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Some General Remarks

• all are based upon (sometimes several)
publications in prestiguous journals

• cover different aspects:

– mixture modeling for longitudinal,
binary data (Aitkin)

– normal mixture models applied to
identify transferrin saturation in lar-
ge screening studies (McLaren)

– distributional theory for the likelihood
ratio statistic in mixture models (Chen)
(k = 1 vs. k > 1 and k = 2 vs.
k > 2)

• motivated by different interests

• all are very interesting
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1. Murray Aitkin

presentation discusses modeling of longi-
tudinal, binary data (with covariates) using

• multivariate normal distribution for ran-
dom coefficient vector (integral is ap-
proximated with Gaussian Quadrature)

• non-parametric distribution for random
coefficient vector (NPMLE estimated
via the EM algorithm)

• which are generalized to include a more
explicit modelling of the serial depen-
dence using a transitional GLM under
incorpoaration of unobserved heteroge-
neity (by means of GQ or NPMLE)
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Questions

• How can the GQ/NPMLE-model and
the autoregressive model be discrimi-
nated?

• In particular, looking at the child obesi-
ty data, the first analysis provides sup-
port for the autoregressive model (child
obesity strongly influences later deve-
lopment) which largely disappears when
including covariates, in particular, gen-
der.

• Mixture likelihoods are often flat - with
specific consequences (EM slow, stop-
ped too early, wide CIs,...). I expect
this to be the case here, in particular.
Experiences?
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2. Christine McLaren

presentation discusses modeling of trans-
ferrin saturation (TS) with mixtures of nor-
mals (mixing is on both, mean and va-
riance parameter) in two large screening
studies (HEIRS, 10,000 men/15,000 wo-
men), (Kaiser Permanente Data, 14,000
men/ 14,000 women).

• results provide evidence in both studies
for a 3 component mixture of normals

• first component receives large weight,
third component tiny, means clearly se-
parated, first two component variances
close

• similar results in two independent stu-
dies supports a more general finding he-
re
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Questions

• Methods for testing various models Mk :

p1N (μ1, σ
2
1)+p2N (μ2, σ

2
2)+...+pkN (μk, σ

2
k)

have been provided (based on resampling the LRS

under Mk while testing vs. Mk+1) and concluded that

k = 3 is giving the best fit based on comparing M1

vs. M2 and M2 vs. M3.

– What about M3 vs. M4?

– And, more importantly, does M3 pro-
vide a good fit to the data (as measu-
red for example with the KS-statisitic)?

• σ̂2
1 and σ̂2

2 are very similar in all cases.
Have you looked at

p1N (μ1, σ
2)+p2N (μ2, σ

2)+p3N (μ3, σ
2
3) vs.

p1N (μ1, σ
2
1)+p2N (μ2, σ

2
2)+p3N (μ3, σ

2
3)

• finally, some other model, the log-normal,
say, might provide a similar GOF. How
to discriminate between the two?
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3. Jiahua Chen

presentation discusses likelihood ratio te-
sting for mixtures with some general com-
ponent density f (x, θ) leading to a mix-
ture

k∑

j=1
pjf (x, θj)

and provides results for testing

Part I: k = 1 vs. k > 1

and
Part II: k = 2 vs. k > 2

• reviews some previous results on LRT
distribution (difficult to use)

• and suggests to use the penalized log-
likelihood

pln(G) =
∑

i
log f (xi,G) + C

k∑

j=1
log pj

• MPLEs Ĝ1 and Ĝ0 of G1 and G0 are
then used in the (conventional) LRT
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• Result (under H0 and regularity condi-
tions)

LRT → 0.5χ2
0 + 0.5χ2

1

Part I: Questions

• The asymptotic result is nice and connects
to previous results. Is the result inde-
pendent of the penalty parameter C >
0?

• How much complication arise due to
using pln instead of ln? Is there a (mo-
dified) EM, and if, how many compli-
cations?
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coming to Part II:

• for testing k = 2 vs. k > 2 more com-
plications arise:

• when finding Ĝ1 the restriction k ≥
k∗ = max{[1.5/π0], [1.5/(1−π0)], 4} ≥
4 occurs.

• Result (under H0, k ≥ k∗ and regula-
rity conditions):

LRT →
⎛
⎝0.5 − α

2π

⎞
⎠ χ2

0 +0.5χ2
1 +

α

2π
χ2

2

Part II: Questions

• A question of understanding: is the con-
dition k ≥ k∗ only for estimating G1

(this is what I think) or is it a restric-
tion on the alternative?
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• The asymptotic result is nice, though
less nice than the previous one, since it
involves the parameter α which seems
difficult to determine. Is there another
use of the result than as a benchmark
for simulation studies?

• And is not here the same critique ap-
propriate that was mentioned in the
presentation with regard to the previous-
ly existing results (namely, that they
are difficult to use)?
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