-length choice according to (3). If s, meets the overestimat-
ing condition (4) then I(P,) - I(P) monotonically.

Proof. Monotonicity is clear. Suppose lim I(P,) < l(f’) as n->00. Then also
sup, d(6, P,) is bounded away from N. Consider the second-order Taylor expansion

I(P, + sh,) = 1(P,) = sQ(0) +325* Q1 (s),

with s*€[0, s] and Q,(s)=I(P,+ sh,). Since Q) (0)=—a(s,) is bounded away from its
lower bound 0, s, is also bounded below by some positive constant. This finally forces
I(P,) - oo, which is impossible since I is bounded above. O

3. SPECIFIC AREA ESTIMATORS
As another example let us consider the secant method step-length

Ssee =—Q'(0)/{Q'(1) — Q'(0)}.
The secant method assumes that A(s) can be estimated as the sth point of A(1)=
Q'(1)—Q'(0):
asec(s) = SA(I)'



378 DANKMAR BOHNING

Equation (3) leads again to s,... For the secant step-length to be monotonic, condition
(4) takes the form

s{Q'(1) = Q'(0)}=< Q'(s) - Q'(0)
or

(1-5)Q'(0)+sQ'(1) < Q'(s).
So, condition (4) applied to a,.. is equivalent to Q' being concave, a condition which is
easy to check. However, it does not hold in general for our case, but see § 5.

Clearly, the estimating technique used by the Newton-Raphson algorithm is not
necessarily monotonic as can be demonstrated in a simple picture. Next, we offer two
modifications of ayg leading to monotonic behaviour in general. Condition (4) shows
the way. In our case, Q"(s) is concave and thus, it attains its minimum either at 0 or 1.
So, we construct the box by choosing its height by M =min {Q"(0), Q"(1)}: apox(s) =sM.
Equation (3) leads to sy, = —Q'(0)/ M. Clearly, the technique is more general in nature.
However, in-other problems we might not gain a lot, since we are replacing one minimum
problem by another.

Above we have used a very rough approximation of a concave function, namely a
horizontal line going through the minimum of Q" on the line segment [0, 1]. Why not
approximate Q" by the line which connects Q"(0) and Q"(1)? The area of the resulting
trapezoid with height s is given by

a,p(s) = sQ"(0) +35°{Q"(1) — Q"(0)}. (5)
Equation (3) leads to
sQ"(0)+35*{Q"(1) — Q"(0)} + Q'(0) =0
or
s> +2As+B=0, (6)
with
A=2Q"(0)/{Q"(1)-Q"(0)}, B=2Q'(0)/{Q"(1)-Q"(0)}

assuming Q"(1) Q"(0). There are two cases. If A>0 then Q"(1)< Q"(0) and B<0.
Thus A*>— B> A’ and the upper zero of (6) has to be taken:

Sup=—A+ (A2~ B):>0. (7a)
If A<0 then Q"(1)> Q"(0) and B>0. Thus A’>— B < A? and the lower solution
Sup=—A—(A’~ B)}>0 (7b)

of (6) has to be used. If Q"(0)=Q"(1) then s,, = Snr-
Table 1 summarizes various step-length choices. The last step-length formula is sug-
gested and proved to be monotonic by Mallet (1986) in connexion with the vertex direction

Table 1. Various area estimators and corresponding step-length choices

Cond. for
Method a(s)—estimator Step-length monoton.
NR sQ"(0) snr = —Q'(0)/Q"(0) Q"(0)=inf, Q"(1)
sec sA(1) See=—Q'(0)/A(1) Q' concave
box smin {Q"(0), Q"(1)}  Suox=—Q’(0)/min {Q"(0), Q"(1)} none
trp (5) 7 none

Q'(0)

Mallet sN{1-Q'(0)~ N} M N{QO) F N=1}

h, vertex direction
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method for mixtures. The formula is inspired by the close link to the D-optimal design
problem. However, whereas in the D-optimal design problem the corresponding formula
provides the line maximizer, we will see in § 4 that s,, can be far from optimality.

4. EMPIRICAL COMPARISONS
Suppose 6 can attain only 3 values, 0 €{1, 2,3}, and x€{1, 2, 3, 4},

[f(x,1)]=(0-60 0-30 0-05 0-05)",
[f(x,2)]=(0-05 0-15 0-30 0-50)",
[f(x,3)]=(0-01 0-08 0-21 0-70)".

Further suppose that the number of times we have observed x =1, 2, 3, 4 are respectively
15, 10, 20, 55 so that N =100. Then P is (0-2102, 0-0424, 0-7473)T (Bohning, 1985).

Choose as search direction the vertex exchange method; for computational details see
the Appendix. The three step-length choices under consideration are Syox, Ssec aNd Syp.
The results are given in Table 2. Recall that max, d (6, P,) = N means that P, is a maximum
likelihood estimate. We are concentrating on convergence rate. Because of the nice
computational forms there are practically no differences in terms of computational
complexity. Clearly, trp and sec are superior to box.

Table 2. max, d(6, P,) for the vertex exchange method with three different step-length choices

n Shox Ssec slrp n Sbox Ssec strp

1 120-11 120-11 120-11 8 115-18 102-93 101-67
2 119-30 113-71 113-79 10 114-02 102-12 100-61
4 117-81 107-34 106-40 15 111-53 100-51 101-05
6 116-43 104-43 103-03 20 109-89 100-27 100-06

Let us close this section with some remarks concerning the vertex direction method.
If we use the vertex direction method with step-length choice according to Mallet, we
have at n=20000 P, =(0-2027,0-1097, 0-6856)", which is still far away from P. At that
step, d(0,, P,) =100-29. The vertex direction method with step-length choice according
to s, does better. We have 4 digits of accuracy after about 1000 iterations. Nevertheless,
the overall performance of the vertex direction method is not satisfying. A referee raised
the point that using the vertex direction method a monotonic step-length will always be
feasible, e.g. less than 1, since § is less than 1, whereas this would not always be obvious
for general h. In fact, when the vertex exchange method is used, § is sometimes larger
than 1. Since Q is concave the optimal step-length is s = 1, defining an exchange step in
this case. In addition, § =1 is easily detected by Q’(1)=0. If, however, § <1 then any
step-length satisfying (4) has to be feasible.

5. HALLEY'S CORRECTION AND THE WEIGHTED CURVATURE AVERAGE

The modifications of the Newton-Raphson step-length, as discussed in § 3, often slow
down the convergence rate. This is particularly the case for the estimator a,,, as can be
seen in the first row of Table 2. The question is: how can we overestimate A(s) and be
simultaneously as close as possible to A(s) to achieve quick convergence? Richardson
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(1988) points out that rectangular area estimators can be better than trapezoidic estimators.
We now consider the construction of an optimal rectangular area estimator.
We consider the cubic approximation of Q(s)— Q(0),

sQ'(0)+3Q"(0)s*+5Q"(0)s°,
which is maximized at s fulfilling
Q'(0)+ Q"(0)s +3Q"(0)s*=0. (8)

If we replace the third derivative by the secant approximate Q"(1) — Q"(0), we are back
at equation (6). We note in passing that the trapezoidic estimation technique can be
viewed as an approximate third-order method. Instead of looking at the two solutions
of (8), we rewrite (8) as

s ==Q'(0)/[Q"(0)+35{Q"(1) — Q"(0)}]. 9)

We achieve the Halley correction (Gander, 1985) by replacing s on the right-hand side
of (9) with the Newton-Raphson correction —Q’'(0)/ Q"(0). More generally, one may
consider

s.==Q'(0)/[Q"(0) +{Q"(1) = Q"(0)}],

showing that the Halley correction is a specific weighted average in the curvatures at
s=0 and s=1; namely t=—-Q’'(0)/{2Q"(0)}. Other averages are possible such as t=3.
The question arises as to whether there is an optimal ¢ in the sense that

Q"(0)+{Q"(1) - Q"(0)} = A(1). (10)

Statistically speaking, the question is: when do two averages coincide, one with respect
to a uniform distribution, the other with respect to a distribution which puts all its mass
at the border? Geometrically, this question can be stated as: when does a box of length
1 and height between Q"(0) and Q"(1) exist such that its area is equal to the area above
Q" from 0 to 1.

THEOREM 2. If
M =max {Q"(0), Q"(1)}= A(1), (11)
then there exists a feasible solution t to (10) given by
t={Q'(1)-Q'(0) - Q"(0)}/{Q"(1) - Q"(0)}.
Proof. First suppose that M = Q"(0). From (11) follows
Q"(0)=Q'(1)-Q(0)

or Q'(1)— Q’'(0) — Q"(0) <0. In addition M = Q"(0) > Q”(1) implying that ¢ = 0. Of course
the minimum M* = Q"(1)< Q’(1)— Q’(0) or

Q"(1)=Q"(0)=Q'(1)-Q'(0) - Q"(0),

ort=1.
A second case is that M = Q"(1). From (11) it follows that Q"(1)= Q’(1) — Q’(0) or

Q"(1)=-Q"(0)=Q’'(1) - Q'(0)— Q"(0),
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that is t<1. Also M*=Q"(0)< Q'(1) — Q'(0) implying
Q'(1)-0Q(0)-Q"(0)=0
or, t=0. D

The condition (11) is somehow contrary to our construction principles used so far.
For the two boxes with length 1 and height Q"(0) and Q"(1), respectively, the condition
states that the smaller one of these two boxes has to have an area not larger than the
area above Q" from 0 to 1. A typical situation, in which (11) fails to hold, occurs if
max, Q"(t) is attained in the interior of [0, 1] and is much larger than max {Q"(0), Q"(1)}.
In this case, even the celebrated trapezoidic approximation would give quite a conservative
step-length.

Note that the optimal curvature average brings us back to an old method, the secant
step-length:

Q"(0)+1{Q"(1) = Q"(0)} = Q'(1) — Q'(0),
with ¢ as in Theorem 2.
We conclude the paper with a central theorem. It not only clarifies under which

circumstances the Newton-Raphson step is monotonic, it also provides as an alternative
the secant method with guaranteed monotonicity if these circumstances fail to hold.

THEOREM 3. (i) If Q"(0)< Q"(1) then sy is monotonic.
Let now Q"(0)> Q"(1).
(ii) If Q"(0) < A(1) then syg is monotonic.
(iii) If Q"(0)= A(1) then the optimal curvature average exists and is given by

Q"(0)+{Q"(1)— Q"(0)} = Q'(1) — Q(0).
In addition, s, = s is monotonic.
Proof. The theorem is proved if we have verified (3) of Theorem 1 for each of the three

cases. For (i) and (ii) this is obvious. To prove (iii) we have to verify condition (3), that
is

s[Q"(0)+H{Q"(1) - Q"(0)}] = s{Q'(1) - Q"(0)} =< A(s)

for all s. Suppose there exists s* such that s*{Q'(1) — Q'(0)} > A(s¥). It follows that
this inequality has to be true even for all s€[s* 1] leading to a contradiction for
s=1. D

Our construction principles so far are using the knowledge of Q' and Q" at s =0 and
s=1. Yet another way would be adaptive. Suppose we use in a first step sygr. If
Q(snr)= Q(0) then set s, =snr- If, however, Q(snr) <Q(0) we use one of our
monotonic step-length choices discussed above, with Q"(1) replaced by Q"(snr). For
example, use the box-estimator. Then, we set

Snew = Sbox = _Q’(O)/min {Q”(O), Q"(SNR)}
leading again to a monotonic step-length. The computational expense is a little greater
here.
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APPENDIX
Computational forms

Let

Q(s) =1, IOng(xi,-) d(P+sh)

=Zi10g{Jf(xi,-) dP+s Jf(xi,-) dh}

=Zi lOg (Li+SHi)’
with H; = [ f(x;,.) dh. For the vertex direction method, h = P, — P, we have

Hi =f(xi, 0)_Jf(xi, ') dP

and for the vertex exchange method, h = P(6*)( P, — Pyx),
H; = P(6*){f(x;, 6) — f(x;, 6%)}.
Ignoring indices we have in general
Q(s)=Y H/(L+sH), Q'(s)=-X{H/(L+sH)Y,
and specifically
Q(0)=Y H/L, Q"0)=-Y(H/L),
Q(1)=Y H/(L+H), Q"(1)=-Y{H/(L+H)}Y.
Write @ = H/L and arrive at the computationally simple relations
Q()=Ya Q()=xa/(a+1),
Q0)=-Y &, Q'(1)=-X{a/(a+1}.
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