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SUMMARY

The analysis of the geographic variation of disease and its representation on a map is an important topic in
epidemiological research and in public health in general. Identification of spatial heterogeneity of relative risk
using morbidity and mortality data is required. Frequently, interest is also in the analysis of space data with respect
to time, where typically data are used which are aggregated in certain time windows like 5 or 10 years. The
occurrence measure of interest is usually the standardized mortality (morbidity) ratio (SMR). It is well known that
disease maps in space or in space and time should not solely be based upon the crude SMR but rather some
smoothed version of it. This fact has led to a tremendous amount of theoretical developments in spatial
methodology, in particular in the area of hierarchical modeling in connection with fully Bayesian estimation
techniques like Markov chain Monte Carlo. It seems, however, that at the same time, where these theoretical
developments took place, on the practical side only very few of these developments have found their way into
daily practice of epidemiological work and surveillance routines. In this article we focus on developments that
avoid the pitfalls of the crude SMR and simultaneously retain a simplicity and, at least approximately, the validity
of more complex models. After an illustration of the typical pitfalls of the crude SMR the article is centered
around three issues: (a) the separation of spatial random variation from spatial structural variation; (b) a simple
mixture model for capturing spatial heterogeneity; (c) an extension of this model for capturing temporal informa-
tion. The techniques are illustrated by numerous examples. Public domain software like Dismap is mentioned that
enables easy mixture modeling in the context of disease mapping. Copyright # 2003 John Wiley & Sons, Ltd.

key words: descriptive measure for spatial heterogeneity; simple estimators for heterogeneity variance;
mixture models for space-time data

1. INTRODUCTION

Environmental justice and equity are emerging concepts in the development of environmental health

policy. These concepts are related to questions on the spatial distribution of environmental

contaminants in the population leading to the potential occurrence of certain diseases in different

parts of the population. Disease mapping can be defined as a method for displaying the spatial

distribution of disease occurrence (or exposure occurrence), the most prominent forms being the
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variety of existing cancer atlases (Holland, 1991; 1992; Becker et al., 1984; Becker and Wahrendorf,

1997; Cartwright et al., 1990). A frequent objective in geographic epidemiology is to present that part

of the spatial variation of a disease occurrence distribution, which cannot be explained by the different

distribution of known factors in the various regions nor is it due to random variation. Often, interest is

in the hope to find hints to unknown risk factors. Typically, the occurrence measure used in

epidemiology and public health institutions is the standardized mortality ratio (SMR), computed

only for some aggregated unit such as an area (county, municipality, etc.). It is defined as

SMRi ¼ Oi=Ei

in the ith region, where Oi are the observed death (mortality) or disease (morbidity) cases, and Ei are

the expected cases computed from a reference population, for each of the i¼ 1; . . . ; n areas. A typical

layout of this situation is displayed in Figure 1 for the states of Austria.

Two conventional methods are used to construct the disease map. The first one uses a classification

based upon a certain percentile of the empirical SMR-distribution. An example is given in Figure 2

(top) for childhood leukemia in the new states of Germany for the period of 1980–1989, using

quartiles. The second conventional method used frequently is based upon the Poisson distribution

Figure 1. Typical layout for a disease mapping situation here exemplified at the states of Austria using the package dismap
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Figure 2. Classification based upon quartiles (top) and the P-value of the Poisson distribution (bottom) for the example of

childhood leukemia, new states of Germany, 1980–89
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Poðoi j�EiÞ ¼ expð��EiÞð�EiÞoi=oi!; in particular, it is classification based on the P-value under the

Poisson distribution,

PðOi � oiÞ ¼ Poðoi j�EiÞ þ Poðoi þ 1 j�EiÞ þ � � �

This method is illustrated in Figure 2 (bottom) for the same data.

One of the disadvantages of the conventional methods can be seen in the fact that they can represent

considerable random variation on the map. Clayton and Kaldor (1987) formulate the critical issues:

One of the main problems has been the choice of the appropriate measure of cancer incidence or

mortality to map. Some atlases have presented measures of relative risk, usually standardized

mortality ratios (SMRs), while others display the statistical significance of local deviations of risk

from the overall rates on the map. Both these approaches can badly misrepresent the geographical

distribution of cancer incidence. In the former case, no account is taken of varying population size

over the map, so that imprecisely estimated SMRs, based on only a few cases, may be the extremes

of the map, and hence dominate its pattern. On the other hand, mapping significance alone totally

ignores the size of the corresponding effect, so that on the map, two areas with identical SMRs

may be indicated quite differently if they are of unequal population size, and the most extreme

areas may simply be those with the largest populations. Not only are these approaches

unsatisfactory, but the lack of a common format of presentation frustrates the comparison of

cancer across atlases.

For further discussion see also Böhning (2000, Chap. 7). In the forgoing example of childhood

leukemia both methods represent only (Poisson) random variation. If the random variation is removed

frorm the map there is no variation left, as can be seen in Figure 3. How this was found out will be

revealed in the following section.

2. SOME SIMPLE DESCRIPTIVE MEASURES FOR SPATIAL HETEROGENEITY

We describe the usual, basic assumptions. Conditional on the values of � the observed number of cases

is assumed to be Poisson: Oi � Poðoi j�EiÞ. Furthermore, we allow for heterogeneity in �. It is

assumed that � has some (not further specified) distribution P with existing mean m and variance �2

(P will be denoting the heterogeneity distribution of �). Taking both distributional concepts together

we are led to the marginal distribution:

Z 1

0

h
expð��EiÞð�EiÞoi=oi!

i
pð�Þ d�

Thus we have three distributions:

* the conditional distribution Oi j� � Poðoi j�EiÞ (or Level I distribution)
* the heterogeneity distribution � � P, having density pð�Þ (or Level II distribution)
* and the marginal distribution

Oi � fðoi jEi;PÞ ¼
Z 1

0

Poðoi j�EiÞpð�Þ d�
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Now, the mean and the variance of Oi with respect to the marginal distribution is given as Ei for the

mean and VarðOiÞ ¼ �Ei þ �2E2
i for the variance, which can be written alternatively as

VarðSMRiÞ ¼ �=Ei þ �2 ð1Þ

Note that for a homogeneous Poisson case (�2 ¼ 0) we yield the conventional Poisson variance

VarðSMRiÞ ¼ �=Ei. Solving Equation (1) for �2 and taking averages we achieve a simple estimate

for �2:

�̂2 ¼ 1

n

X
i

ðSMRi � �Þ2 � 1

n
�
X
i

E�1
i ð2Þ

which is of the form:

estimate of �2 ¼ ðsample variance of SMRÞ � ðpredicted variance under homogeneityÞ

Figure 3. True map for the example of childhood leukemia, new states of Germany, 1980–89: homogenous spatial structure
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Equation (2) estimates a residual variance which is not due to Poisson random variation, but expresses

some form of extra-spatial variation in risk. Furthermore, we are able to give some simple proportional

measures, such as proportion of spatial heterogeneity (PSH),

PSH ¼ �̂2
. 1

n

X
i

ðSMRi � �Þ2

and the proportion of spatial random variation (PSRV),

PSRV ¼ 1 � PSH

We summarize some properties of the PSH measure.

Properties. Let PSH be as defined above: PSH¼ �̂2= 1
n

P
iðSMRi � �Þ2

. Then,

(i) 0 � PSH � 1
(ii) E (numerator of PSH)¼ �2

E (denominator of PSH)¼ �2 þ 1
n
�
P

i E
�1
i

E (PSH)� �2=½�2 þ 1
n
�
P

i E
�1
i �

Examples:

(a) Childhood leukemia in the new states of Germany, 1980–89. We find that the proportion of spatial

heterogeneity is PSH¼ 0, and consequently all variation seen in Figure 1 is due to Poisson noise,

or PSRV¼ 1.

(b) Lip cancer in males in the new states of Germany, 1980–89. Here we find a considerable

proportion of spatial heterogeneity, namely PSH ¼ 0:6260, PSRV ¼ 0:3740. This means that

here, 63% of the total spatial variation is explained by spatial heterogeneity. In this case the true

map of spatial heterogeneity is provided in Figure 4, indicating a remarkable north–south gradient

in East Germany. (Figure 4 was constructed using the mixture model, Equation (10), which will be

introduced in Section 5; the reader should be able possibility to visualize the meaning of the high

value of PSH in this application already at this stage.)

3. ESTIMATION OF HETEROGENEITY VARIANCE

We are interested in estimating the variance �2 of the heterogeneity distribution P, the distribution

describing the variation in �. Sometimes this variance is also called prior variance. We go back to

Equation (1), where the marginal variance was provided as

VarðOiÞ ¼ �Ei þ �2E2
i

Consider the random variables

Wi ¼
fOi � �Eig2 � �Ei

E2
i

¼ ðSMRi � �Þ2 � �=Ei ð3Þ
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We note that, for all i ¼ 1; . . . ; n, the Wi are unbiased: EðWiÞ ¼ �2. It is clear that some form of

pooling is necessary. We consider the linear family

T�ðWÞ ¼
X
i

�iWi

�X
i

�i ð4Þ

with positive, but otherwise arbitrary, �i. This is a rather rich family of (quite simple) estimators for �2.

Specific values of �i lead to estimators suggested in the literature such as: �i ¼ 1=n (Böhning and

Sarol, 2000), �i ¼ Ei (Marshall, 1991), and �i ¼ E2
i (Bautista, 1997). Clearly, the best choice for �i is

given as the inverse variance of Wi : 1=VarðWiÞ. However, VarðWiÞ depends on the first four moments

and involves also the unknown parameters �2 and (potentially) �. Therefore, the question of which �i

to be used is still open. Some progress has been achieved in Böhning et al. (2001, 2002), providing

some advantageous evidence for the Marshall estimator; the estimator using equal weights is very

appropriate if there is large heterogeneity. To use any estimator based upon Equation (3), knowledge

about the mean parameter � needs to be incorporated. For example, if internal indirect standardization

is used, then the mean � is necessarily estimated by � ¼ 1. Recall that internal indirect standardization

characterizes the fact that the same data set is used to provided the Ei. To be more specific, let Oij be

Figure 4. True spatial structure of relative risk for lip cancer in the new states of Germany, 1980–89 (true spatial risk structure

was found using the mixture model discussed in Section 5)
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the observed number of cases and nij the number at risk in the ith area and jth age group. Then, age-

specific reference rates are constructed as �j ¼
P

i Oij=
P

i nij for each age group j. Then, define Ei asP
j �jnij;, and it follows that

P
i Ei ¼

P
i

P
j½
P

i Oij=
P

i nij�nij ¼
P

i Oi. However, in full generality it

is required that � is left unspecified, in which case it needs to be replaced by an estimate. There are two

natural estimates of �: the maximum likelihood estimate
P

i Oi=
P

i Ei and the simple mean

1=n
P

i Oi=Ei. If the simple mean is used, it is shown in Böhning and Sarol (2000) that
P

i Wi=n is

unbiased for �2. In all other cases, Equation (3) will no longer be unbiased. However, it has been shown

recently (Böhning et al., 2002) that this bias is contributing rather little to the MSE of estimating �2

(when compared to the case when the true value of � is used).

4. DISEASE MAPPING WITH EMPIRICAL BAYES

Let us consider the heterogeneity distribution pð�Þ of � as prior and compute the posterior distribution

(simply using Bayes theorem),

pð� j oi;EiÞ ¼
Poðoi j�EiÞpð�Þ

fðoi jEi;PÞ
¼ Poðoi j�EiÞpð�ÞR1

0
Poðoi j�EiÞpð�Þ d�

ð5Þ

and the associated posterior expectation,

Eð� j oi;EiÞ ¼
Z 1

0

�pð� j oi;EiÞ d� ð6Þ

Sometimes Eð� j oi;EiÞ takes on a particular simple form as in the following example.

Example: Let pð�Þ be the Gamma distribution �ð�; �2Þ with a specific parameterization in which �
denotes its mean and �2 its variance. Then we have that

Eð� j oi;EiÞ ¼
oi þ �2=�2

Ei þ �=�2
¼ �2oi þ �2

�2Ei þ �

Note that in the case of no heterogeneity ð�2 ¼ 0Þ;Eð� j oi;EiÞ ¼ �, and in the case of dominating

heterogeneity ð�2 largeÞ;Eð� j oi;EiÞ ¼ oi=Ei.

For the posterior expectations to be useful we need to replace the prior (or the parameters therein)

by estimates, which leads to empirical Bayes estimates for the SMR. In the example of the �-prior

simply replace � and �2 by one of the estimates of Section 3; � can be estimated by the simple average

of the SMRi or by the pooled mean
P

i oi=
P

i Ei,

SMREB
i ¼ oi þ �̂2=�̂2

Ei þ �̂=�̂2
ð7Þ

The empirical Bayes estimators (Equation 7) were applied to the example of leukemia in the New

States of Germany, 1980–89. Figure 5 shows the original quartile map based upon the crude SMR-

values (top) as well as the one based upon Equation (7) (bottom), and redrawn on the same scale as the

quartile map for the crude SMRs (bottom left). The result is rather clear: all spatial heterogeneity has
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Figure 5. Childhood leukemia in the new states of Germany, 1980–89: based upon crude SMR (top) and SMREB using a

Gamma prior (bottom)
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disappeared. This is due to the fact that PSH¼ 0 or, equivalently, �2 is estimated to be 0. This means

that all variation observed is random variation, and the empirical Bayes estimator (Equation 7) adjusts

for this in a quite natural way.

The empirical Bayes estimators (Equation 7) were also applied to the example of lip cancer in the

new states of Germany, 1980–89. Figure 6 shows the original quartile map based upon the crude SMR-

values (top) as well as the one based upon Equation (7) (bottom). The result is quite clear: spatial

heterogeneity is dominating, so there is not much difference in the two maps. This is due to the fact

that PSH is more than 50 per cent or, equivalently, �2 is estimated to be much larger than 0. This means

that most of the variation observed is due to spatial variation, and the empirical Bayes estimator

(Equation 7) becomes close to the crude SMR. Theses examples illustrate nicely how the empirical

Bayes estimator accounts for the amount of random variation in a given map.

For further discussion on empirical Bayes methods the interested reader may look at Lawson et al.

(1999), Böhning (2000), or Biggeri et al. (1993).

In general, estimates of the posterior distribution can be achieved as follows. We replace pð�Þ in the

posterior distribution,

pð� j oi;EiÞ ¼
Poðoi j�EiÞpð�ÞR1

0
Poðoi j�EiÞpð�Þ d�

by an estimate p̂ð�Þ, where a general way to determine this is to use the marginal likelihood (mixture

likelihood),

LðPÞ ¼
Y
i

fðoi jEi;PÞ ¼
Y
i

Z 1

0

Poðoi j�EiÞpð�Þ d�

P can be a parametric distribution with parametric density p(�) like Gamma or Normal, but P can also

be left as non-parametric distribution on � with discrete pð�Þ, usually written as

P ¼ �1 �2 � � � �k

p1 p2 � � � pk

� �
ð8Þ

Then we use the non-parametric maximum likelihood estimate (NPMLE) of P. The NPMLE is the

discrete distribution which maximizes the likelihood

LðPÞ ¼
Y
i

fðoi jEi;PÞ ¼
Y
i

X
j

Poðoi j�jEiÞpj

over all discrete probability measures P. Then, we are able to compute the non-parametric empirical

Bayes estimate of the SMR as

SMREB�NP
i ¼

X
j

�̂j

|fflffl{zfflffl}
� Poðoi j �̂jEiÞp̂j

.X
l

Poðoi; j �̂lEiÞp̂l
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ð9Þ

value of � posterior density

These developments in the context of disease mapping in its general form go back to Clayton and

Kaldor (1987).
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Figure 6. Lip cancer in the new states of Germany, 1980–89: based upon crude SMR (top) and SMREB using a Gamma prior

(bottom)
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5. DISEASE MAPPING IN SPACE USING (NON-PARAMETRIC) MIXTURES

The basic idea is as follows. Suppose that there are n areas given defining the observed risk structure.

In addition, there is a second, unobserved map providing the true, but not observable, spatial structure

of risk. The situation is illustrated in Figure 7. Furthermore, we have the observed cases o1; . . . ; on, the

expected cases E1; . . . ;En and non-observed indicators Z1; . . . ;Zn, where Zij ¼ 1 means that area i is

from component j in the non-observable map with relative risk �j.

This situation is readily modeled as follows. As before, we assume that the SMRi ¼ Oi=Ei is

provided by a Poisson distribution

Oi � Poðoi j�jEiÞ ð10Þ

Figure 7. Observable map of relative risk (top) and non-observable map of spatial relative risk structure, here with two

components (bottom)
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conditionally, Oi being from the area with mortality rate �j. Furthermore, there might be k different

components, and the proportion of these k components is provided by p1; . . . ; pk. If we think of an

experiment that allocates an area to one of the k components, the associated distribution is provided by

the discrete mass distribution, giving mass pj to component with � ¼ �j, in other words

P ¼ �1 �2 � � � �k

p1 p2 � � � pk

� �
. In summary, conditional on component membership a Poisson distribution is

assumed, whereas the component distribution is left non-parametric.

Marginal distribution. Now, let us consider the unconditional probability PrfOi ¼ oig:

PrfOi ¼ og ¼
X
j

PrfOi ¼ o;Zi ¼ ejg

¼
X
j

PrfOi ¼ o jZi ¼ ejgPrfZi ¼ ejg

¼
X
j

Poðo j�jEiÞpj

where ej is the vector of 0s with 1 in the jth position. This result can be expressed as

Oi � p1PoðOi j�1EiÞ þ p2Poðoi j�2EiÞ þ � � � þ pkPoðoi j�kEiÞ ð11Þ

which is a non-parametric mixture of Poisson distributions. Equation (11) can be nicely interpreted as

various forms of spatial heterogeneity. If k ¼ 1 there exists a homogeneous risk structure; if k ¼ 2 we

have a spatial heterogeneity consisting of two different components, etc. Estimation of the parameters

p1; �1; . . . ; pk; �k, including the number of components k,

P ¼ �1 �2 � � � �k

p1 p2 � � � pk

� �

is usually done by maximum likelihood and leads to the non-parametric maximum likelihood estimate

of a mixing distribution (Laird, 1978; Simar, 1976; Lindsay, 1983; Aitkin, 1996, 1999). The NPMLE

is well investigated theoretical (Lindsay, 1995) and is algorithmically possible (Böhning, 1995).

Frequently, the EM algorithym for mixtures (Dempster et al., 1977) is used.

Map construction. The actual disease map construction utilizes the Bayes theorem. If we think of the

mixing distribution P as a prior distribution of the Poisson parameter �, we are able to achieve the

posteriori distribution (actually also the expected values of zij) as

fð�j j oi;Ei; P̂Þ ¼ Poðoi j �̂jEiÞp̂j
.X

l

Poðoi j �̂lEiÞp̂l ð12Þ

for each of the n areas. Each area i is classified into component (color) j such that the posterior

distribution fð�j j oi;Ei; P̂Þ is maximized over all components 1; . . . ; k.

Two applications. As a health region we consider the 219 counties of the former German Democratic

Republic (the five new states of Germany). We look at the occurrence distribution of the following two

cancer sites:

1. incidence on lung cancer (ICD 162) for women, 1980–89
2. incidence on mamma carcinoma (ICD 174), 1980–89.
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For lung cancer in females the following estimate of the mixing distribution (NPMLE) was identified:

�1 �2 � � ��k

p1 p2 � � � pk

� �
¼ 1:33 0:98 0:78 0:56

0:12 0:27 0:51 0:10

� �
; k̂ ¼ 4

The associated posterior classification is provided in Figure 8 (top). About 12 per cent of the region are

classified into the elevated relative risk component of 1.33. These are mainly clustered in the State of

Brandenburg around Berlin (the white spot on the map).

For the other cancer site (mamma carcinoma), a less pronounced map emerges. The estimate of

spatial heterogeneity is again provided via the estimate of the mixing distribution (NPMLE):

�1 �2 � � ��k

p1 p2 � � � pk

� �
¼ 1:21 1:15 1:04 0:92 0:73

0:02 0:06 0:20 0:68 0:04

� �
; k̂ ¼ 5

There is a few elevated regions with some clustering of the minorly elevated regions belonging to the

component with relative risk 1.15; these are partly concentrated in the south-west of the health region

(see Figure 8, bottom).

6. DISEASE MAPPING IN SPACE AND TIME

Suppose that again n areas are given. However, in addition we have disease occurrence information in

form of SMRs for T time periods:

O
ð1Þ
1 ;O

ð1Þ
2 ; . . . ;O

ð1Þ
n ; O

ð2Þ
1 ;O

ð2Þ
2 ; . . .O

ð2Þ
n ; . . . : O

ðTÞ
1 ;O

ðTÞ
2 ; . . . ;O

ðTÞ
n

E
ð1Þ
1 ;E

ð1Þ
2 ; . . . ;E

ð1Þ
n ; E

ð2Þ
1 ;E

ð2Þ
2 ; . . . ;E

ð2Þ
n ; . . . : E

ðTÞ
1 ;E

ð2Þ
2 ; . . . ;E

ðTÞ
n

Typically, data in public health are available for time windows of 5 or 10 years. In the two cancer

applications mentioned in the previous section, data for two more time periods (T¼ 3) are available:

1980--89; 1970--79; 1960--69

There are several ways to proceed in this situation.

6.1. Modeling each time period separately

It is assumed that each period t has its specific latent map; for example, there are T independent

mixture models assumed. Area i in period t is from component jt with risk �
ðtÞ
j , j ¼ 1; . . . ; k, where the

components depend on t and also k ¼ kt might depend on t. The result is not one mixture model but T

mixture models—one for each time period:

O
ðtÞ
i � p

ðtÞ
1 Po

�
o
ðtÞ
i

����ðtÞ
1 E

ðtÞ
i

�
þ p

ðtÞ
2 Po

�
o
ðtÞ
i

����ðtÞ
2 E

ðtÞ
i

�
þ � � � þ p

ðtÞ
k Po

�
o
ðtÞ
i

����ðtÞ
k E

ðtÞ
i

�
ð13Þ
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Figure 8. Estimated spatial heterogeneity distribution (mixing distribution) for the new states of Germany, 1980–89, for two

cancer sites: lung cancer in females (top) and mamma carcinoma (bottom)
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The likelihood is given as

LðP1; . . . ;PTÞ ¼
Y
t

Y
i

f
�
o
ðtÞ
i

���EðtÞ
i ;Pt

�
¼

Y
t

Y
i

X
j

Po
�
o
ðtÞ
i

����ðtÞ
j E

ðtÞ
i

�
P
ðtÞ
j ð14Þ

which can clearly be maximized by separately maximizing T likelihoods �i

P
j PoðoðtÞi j�ðtÞ

j EiÞ pðtÞj .

This approach is exemplified for the lung cancer application discussed before. There are three

independent mixture models visualized in Figure 9. The three maps are difficult to compare. Not only

are the number of components different for each map, but also the mean components, the relative risks,

are on a different level.

Figure 9. Disease mapping with independent mixture models exemplified for lung cancer in females for the new states of

Germany, 1980–89

446 D. BÖHNING
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6.2. Modeling in space and time simultaneously

Instead of developing T models for the T periods independently, one can try to think of one latent,

unobservable map of true relative risk which has not only spatial components but also space–time

components.

The situation is exemplified in Figure 10, which shows a latent map with two space–time

components. Note that here an area can belong to different components at different time periods, as

also demonstrated in Figure 10.

It is assumed that an area i in period t is from component j with risk �j; j ¼ 1; . . . ; k, where �j and k

does not depend on t. Again, the component membership is not observed. Consequently, the marginal

model is one mixture model of the form

O
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i � p1Po

�
o
ðtÞ
i

����1E
ðtÞ
i

�
þ p2Po

�
o
ðtÞ
i

����2E
ðtÞ
i
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����kE
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leading to the likelihood
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Since there are no restrictions on the number of components, Equation (15) again provides a rather

flexible tool to capture spatial and temporal heterogeneity, simultaneously. Application to space–time

data is straightforward. We consider again the two cancer sites for the new states of Germany, 1980–

89. Figure 11 shows the results of the fitted mixture models. In the upper part of Figure 11 we see that a

four-component model is found for the cancer site of the lung in females. There is some evidence of

space–time clustering: the region of Brandenburg (around the white spot in the map, which is the

western part of Berlin) contains most of the elevated components of relative risk 1.31 with increasing

tendency towards later time periods. Considering the mamma carcinoma we see a less pronounced

picture. A mixture model with three components is found, but the component means are close together.

Moreover, there seems to be no consistent pattern if we consider the more elevated group, for example.

6.3. Comparing the two mixture models

Note that in both cases T maps are drawn; however:

(a) there are kð1Þ þ � � � þkðTÞ colors in the first mixture model (Section 6.1)
(b) there are k colors in the second mixture model (Section 6.2)

where kðtÞ is the number of components in the tth time-specific mixture model. The second model

appears more attractive since the space–time components are directly comparable for maps different in

time periods. Both models are not comparable in a nested sense. An example might illustrate this.

Suppose there are three time periods and there is spatial homogeneity in relative risk for each time

period, but the mean level of relative risk is different for each time period. The first approach would fit

three independent mixture models and would find homogeneity, each period having a different mean.

The second approach would find a mixture model giving equal weights to three different component

mean levels. Each component would then represent exactly one period map, and the space–time

components would decrease to represent only variation in time. However, there are also cases for

which both approaches might lead to the same mixture model. To illustrate this, suppose that there is
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Figure 10. Principal layout of latent space–time map for three time periods and 23 areas and a two-component mixture

model
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Figure 11. Space–time disease mapping via mixture models with space–time components for the new states of Germany: lung

cancer in females (top); mamma carcinoma (bottom)
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spatial heterogeneity but no temporal change. Then, the first approach would find the same mixture

model T times, whereas the second approach would find this mixture model directly. Both approaches

have considerable flexibility, though the second offers ease of interpretation and presentation.

As a guideline, it appears that the second approach, the mixture model having space–time

components, provides more advantages, in terms of modeling and in terms of interpretation and

presentation. However, one should keep in mind that we have with these models public health data in

mind where the time windows are rather long—typically 5 or 10 years. Over these periods many

things can change, like the boundaries of administrative regions (new ordering of districts) or disease

classification systems, where either comparisons in time are no longer possible or make no more sense.

Then the first approach is the only of the two which can be used validly.

7. DISCUSSION

The article has investigated possibilities of consistently estimating spatial and spatial–temporal

heterogeneity via non-parametric mixture models. Of course, these procedures represent only a small

part of a whole range of procedures available for disease mapping. For an overview on this issue the

interested reader is referred to Lawson et al. (1999), specifically part I therein. The suggested models

have a close relationship to the class of Bayesian models developed and discussed more recently,

specifically to the area of empirical Bayesian models as discussed in Section 4 of this article.

Coming more specifically to mixture models, frequently the question of the number of components is

raised. In this approach we have used the non-parametric maximum likelihood proposal. However,

critical voices claim that the NPMLE of the number of components might overestimate the true number

considerably. For a discussion on this issue see Schlattmann (2002). Alternative proposals favor criteria

based on the likelihood but with a penalty for the number of parameters involved, like the Akaike or the

Bayesian information criterion (see Celeux, 2001, for details). In our experience, to protect for

oversmoothing, the NPMLE should be compared with mixture models having fewer components.

This raises the question of valid inference, since the likelihood ratio is no longer following a chi-square

distribution (Böhning et al., 1994; Böhning, 2000). Here, the Bootstrap approach might provide

reasonable approximations of the true null-distribution. As a by-product of these resample procedures,

standard errors of the estimates of the mixture model parameters can be readily obtained.

For the practitioner. the availability of these procedures in easy-to-use software like C.A.MAN

(Böhning et al., 1992a; Böhning et al., 1998) or DISMAP (Schlattmann and Böhning, 1993;

Schlattmann, 1996) is of great help and facilitates modeling to a large extent. These tools can be

obtained for no cost from the website: http://www.medizin.fu-berlin.de/sozmed/bo1.html.
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Böhning D, Sarol J. 2000. A nonparametric estimator of heterogeneity variance with applications to SMR- and rate data.

Biometrical Journal 42: 321–334.
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