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1 Summary

A unifying approach to the modelling of the risk ratio for multicenter studies

with binary outcome is provided. In these settings, each center is character-

ized by a baseline or nuisance parameter and a effect or interest parameter.

One way of dealing with nuisance parameters is the profile likelihood method

for which the basic model is introduced. The profile likelihood method un-

der homogeneity is investigated and the connection to the Mantel-Haenszel

approach illuminated. The model is extended to cope with heterogeneity.

Unobserved heterogeneity is captured by means of a nonparametric mix-

ture leading to the nonparametric mixture profile likelihood. The gradient

function is introduced and the nonparametric profile maximum likelihood

estimator (PNMLE) is characterized. The latter can be computed by means

of the EM algorithm with gradient function update (EMGFU). Furthermore,

modelling of covariate information is introduced. Elements of log-linear mod-

elling are used and ways for finding the profile maximum likelihood estimator

including their standard errors are provided. Finally, simulation studies are

done to compare the proposed methodology with existing methods and re-

sults show clear advantages of the proposed methodology.

Key words: MIX-PRO

Areas of Research: Statistics, particularly Biostatistics and Biometry,

Epidemiology
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2. Dankmar Böhning, Ronny Kuhnert, Chukiat Viwatwongkasem, and

Sasivimol Rattanasiri: Nonparametric Profile Likelihood Estimation

in Meta-Analysis with Individually Pooled Data. Statistical Modelling

(submitted).

3.2 PhD-Theses Completed

1. Ronny Kuhnert: Untersuchung von verschiedenen Modellierungen der

Heterogenität in multizentrischen Studien. Dissertation at Charité

Medical School to be published under http://www.diss.fu-berlin.de-

/2005/202 [31 August 2005].

2. Sasivimol Rattanasiri: Modelling Covariate Inofrmation in Multicentre

Studies with Binary Outcome using the Profile Likelihood. Dissertation
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4 Introduction

4.1 The Occurrence of Multicenter Studies

The present contribution aims to provide a unifying approach to modelling

effect in multicenter studies with binary outcome. Multicenter studies occur

in numerous ways and are executed quite frequently. It is said that “there are

currently thousands of active multicenter trials designed to evaluate treat-

ment or prevention strategies” (Bryant et al. 1998). Among the reasons for

mounting a multicenter study are the need to recruit patients at a faster rate,

the need to find patients with a rare disease or condition, or the desire to in-

crease the generalizability of effect, since multicenter studies will more likely

include heterogenous populations. Pocock (1997) points out that the collab-

oration of clinical scientists in a multicenter study should lead to increased

standards in the design, conduct and interpretation of the trial. Often the

center represents a clinical, medical or public health institution in which the

clinical trial takes place. In this contribution focus is on binary outcome of

the trial such as survival (yes/no), improvement of health status (yes/no),

occurrence of side effect (yes/no) to mention a few of potential binary out-

comes. Even if the outcome measure is continuous (such as blood pressure)

it is often categorized into two possible values. Other examples include di-

agnostic procedures that result frequently in continuous measures. However,

the outcome is almost uniquely represented in terms of result positive or

result negative.

Furthermore, it is assumed that the trial is competitive in that it compares

two (or more) trial arms, here denoted as treatment and control arm. A

typical setting is provided in Table 1. A manifold collection of multicenter

studies from various application fields is provided in the Cochrance Library

(2005). In these settings, xT
i is the number of events in the treatment arm

of the i-th center, whereas nT
i is the person-time (total of time every person
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spent under risk) of the treatment in the i-th center. If all persons spend

identical time under risk nT
i is equivalent to the sample size. Analogously,

for the control arm.

Interest lies in measuring the effect of treatment, frequently accomplished

by means of the risk ratio θ = pT /pC where pT and pC are the risks of an event

under treatment and control, respectively. Nowadays, it is widely accepted

that a simple, overall estimate of the crude risk ratio estimate

θ̂crude =

(∑k
i=1 xT

i

)
/
(∑k

i=1 nT
i

)
(∑k

i=1 xC
i

)
/
(∑k

i=1 nC
i

)
is by no means a sufficient description of the available data - unless effect

homogeneity is established. Mainly, two reasons are responsible for this per-

spective.

• The simple estimate ignores a potential center effect. In Table (1) most

centers show a beneficial effect of treatment, though not always as can

be seen in center 14. A more controversial example and discussion on

effect heterogeneity is given in Horvitz et al. (1996) in which 21 centers

show beneficial and 10 centers harmful effects.

• The simple estimate ignores potential covariate information. May be,

age and gender distributions varied from center to center, may be,

randomization failed in some centers, or may be, the background pop-

ulation was different from center to center.

The contribution is targeting to achieve a solid modelling of the two before

mentioned situations accompanied by easy-to-use algorithms which will allow

the clinician to analyse the multicenter trial in an up-to-date fashion.
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4.2 Center Effect

It might be tempting to ignore the fact that study data are available for

different centers. Indeed, it is possible to collapse data over all centers to

achieve a simple two-by-two table from which the effect estimate could be

computed simply as θ̂crude =

(∑k

i=1
xT

i

)
/

(∑k

i=1
nT

i

)
(∑k

i=1
xC

i

)
/

(∑k

i=1
nC

i

) .

Though this is tempting, dreadful experience has shown that calculat-

ing a crude risk ratio as above may lead to quite biased estimates. In fact,

various confounding situations can arise: the true effect might be overesti-

mated (inflation) or underestimated (masking), or the center might work as

an effect modifier. Hence, it is advisable to take the center effect as poten-

tial confounder into account. In Table 2 the crude risk ratio is 1.74, well

in the range of the center-specific risk ratios, and the center does not ap-

pear to be a confounder for this multicenter study. In another application,

Arends et al. (2000) investigate the treatment of cholesterol lowering lev-

els on mortality from coronary heart disease (see Table 3). Here, the crude

risk ratio is 1.0770 whereas the Mantel-Haenszel adjusted risk ratio, defined

as θ̂MH =
∑k

i=1
xT

i nC
i /ni∑k

i=1
xC

i nT
i /ni

with ni = nT
i + nC

i , is 0.9708, moving an elevated

risk ratio to the preventive side, as it can be expected from the nature of

the treatment. This example underlines the importance of considering the

center-effect in all analyses.

In addition, another aspect might be worth mentioning. Whereas none

of the center-specific risk ratio estimates in the Lidocaine trial confirms sig-

nificantly the damaging effect of prophylactic use of Lidocaine, a center-

adjusting estimator like the Mantel-Haenszel estimator will provide a signif-

icant effect θ̂MH = 1.73 with 95% CI (1.03,2.92). Hence, it is desirable to

seek optimal and valid ways to combine available information.
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4.3 Sparsity

Frequently, in multicenter studies the observed data experience sparsity. The

data are called sparse if the observed event counts are close to zero, occa-

sionally in fact identical to zero. This can occur because of the event risks

are very small, so that even with a large trial sparsity has to be expected.

Or, the center sizes are so small (potentially because patient recruitment is

extremely difficult) that even with large event risks the occurrences of low

frequency counts including zero counts are likely. An example of this nature

is provided in Table 4. In multicenter sparsity trials, the investigation of

center-effect heterogeneity is particularly difficult, since center-specific risk

ratio estimators can only be estimated with large uncertainty. In addition,

the construction of a risk ratio estimator under homogeneity needs to be

done with careful consideration. Here, the profile method turns out to be

beneficial.

The paper is outlined as follows. In section 5, the basic model is intro-

duced including the profile likelihood method and a discussion of it under

homogeneity. In section 6, the model is extended to cope with heterogeneity.

Unobserved heterogeneity is captured by means of a nonparametric mix-

ture leading to the nonparametric mixture profile likelihood. The gradient

function is introduced and the nonparametric profile maximum likelihood

estimator (PNMLE) is characterized. The latter can be computed by means

of the EM algorithm with gradient function update (EMGFU). This ends

section 6. Section 7 provides modelling of covariate information. Elements

of log-linear modelling are used and ways for finding the profile maximum

likelihood estimator including their standard errors are provided. The paper

ends with a discussion and putting the results into perspective.
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5 The Basic Model

Modelling effect in multicenter studies is of interest and under investigation

for quite some time. For an overview see Agresti and Hartzel (2000). Let

xT
i and xC

i denote the number of events in treatment and control arm, re-

spectively, with nT
i the person-time in the treatment arm and nC

i denoting

the person-time in the control arm. Let the number of centers be k, so that

i = 1, ..., k. Also, let pT
i and pC

i denote the risk of an event in the treat-

ment and control arm, respectively. Typically, we will be interested in effect

measures of treatment like the risk ratio θi = pT
i /pC

i .

5.1 Likelihood

We are interested in the inference on θi = pT
i /pC

i , the ratio of the two event

probabilities pT
i for the treatment arm and pC

i for the control arm. In contrast

to single study settings, in the case of a multicenter study variation of the

measure of interest, here the risk ratio, between centers can be investigated.

If homogeneity of effect can be established, the results are more supportive

of the effect. If heterogeneity is present, an appropriate modelling is required

and sources for it’s occurrence should be investigated.

For each center and for each arm there is a Poisson Likelihood, so that

for the i-th center the contribution to the likelihood of the treatment arm is

exp(−nT
i pT

i )(nT
i pT

i )xT
i /xT

i ! (1)

and for the i-th center the contribution to the likelihood of the control arm

exp(−nC
i pC

i )(nC
i pC

i )xC
i /xC

i ! (2)

so that that the product likelihood over all centers becomes

k∏
i=1

exp(−nT
i pT

i )(nT
i pT

i )xT
i /xT

i ! × exp(−nC
i pC

i )(nC
i pC

i )xC
i /xC

i ! (3)
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We find that the log-likelihood takes the form1 (ignoring the only data-

dependent terms)

k∑
i=1

−nT
i pT

i + xT
i log(pT

i ) − nC
i pC

i + xC
i log(pC

i ) (4)

5.2 Estimation of Relative Risk in Multicenter Studies

If we consider the log-likelihood (4) the question arises in which way the

measure of interest like the relative risk θi = pT
i /pC

i can be entered. One can

simply rewrite pT
i as pC

i θi and (4) becomes

k∑
i=1

−nT
i pC

i θi + xT
i log(pC

i θi) − nC
i pC

i + xC
i log(pC

i ) (5)

Note that in the log-likelihood (5) occur two kinds of parameters, the effect

measuring parameter θi and the baseline parameter pC
i . Whereas we call

the first type parameter of interest, the second type is called nuisance pa-

rameter. The nuisance parameter are not our major interest parameter, but

they are necessary for a complete description of the likelihood as well as they

complicate the inference.

5.3 The Profile Method in General

In more generality, let the log-likelihood L(p,q) depend on a vector p of

parameters of interest and a vector q of nuisance parameters. Let L(q|p) =

L(p,q) be the log-likelihood for arbitrary but fixed p, and let qp be such

that L(qp|p) ≥ L(q|p) for all q, then

L∗(p) = L(qp|p) (6)

1log we always denote the natural logarithm, e. g. with respect to base e
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is called the profile log-likelihood. Note that the profile log-likelihood is now

depending only on the parameters of interest and, thus, the method of profile

log-likelihood can be viewed as a method to deal with nuisance parameters.

5.4 The Profile Likelihood for the Effect Measure of

the Risk Ratio

In this section we determine the profile log-likelihood on the basis of (5) which

we now consider as a function of pC for arbitrary, but fixed θ = (θ1, ..., θk)
′.

L(pC |θ) =
k∑

i=1

−nT
i pC

i θi + xT
i log(pC

i θi) − nC
i pC

i + xC
i log(pC

i ) (7)

To determine pC
θ we calculate the partial derivatives

∂

∂pC
j

L(pC |θ) =
∂

∂pC
j

k∑
i=1

−nT
i pC

i θi + xT
i log(pC

i θi) − nC
i pC

i + xC
i log(pC

i ) (8)

= −nT
j θj + xT

j /pC
j − nC

j + xC
j /pC

j

which can be readily solved for pC
j as

pC
jθ

=
xC

j + xT
j

nC
j + θjnT

j

. (9)

Inserting (9) into (7) leads to

k∑
i=1

−(nC
i + θin

T
i )(

xC
i + xT

i

nC
i + θinT

i

) + xT
i log(θi) + (xC

i + xT
i ) log(

xC
i + xT

i

nC
i + θinT

i

) (10)

which simplifies to

k∑
i=1

−(xC
i +xT

i )+xT
i log(θi)+(xC

i +xT
i ) log(xC

i +xT
i )+(xC

i +xT
i )log(nC

i +θin
T
i )

(11)

and, finally, if we only consider parameter dependent terms

L∗(θ) =
k∑

i=1

xT
i log(θi) − (xC

i + xT
i ) log(nC

i + θin
T
i ). (12)

The above expression L∗(θ) is the profile log-likelihood for the risk ratio and

all inference will be based upon this log-likelihood.
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5.5 The Profile Method under Effect Homogeneity

To illustrate the simplicity and usefulness of the profile method consider the

situation of homogeneity of effect: θ1 = θ2 = ... = θk = θ. Then, taking the

derivative of (12) w.r.t. θ, we yield

k∑
i=1

(
xT

i /θ − (xC
i + xT

i )nT
i /(nC

i + θnT
i )
)

= 0, (13)

or, equivalently
k∑

i=1

wi(θ)/θ
(
xT

i nC
i − xC

i nT
i θ)

)
= 0, (14)

where wi(θ) = 1/(nC
i + θnT

i ). Equation (14) is an implicit characterization

of the maximum profile likelihood estimator of relative risk which can be

further written as

θ =

∑k
i=1 wi(θ)x

T
i nC

i∑k
i=1 wi(θ)xC

i nT
i

, (15)

which can be used to iteratively construct the maximum likelihood estimator.

If iteration is started with θ = 1 it can be seen that the first iteration using

(16) leads to the well-known Mantel-Haenszel-Estimator of the risk ratio:

θ =

∑k
i=1 wi(1)x

T
i nC

i∑k
i=1 wi(1)x

C
i nT

i

=

∑k
i=1 xT

i nC
i /ni∑k

i=1 xC
i nT

i /ni

, (16)

where ni = nT
i + nC

i is the total person-time of the i-th center. For the

time being, we remain with the Mantel-Haenszel estimator (MHE) θ̂MH =∑k

i=1
xT

i nC
i /ni∑k

i=1
xC

i nT
i /ni

and compare it with the PMLE under effect homogeneity. Clearly,

if the trial is completely balanced nT
i = nC

i for all centers i, then the

parameter-dependent weights cancel out, and PMLE and MHE are identical.

Typically, MHE and PMLE are close and the loss of efficiency in using the

MHE is not high. However, the exception is the situation of sparsity. Sim-

ulation studies provide some evidence that in this case there is considerable

loss of efficiency, in particular, when θ is bounded away from 1. To demon-

strate this finding a simulation experiment was conducted. Since differences
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between PMLE and MHE can only be expected for highly unbalanced and

sparse multicenter studies, nT
i and nC

i were generated from a Poisson with

Poisson parameter 3 and 6, where arm allocation of the Poisson parameter

was random to guarantee that the trial is unbalanced. The baseline parame-

ter pC
i was chosen uniform in [0.1,0.3] and the risk ratio parameter was kept

fixed for each simulation (replication size 10,000) and risk ratio values from

0.00001 to 3.3333 were considered. The number of centers k was chosen to

be 5. The results for the two estimators are provided in Fig. 1 for the bias

and in Fig. 2 for the variance indicating a superior behavior of the PMLE

with respect to both criteria.

In another beneficial aspect of the profile likelihood method lies in the fact

that it provides easily an estimate of the variance of the PMLE. We will use

a standard result from likelihood theory (see, for example Le 1992, p.72-73)

that the variance of the maximum likelihood estimate can be approximated

by negative inverse of the second derivative of the log-likelihood function

which is evaluated at the maximum likelihood estimate. We apply this result

to the profile likelihood situation. Let us write the profile log-likelihood (12)

using φ = log(θ)

L∗(φ) = [
k∑

i=1

xT
i ]φ −

k∑
i=1

(xC
i + xT

i )log(nC
i + eφnT

i ). (17)

with second derivative

L∗′′(φ) = −
k∑

i=1

xin
T
i nC

i eφ

(nC
i + eφnT

i )2
= −

k∑
i=1

xin
T
i nC

i θ

(nC
i + θnT

i )2
= −

k∑
i=1

xiαi(1 − αi),

(18)

so that an estimate of the variance of the PMLE of φ is provided as

̂
var(φ̂) =

̂
var(log θ̂) =

(
k∑

i=1

xiαi(1 − αi)

)−1

, (19)

where αi =
θ̂nT

i

nC
i +θ̂nT

i

. The Mantel-Haenszel estimate of the common relative

risk is given as θ̂MH =
∑

i
xT

i nC
i /ni∑

i
xC

i nC
i /ni

with ni = nC
i + nT

i . Although the formula

16



for Mantel-Haenszel relative risk estimate is quite elementary, a widely ac-

cepted expression for its variance has been only given recently (Greenland

and Robins 1985; see also Woodward 1999, p. 170). We have that

v̂ar(log(θ̂MH)) =

∑
i(n

T
i nC

i xi − xT
i xC

i ni)/(ni)
2

(
∑

i x
T
i nC

i /ni)(
∑

i x
C
i nT

i /ni)
(20)

where xi = xC
i + xT

i as before. We note that (20) has been developed for

the situation of identical person-times in the centers reflecting a binomial

sampling plan. Breslow (1984) provided a robust variance formula for the

situation of person-specific observation times.

Typically, not only MHE and PMLE, but also the variances of the MHE

(20) and of the PMLE (19) are close. However, the exception is the situation

of sparsity. Simulation studies provide some evidence that in this case the

variance estimator (19) is behaving better than (20). To demonstrate this

fact the following simulation experiment was conducted. In the balanced

trial PMLE and MHE are identical, so that direct comparability of (19)

and (20) is available. A sparse balanced multicenter trial was simulated,

with nT
i = nC

i being generated from a Poisson with Poisson parameter 5.

The baseline parameter pC
i was chosen uniform in [0.1,0.3] and the risk ratio

parameter was kept fixed for each simulation (replication size 10,000) and

risk ratio values from 0.00001 to 3.3333 were considered. The number of

centers k was chosen to be 20. The results for the two variance estimators

are provided in Fig. 3 for the bias of the variance estimators and in Fig. 4 for

the variance of the variance estimators indicating a slightly better behavior

for (19) with respect to both criteria.
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6 Modelling Unobserved Heterogeneity

6.1 Unobserved Covariate and the Marginal Profile

Likelihood

In this section, a general approach for coping with center-effect heterogene-

ity is proposed. Assume that the population of all centers consists out of

m subpopulations with weights qj and subpopulation risk ratio θj. Let us

consider again the likelihood (3) where we - for simplicity of presentation -

consider only a single center:

Po(xT , nT pCθ) × Po(xT , nTpC) (21)

which becomes - after replacing pC by their conditional maximum likelihood

estimates xC+xT

nC+θnT

Po(xT , nT xC + xT

nC + θnT
θ) × Po(xC , nC xC + xT

nC + θnT
), (22)

where Po(x, λ) = exp(−λ)λx/x!. Consider next the situation that for each

observation (xT , nT , xC , nC)′ there is an unobserved m-vector y with a 1 in

the j−th position (and 0 otherwise) assigning the component population j

to which the observation belongs to. Taking the margin over the unobserved

vector y leads to the marginal density

∑
y Po(xT , nT xC+xT

nC+θynT θy) × Po(xC , nC xC+xT

nC+θynT )qy

=
∑m

j=1 Po(xT , nT xC+xT

nC+θnT θj) × Po(xC , nC xC+xT

nC+θjnT )qj

(23)

where qy = qj is the weight which the j−th population with parameter value

θy = θj receives. Taking now the log-likelihood over all centers and ignoring

terms that do not involve the parameters the following mixture profile log-
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likelihood is achieved:∑k
i=1 log

[∑m
j=1 exp

(
− xinT

i θj

nC
i +θjnT

i

)
θ

xT
i

j × exp
(
− xinC

i

nC
i +θjnT

i

)(
1

nC
i +θjnT

i

)xi

qj

]
=
∑k

i=1 log
[∑m

j=1 exp(−xi) θ
xT

i
j

(
1

nC
i +θjnT

i

)xi

qj

]
∝ ∑k

i=1 log
[∑m

j=1 θ
xT

i
j

(
1

nC
i +θj nT

i

)xi

qj

]
= L∗(Q)

(24)

which we may sometimes write as

L∗(Q) =
k∑

i=1

log

⎛⎝ m∑
j=1

fi(θj)qj

⎞⎠ (25)

where fi(θj) =
θ

xT
i

j

(nC
i +θjnT

i )xi
and xi = xC

i + xT
i . Also, Q denotes the discrete

probability distribution Q =
(

θ1 ... θm

q1 ... qm

)
giving mass qj to the risk ratio

θj in subpopulation j, also called the mixing distribution.

6.2 Concavity, the Gradient Function and the Mixture
Maximum Likelihood Theorem

6.1 It is easy to verify that L∗(Q) is a concave functional in the set Ω of all

discrete probability distributions, though this is not necessarily the case for

Ωm, the set of all discrete probability distributions with exactly m support

points (subpopulations). Hence, a global profile mixture maximum likelihood

estimator (PNMLE) exists, but the number of support points is itself part of

the estimation process. Let us define the gradient function as an important

tool for finding the PNMLE. In particular, let for arbitrary but fixed Q =(
θ1 ... θm

q1 ... qm

)
and any θ > 0

d(θ, Q) =
1

k

k∑
i=1

fi(θ)∑m
j=1 fi(θj)qj

(26)

The gradient function (26) can be motivated by means of the concept of the

directional derivative where it is contained as the essential part (for details
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see Lindsay 1983, Lindsay 1995, Böhning 2000). A first major application

arises in the general mixture maximum likelihood theorem which states that

Q̂ =
(

θ̂1 ... θ̂m

q̂1 ... q̂m

)
is PNMLE if and only if d(θ, Q̂) ≤ 1 for all θ > 0. In

addition, for the support points of Q̂ we have that the upper bound becomes

sharp, e.g. d(θ̂j, Q̂) = 1. As a first consequence, we might be able to identify

effect homogeneity without further testing whatsoever. Indeed, let θ̂PMLE

denote the profile maximum likelihood estimator under homogeneity. If

d(θ, θ̂PMLE) =
1

k

k∑
i=1

fi(θ)

fi(θ̂PMLE)
≤ 1,

for all θ > 0, then θ̂PMLE must be the PNMLE, and no further search for

heterogeneity is necessary.

Lidocaine Trial. We come back to the multicenter study presented in

Table 2. A graph of the gradient function θ → d(θ, θ̂PMLE) for the max-

imum likelihood estimator θ̂PMLE of θ under homogeneity (more precisely,

the one-point probability measure giving all mass to θ̂PMLE) is provided in

Fig. 5 showing clear evidence of homogeneity, making further testing for

heterogeneity unnecessary.

Cholesterol Lowering Treatment and Coronary Heart Disease.

Let us consider again the multicenter study presented in Table 3. Here, the

graph (see Fig. 6 ) of the gradient function θ → d(θ, θ̂PMLE) for the maximum

likelihood estimator θ̂PMLE of θ under homogeneity indicates clear evidence

of heterogeneity. The upper bound one is violated (see Fig. 6) and θ̂PMLE

can not be the PNMLE. In fact, it is clear that the PNMLE will have more

than one support point.

For the general construction of the PNMLE, numerical algorithms will be

required.
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6.3 The Nonparametric Profile Maximum Likelihood

Estimator via the EM Algorithm

A major tool for constructing the maximum likelihood estimates is the EM

algorithm (Dempster, Laird and Rubin 1977, McLachlan and Krishnan 1996).

It requires the specification of a suitable complete data likelihood which for

mixtures is conventionally taken as

k∏
i=1

m∏
j=1

(
Po(xT

i , nT
i

xC
i + xT

i

nC
i + θjnT

i

θj) × Po(xC
i , nC

i

xC
i + xT

i

nC
i + θjnT

i

) × qj

)yij

, (27)

where yij = 1, if center i belongs to subpopulation j, and 0 otherwise. Since

yij is unobserved, it is replaced in the E-step of the EM-algorithm by their

expected values

eij = E(Yij |Q, data )

=
Po(xT

i ,nT
i

xC
i

+xT
i

nC
i

+θjnT
i

θj )×Po(xC
i ,nC

i

xC
i

+xT
i

nC
i

+θjnT
i

)×qj∑m

j′=1
Po(xT

i ,nT
i

xC
i

+xT
i

nC
i

+θj′nT
i

θj′ )×Po(xC
i ,nC

i

xC
i

+xT
i

nC
i

+θj′nT
i

)×qj′
.

(28)

Replacing yij in (27) by their expected values leads to the expected complete

data likelihood

k∏
i=1

m∏
j=1

(
Po(xT

i , nT
i

xC
i + xT

i

nC
i + θjn

T
i

θj) × Po(xC
i , nC

i

xC
i + xT

i

nC
i + θjn

T
i

) × qj

)eij

, (29)

which can be maximized in θj and qj, separately. This established the M-step

of the EM algorithm. In fact, we find easily that

q̂j =
1

k

k∑
i=1

eij.

Furthermore, θ̂j can be found from the equation

k∑
i=1

eijx
T
i

θj
− eijxin

T
i

nC
i + θjnT

i

= 0

by using the iteration
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θ̂j =

∑k
i=1 eijx

T
i nC

i wi(θ̂j)∑k
i=1 eijx

C
i nT

i wi(θ̂j)
(30)

with wi(θ) = 1/(nT
i θ + nC

i ), in analogy to the homogenous case (15).

6.4 The EMGFU for the Profile-Likelihood-Mixture

When the gradient function indicates heterogeneity, usually the number of

components adequate to model this heterogeneity will be unknown and sev-

eral values for m need to be considered. Hence, it appears appropriate to

consider all possible values of m, starting from m = 1 to the number of com-

ponents involved in the PNMLE. The following algorithm is in analogy to

the EM algorithm with gradient function update (Böhning 2003).

The initial step starts with the case of homogeneity (m = 1) and the

computation of the profile maximum likelihood estimator under homogeneity.

If the gradient function violates the upper bound, e.g. d(θmax, θPMLE) > 1,

then the number of components is increased to m = 2 and the EM algorithm

of the previous section is utilized with initial values for the two components

θ1 = θPMLE and θ2 = θmax to compute a discrete two-support size probability

distribution Q(2). Otherwise (if the gradient function does not violate the

upper bound), the algorithm is stopped.

Now suppose that the EM algorithm has generated for current value of

m a discrete probability distribution Q(m) having support points θ1, ..., θm. If

the gradient function violates the upper bound, e.g. d(θmax, Q
(m)) > 1, then

the number of components is increased to m = m + 1 and the EM algorithm

of the previous section is utilized with initial values for the m + 1 compo-

nents θ1, ..., θm and θm+1 = θmax to compute a discrete (m + 1)-support size

probability distribution Q(m+1). Otherwise (if the gradient function does not

violate the upper bound), the algorithm is stopped. This step is repeated

until the PNMLE is reached. The advantage of the EMGFU lies in the fact
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that it combines a strategy for generating the nonparametric profile maxi-

mum likelihood estimator with a search for the best local mixture maximum

likelihood estimator with exactly m components.

Cholesterol Lowering Treatment and Coronary Heart Disease.

We would like to demonstrate the EMGFU for the multicenter trial given in

Table 3. In this case, we had found clear evidence of heterogeneity (see section

6.1). Table 5 provides details on this analysis. The EMGFU algorithm

starts with homogeneity and provides θPMLE = 0.9716, then increases the

number of support points stepwise by means of the gradient function until the

nonparametric profile maximum likelihood estimator with m = 4 components

is reached. Indeed, from gradient function plot (Figure 7) it is evident that

the global nonparametric profile maximum likelihood estimator has been

reached.

6.5 Likelihood Ratio Testing, Model Evaluation, and

Classification of Centers

Profile likelihoods behave similar to likelihoods. However, for mixture mod-

els this just means that we have to face the same problems. Profile likelihood

ratios will not have standard χ2-distributions, so that choices for the number

of components, solely based upon the likelihood ratio, might be misleading

and should be accompanied by other selection criteria such as the Bayesian

Information Criterion which has proved to be valuable selection criterion in

other settings. McLachlan and Peel (2000) discuss and compare various se-

lection criteria. Within the simpler criteria, the Akaike Information Criteria

shows a tendency to select too many components (overestimate m), whereas

the BIC, though not always correct, behaves better. In Table 5 can be seen

that the best model according to BIC is the model with two components.

Note that for i fixed, eij, as given in (28), is a probability distribution. In

fact, eij is the posterior probability for center i belonging to subpopulation j.
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This enables to classify center i into that subpopulation j where the posterior

probability is the largest. Recall that for the cholesterol lowering trial there

was a PNMLE found consisting out 4 subpopulations. However, according to

the BIC, only 2 subpopulations are required. Table 6 provides the posterior

probabilities for each of the 33 centers including a classification of each center

into the component associated with the highest posterior.

7 Modelling Covariate Information

7.1 A Multicenter Trial with Covariate Information

Frequently, a multicenter trial does not only provide information on treat-

ment and control arm, outcome and sample sizes, but also include further,

potentially quite important co-information, which might show some joint

variation with the effect of interest. In the following such an example is

provided.

DuMouchel and Normand (2000) discuss a multicenter study with 59

centers on smoking cessation (see Figure 3.1). Here, the event of interest

is quit smoking and treatment varied from trial to trial (patch versus gum

and low versus high intensity support). It might be of interest to see if

the effect (the success risk ratio of quitting smoking) is depending on the

kind of support (low/high) and on the kind of device (gum/patch) used.

In addition, the quit rate might be affected by the time of study (general

time trends). Therefore, one might be interested in investigating two binary

covariate effects(gum/patch and low/high support) and one of continuous

nature (time) on the success relative risk of quitting smoking.

7.2 A Generalized Linear Model

It is assumed that the co-information is available in terms of covariates

z1, z2, ..., zp which can be put into a vector z = (z1, ..., zp)
′. z1 might be
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the proportion of women in the center, z2 the mean age in the center, among

other potential co-information. For center this vector has a certain value zi

where then zi1 denotes the proportion of women in center i (in the hypo-

thetical example), zi2 denotes the mean age in center i, and so forth. We

consider again (12):

L∗(θ) =
k∑

i=1

xT
i log(θi) − (xC

i + xT
i ) log(nC

i + θin
T
i ). (31)

How can the covariate information be linked to the relative risk parameter

θi? This can be done by means of an appropriate modification of the idea

of a generalized linear model (McCullagh and Nelder 1989). Here, the linear

predictor ηi = β ′zi = β1zi1+β2zi2+...+βpzip needs to be linked to the relative

risk parameter θi. Typically, zi1 = 1, so that the model contains an intercept

parameter. From basic regression courses the identity link comes up into

mind: θi = ηi = β ′zi. However, though simple, it is not appropriate since it

does not guarantee that θi ≥ 0 which would be an essential requirement for a

relative risk. One good choice of a link is the canonical link θi = exp(ηi) which

guarantees θi ≥ 0. To illustrate the model suppose that we are describing

the covariates of section 4.1 for the smoking cessation trials. z1 might be the

binary covariate describing if a patch (z1 = 1) was used or gum (z1 = 0) and

z2 might be the binary covariate describing if low (z2 = 0) or high (z2 = 1)

support was provided. Then, the linear predictor ηi = β0 + β1z1 + β2z2 can

capture all situations easily. For example, the combination ”gum“ and ”low

support“ leads to ηi = β0, or the combination ”patch“ and ”high support“

leads to ηi = β0 + β1 + β2, assuming that there is no interaction. Of course,

we need to establish if any of the effects are significant. For this we need the

likelihood.

Under the log-link the associated likelihood simplies to

L∗(β) =
k∑

i=1

xT
i ηi − (xC

i + xT
i ) log(nC

i + exp(ηi)n
T
i ), (32)

25



with ηi = β ′zi. The log-likelihood (32) needs to be maximized in β.

7.3 Finding Maximum Profile Likelihood Estimates

For finding the maximum likelihood estimators we need to maximize the

log-likelihood (32). For this purpose consider the partial derivative w.r.t. βj

∂L∗

∂βj
(β) =

k∑
i=1

xT
i zij − xin

T
i

exp(ηi)

nC
i + exp(ηi)nT

i

zij

and the corresponding vector of partial derivates, the gradient:

∇L∗(β) = (
∂L∗

∂β1
, ...,

∂L∗

∂βp
)′. (33)

Furthermore, the Hesse matrix of second derivatives is

∂2L∗

∂βh∂βj
(β) = −

k∑
i=1

xin
T
i nC

i exp(ηi)

(nC
i + exp(ηi)nT

i )2
zijzih (34)

so that (34) becomes in matrix form

∇2L∗(β) =

(
∂2L∗

∂βh∂βj
(β)

)
= −Z′W(β)Z (35)

where Z =

⎛⎜⎜⎜⎝
z11 z12 ... z1p

z21 z22 ... z2p

. . ... .
zk1 zk2 ... zkp

⎞⎟⎟⎟⎠ is the design matrix, independent of

β and a diagonal matrix W(β) = (wij(β)), with wij = 0, if i �= j, and

wii =
xin

T
i nC

i exp(ηi)

(nC
i +exp(ηi)n

T
i )2

.

The Newton-Raphson procedure for iteratively constructing the maxi-

mum likelihood estimates can now easily be given. Choose some β(0) as

initial value (for example β(0) = 0) and then update β according to

β(n+1) = β(n) −∇2L∗(β(n))−1∇L∗(β(n)) (36)

until convergence. The convergence of the sequence (36) is not guaranteed.

Since in this case wii =
xinT

i nC
i exp(ηi)

(nC
i +exp(ηi)nT

i )2
≤ xi/4 for all values of ηi, it is possible
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to replace the Newton-Raphson step by the lower bound procedure (Böhning

and Lindsay 1988, Lange 2004), leading to

β(n+1) = β(n) + B−1∇L∗(β(n)) (37)

where B = Z′ΛZ and Λ is a diagonal matrix with Λii = xi/4, independent

of η. B represents a global upper bound for −∇2L∗(β), e.g. −∇2L∗(β) ≤ B

for all β, where “≤” denotes the matrix ordering. Besides it’s guaranteed

convergence to the maximum, (37) has the advantage to have the global

bound matrix be inverted only once (for details see Böhning and Lindsay

1988, Böhning 1992). Note that in ordinary log-linear (Poisson) regression

the second-derivative matrix is unbounded and the strong result of global

convergence, as in the case here, can not be achieved.

7.4 Finding Standard Errors

Estimated variances of maximum likelihood estimates can be found from

the negative inverse of the information matrix (35), namely
(
Z′W(β̂)Z

)−1
,

in particular,
̂

var(β̂j) =
(
Z′W(β̂)Z

)−1

jj
, where β̂ is the vector of maximum

likelihood estimates. These variance estimates are obtained as a by-product

of the Newton-Raphson iteration (36). Significance of individual effects can

be consequently obtained by means of a Wald-test (or similar procedures)

using

Tj =
β̂ĵ

s.e.(β̂j)
,

where
̂

s.e.(β̂j) =

√ ̂
var(β̂j). Here, it would be argued that - under the null-

hypothesis of no effect of the j-th covariate - Tj is asymptotically normally

distributed.

Smoking cessation and treatment variation. We come back to the

multicenter trial on the evaluation of the success in quitting smoking. The
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results of fitting various models are provided in Table 7. Evidently, the

treatment modification of using a patch (vs. gum) yields the only significant

effect change for quitting smoking.

8 Comparison with Other Approaches

8.1 Approximate Likelihood

Besides the profile approach there are other methods to estimate the treat-

ment effect in a MAIPD. A conventional approach assumes a normal distri-

bution for the logarithmic relative risk in which for each center the variance is

gained from a first-order Taylor-series approximation. For the analysis, this

variance is treated as a known value. Modelling of unobserved heterogeneity

has been discussed Laird (1987) and DerSimonian and Laird (1986). Mod-

elling covariate information for this situation has been discussed in Hedges

(1994) and, in more generality, in Hedges and Cooper (1994), Thompson

and Sharp (1999), Brockwell and Gordon (2001) and Böhning (2000) among

others. A general introduction is also given by Houwelingen et al. (2000).

The problem with this approach is, for one, the potentially insufficient ap-

proximation of the normal distribution, and, for two, that the trial-specific

variances are treated as known and fixed values (see also the discussion on

this issue in Böhning et al. 2002), and, if estimated, the variance estimates

might be poor, especially if the event frequencies are small.

8.2 Multi-Level Approach

An approach, which is overcoming these problems, is the hierarchical, multi-

level approach (see for example Turner et al. 2000, Goldstein 1995). For the

situation here, the two-level hierarchical model has been outlined clearly in

Aitkin (1999a,b) including illuminating demonstrations at various MAIPDs

(see also Aitkin and Alfó 1998). The approach utilizes exact likelihoods and
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does not rely on approximations. For comparison, let us consider this ap-

proach in a little more detail. The first level is modelled by means of a

log-linear model with log(pC
i ) = αi and log(pT

i ) = αi + βi where pC
i and pT

i

are as defined previously. Clearly, αi represents in this approach the base-

line parameter and βi is the log-risk ratio. Under the Poisson assumption the

likelihood for study i is given as Po(xT
i , pT

i nT
i )×Po(xC

i , pC
i nC

i ). If the param-

eters pC
i and pT

i are replaced by their log-linear reparameterizations pC
i = eαi

and pT
i = eαi+βi the following likelihood for the i-th study is provided:

fML(xT
i , xC

i |αi, βi, n
T
i , nC

i ) = Po(xT
i , eαi+βinT

i ) × Po(xC
i , eαinC

i ) (38)

The second level will be modelled by means of a non-parametric mixing dis-

tribution. We consider the most complex form of heterogeneity, allowing for

baseline and effect heterogeneity, that is, each component in the mixture has

its own baseline and effect parameter. Accordingly, the mixture distribution

has the form:

f(xT
i , xC

i |Q∗, nT
i , nC

i ) =
m∑

j=1

fML(xT
i , xC

i |αj, βj, n
T
i , nC

i )qj

where the mixing distribution Q∗ is now given as:

Q∗ =

⎛⎜⎝α1 ... αm

β1 ... βm

q1 ... qm

⎞⎟⎠ .

Results of Modelling for the Cholesterol Lowering MAIPD. Let us illus-

trate the approach with the MAIPD on cholesterol lowering treatment in

Table 3. The nonparametric MLE has here 15 components (see Table 8). In

contrast, the PNMLE has 4 components (see Table 8).

Table 8 about here
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As can be seen in Table 8 more components are estimated by the nonpara-

metric maximum likelihood estimator in the multi-level model in comparsion

to the profile likelihood approach (15 vs. 4). According to the BIC the

multi-level approach provides 7 components, whereas the profile likelihood

approach suggests only 2 components (see Table 5). One reason for this be-

havior becomes evident by inspecting the nonparametric MLE (or the one

with 7 components returned from the BIC) more closely. The multi-level

model experiences increased heterogeneity through the baseline parameter

(which has low practical interest) and many components have close treat-

ment effect estimates.

8.3 Some simulation results

To investigate this confounding baseline effect in the multi-level model a bit

further by means of a small simulation study, it is assumed that in the pop-

ulation of interest two treatment clusters exist. The clusters are represented

by the mixing distribution Q =

(
0.5 1.5
0.5 0.5

)
. In other words, both compo-

nents, one with risk ratio 0.5 and the other with risk ratio 1.5 receive the

same weight of 0.5. To mimic baseline variation the baseline risk pC
1 , ...pC

k

were generated from an uniform distribution on 0.1 to 0.66. The parameter

pT
i = θjp

C
i is then provided from a Bernoulli experiment with event proba-

bility 0.5 for j = 1 or j = 2. The sample sizes nT
i and nC

i were generated

from a Poisson distribution with parameter 100. Then, Poisson variates XT
i

with parameters nT
i × pT

i and Poisson variates XC
i with parameters nC

i × pC
i

were drawn for each study i, i = 1, ..., k. In this case the number of studies

was k = 100. To achieve better comparibility, for both, the profile likeli-

hood and the multi-level model, a two component mixing distribution were

estimated. The procedure was replicated 1,000 times. From the resulting

replications mean and variance of each component effect parameter estimate
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were computed. The result for this constellation is visualized in Figure 9

(upper panel).

Figure 9 about here

The first component parameter is considerably overestimated in the multi

level model. Note that actually the true relative risk is not captured by

the 95% confidence interval. In contrast the second component is likewise

underestimated. The pofile likelihood behaves clearly superior in finding

the true mixing distribution. To show the large influence of the baseline

parameter we have provided in Figure 9 (lower panel) a further result from

the simulation study. The simulation setting is as in the previous one with

the exception that we now assume a fixed baseline parameter pC
i = 0.3. Now

both models are capable in recovering the true mixing distribution and have

a confidence intervals of comparable size and location.

A final aspect of a wide scope of simulation results concerns the effect

homogeneity case. The main settings are: pC
1 , ...pC

k were generated from an

uniform distribution on 0.3 to 0.6; pT
i = θpC

i and θ is fixed for all studies

i = 1, ..., k; nT
i and nC

i were generated from a Poisson distribution with

parameter 100; the number of studies is k = 100; XT
i with parameters nT

i ×pT
i

and XC
i with parameters nC

i × pC
i were generated from an Poisson

Figure 10 about here

distribution. In Figure 10 the bias is provided for both models for 30 values of

θ ranging from 0.1 to 1.32. The bias is acceptably small for both models (as

are the variances close for both estimators), although the profile likelihood

estimator appears to be virtually unbiased for a wide range of θ-values.
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9 Other Issues Investigated

9.1 Theoretical Aspects of the Profile Likelihood Metho-

dology

The profile method is a traditional method of dealing with nuisance param-

eters. One of it’s critical aspects centers on a potential overprecision in the

estimator for the parameter of interest “resulting from apparently knowing

the nuisance parameter as an explicit function of the data and the param-

eter of interest” (Aitkin 1998) has led to several proposals of adjusting or

modifying it (Barndorff-Nielsen and Cox 1994). On the other hand, for a

finite parameter, the curvature based on the profile likelihood is identical to

the curvature achieved from the parameter-of-interest part in the full likeli-

hood curvature (Patefield 1977). But even for semi-parametric settings, as

discussed in Murphy and Van der Vaart (2000) under mild regularity as-

sumptions, profile likelihoods behave like ordinary likelihoods. In particular,

variance approximations can be found from utilizing second derivatives of

the profile log-likelihood in the conventional way.

In the ideal case (Pawitan 2001), parameter of interest and nuisance pa-

rameter are orthogonal, that is, the joint likelihood £(θ, pC) = £1(θ)£2(p
C)

factors into likelihood depending only on θ and pC , respectively. For the ease

of discussion only one trial is considered, though generalizations are straight-

forward. Write the joint likelihood exp(−pT nT )(pTnT )xT×exp(−pCnC)(pCnT )xT

as product of £1(θ) =
(

nT θ
nC+nT θ

)xT (
nC

nC+nT θ

)xC

and £2(ηn) = exp(−ηn)η
xT +xC

n ,

where θ is the risk ratio and ηn = nT pT + nCpC . In case that the trial is

balanced ηn = nT pT + nCpC = η(nT + nC), and θ and η = pT + pC are

orthogonal. In the case of orthogonality, one can solely base inference on

£1(θ), and the profile likelihood is identical to £1(θ) which is also a true

likelihood. If the trial is unbalanced, the transformation ηn = nT pT + nCpC

neccessarily incorporates the known, trial-specific sample size parameters,
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but £1(θ) will remain identical. Alternatively, one may base inference on the

likelihood conditional on the sufficient statistic x = xT +xC for the nuisance

parameter, and, although this is by no means in generality the case, it does

turn out again to be £1(η) (see for a more general discussion Pawitan 2001

or McCullagh and Nelder 1989).

In our context, assuming a finite parameter would mean that the number

of centers is considered fixed, and the asymptotics refer to the number of per-

sons within each center. But even for semi-parametric settings, as discussed

in Murphy and Van der Vaart (2000) under mild regularity assumptions,

profile likelihoods behave like ordinary likelihoods. In particular, variance

approximations can be found from utilizing second derivatives of the profile

log-likelihood in the conventional way. This theoretical fact confirms our

simulation results from section 5.

9.2 Software Developments: C.A.MAP

The log-likelihood (32) is non-standard, it is not a Poisson log-likelihood, nor

any of the log-likelihoods available in the standard generalized linear model

family correspond to it. This makes it less attractive to use one of exist-

ing statistical packages like STATA, S-plus, MINITAB, or any package able to

do macro-like programming. In addition, the available global bound (with

respect to the matrix ordering) for the second derivative matrix will allow

to use more reliable algorithms for computing profile maximum likelihood

estimators. Hence, a software tool was developed, Computer-Assisted Anal-

ysis of Multi-Level Model, Approximate, and Profile Likelihood by Mixtures

(C.A.MAP) which can handle the tasks of computing and inference for the

models developed in the previous chapters. All examples have been analyzed

with this software.
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9.3 Incorporating Covariate Information and Unob-

served Heterogeneity

One of the remaining tasks is to extend the modelling to investigate for

unobserved heterogeneity in the presence of observed covariates. The log-

likelihood corresponding to (32) and adjusting for unobserved heterogeneity

is

L∗(β, Q) =
k∑

i=1

log

⎛⎝ m∑
j=1

qj
exp(β

(j)
0 + ηi)

xT
i

(nC
i + exp(β

(j)
0 + ηi)nT

i )xi

⎞⎠ , (39)

where Q is a discrete distribution giving weights q1, q2, ..., qm to β
(1)
0 , β

(2)
0 , ..., β

(m)
0

in the linear predictor β
(j)
0 + ηi = β

(j)
0 + β1zi1 + β2zi2 + ... + βpzip. In other

words, it is allowed that an unobserved covariate can enter linearly into the

model. However, it is one of the complications that residual heterogeneity

can enter in numerous ways and (39) illuminates only one of many ways.

The intercept might be fixed and mixing might occur in one, several or all

covariate parameters, as it might occur in the intercept parameter as well.

In other words, a new range of models need to be considered and this will be

approached in forthcoming work.
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Table 1: Data Illustration for a Multicenter Clinical Trial for Studying the
Effect of Beta-Blocker for Reducing Mortality after Myocardial Infarction
(Yusuf et al. 1985)

Center i Deaths xT
i Person-Time nT

i Deaths xC
i Person-Time nC

i

1 3 38 3 39
2 7 114 14 116
3 5 69 11 93
4 102 1533 127 1520
5 28 355 27 365
6 4 59 6 52
7 98 945 152 939
8 60 632 48 471
9 25 278 37 282

10 138 1916 188 1921
11 64 873 52 583
12 45 263 47 266
13 9 291 16 293
14 57 858 45 883
15 25 154 31 147
16 33 207 38 213
17 28 251 12 122
18 8 151 6 154
19 6 174 3 134
20 32 209 40 218
21 27 391 43 364
22 22 680 39 674
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Table 2: Outcome Data for Prophylactic Use of Lidocaine after Heart Attack
(AMI) (Hine et al. 1989, following Normand 1999)

Center i Deaths xT
i nT

i Deaths xC
i nC

i θ̂i(95%CI)
1 2 39 1 43 2.21 (0.21-23.4)
2 4 44 4 44 1.00 (0.27-3.75)
3 6 107 4 110 1.54 (0.45-5.31)
4 7 103 5 100 1.36 (0.45-4.14)
5 7 110 3 106 2.25 (0.60-8.47)
6 11 154 4 146 2.61 (0.85-8.01)
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Table 3: Outcome Data of a Meta-Analysis of Smith et al. (1993) on the
Effect of Cholesterol Lowering Treatment on Mortality from Coronary Heart
Disease (following Arends et al. 2000)

Center i Deaths xT
i nT

i Deaths xC
i nC

i

1 28 380 51 350
2 70 1250 38 640
3 37 690 40 500
4 2 90 3 30
5 0 30 3 30
6 61 1240 82 1180
7 41 1930 55 890
8 20 340 24 350
9 111 1930 113 1920
10 81 1240 27 410
11 31 1140 51 1140
12 17 210 12 220
13 23 210 20 230
14 0 90 4 170
15 1450 38620 723 19420
16 174 1350 178 1330
17 28 890 31 860
18 42 1970 48 2060
19 4 150 5 150
20 37 2150 48 2100
21 39 1010 28 1120
22 8 100 1 50
23 5 340 7 340
24 269 4410 248 4390
25 49 3850 62 3740
26 0 190 1 190
27 19 1510 12 1560
28 68 13850 71 13800
29 46 10140 43 10040
30 33 5910 3 1500
31 236 27630 181 27590
32 0 100 1 100
33 1 20 2 30
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Table 4: Outcome Data For Treatment Group of a Multicenter Clinical Trial
(With High Sparsity) (Cancer and Leukaemia Group, Cooper et al. 1993)

Center i Deaths xT
i nT

i Deaths xC
i nC

i

1 1 3 3 4
2 8 11 3 4
3 2 3 2 2
4 2 2 2 2
5 0 3 2 2
6 2 3 1 3
7 2 3 2 2
8 4 4 1 5
9 2 3 2 2
10 2 3 0 2
11 3 3 3 3
12 0 2 2 2
13 1 5 1 4
14 2 4 2 3
15 4 6 2 4
16 3 9 4 12
17 2 3 1 2
18 1 4 3 3
19 2 3 1 4
20 0 2 0 3
21 1 5 2 4
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Table 5: Results of the mixture model fitting for the multicenter trial of
Cholesterol Lowering Treatment and Coronary Heart Disease given in Table
3; Q̂(m) is the mixture maximum profile likelihood estimate with m compo-
nents

m θ̂j q̂j d(θmax, Q̂
(m)) L∗(Q̂(m)) BIC

1 0.9716 1 10,518.11 -50,172.01 -100,347.52

2 1.0058 0.8901 1.7856 -50,161.54 -100,333.57
0.4401 0.1099

3 0.9776 0.8029 1.2998 -50,160.62 -100,338.72
0.4283 0.1013
1.2827 0.0958

4 1.0016 0.6546 1.0000 -50.159,66 -100,343.79
PNMLE 0.3665 0.0558

0.6962 0.1916
1.2793 0.0980
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Table 6: Classification of centers for the multicenter Cholesterol Lowering
Treatment trial given in Table 3 according to the posterior distribution when
using the two-component mixture Q̂(2) (see Table 5)

posterior of component classified as
Center 1 2 belonging to

1 0.09775 0.902248 2
2 0.99993 0.000069 1
3 0.8994 0.100599 1
4 0.73118 0.268823 1
5 0.78973 0.21027 1
6 0.97666 0.023345 1
7 0.00002 0.999979 2
8 0.98652 0.01348 1
9 1 0 1
10 0.99993 0.000068 1
11 0.63296 0.367043 1
12 0.99889 0.001115 1
13 0.99951 0.000493 1
14 0.82041 0.179595 1
15 1 0 1
16 1 0 1
17 0.99498 0.005023 1
18 0.99958 0.000422 1
19 0.91806 0.081936 1
20 0.98398 0.016024 1
21 1 0.000001 1
22 0.98862 0.011379 1
23 0.90455 0.09545 1
24 1 0 1
25 0.99441 0.005587 1
26 0.88153 0.118473 1
27 0.99956 0.000443 1
28 1 0.000005 1
29 0.99997 0.000029 1
30 0.99963 0.000369 1
31 1 0 1
32 0.88138 0.118618 1
33 0.89578 0.104223 1
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Table 7: Results of fitting various models to the multicenter trial of Smoking
Cessation

L∗(β̂) Covariates β̂j S.E. P-Value
-17,218.81 Intercept 0.4483 0.0392 0.0000

-17,218.73§ Intercept 0.4700 0.0647 0.0000
High Support -0.0343 0.0813 0.3367

-17,215.49§ Intercept 0.3850 0.0459 0.0000
Patch 0.2301 0.0887 0.0047

-17,214.84 Intercept 0.4356 0.0661 0.0000
Patch 0.2526 0.0912 0.0028

High Support -0.0803 0.0838 0.1434

-17,214.65 Intercept 0.4222 0.0697 0.0000
Patch 0.3558 0.1950 0.0340

High Support -0.0657 0.0926 0.2391
Patch×H.S. -0.1328 0.2207 0.2738

§Note that these models are not nested.
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Table 8: NPMLE Q̂(15) for the Multi-Level Modelin the MAIPD of Choles-
terol Lowering Treatment and Coronary Heart Disease given in Table 3; H
is the Number of Studies Allocated to the Associated Component

Component-Number in Multi-Level-Model
Component 1. 2. 3. 4. 5. 6.
baseline α -3.292866 -5.355982 -2.832449 -2.016804 -3.767197 -5.022077
risk ratio θ 1.007591 1.022630 1.020841 .965525 .817292 1.306739
weight q .077422 .104689 .226971 .034156 .113021 .056061
H 2 4 10 1 5 1
Component 7. 8. 9. 10. 11. 12.
baseline α -2.789155 -1.931629 -4.086842 -2.458914 -3.661684 -4.850073
risk ratio θ .347178 .506721 .759630 1.258181 1.481572 1.587610
weight q .045034 .033068 .058496 .028397 .035870 .023181
H 1 1 1 1 1 1
Component 13. 14. 15.
baseline α -3.152536 -2.664810 -6.166033
risk ratio θ .654683 .766163 2.652461
weight q .055444 .087982 .020206
H 1 2 1

L∗ = −238.911862
maxα,β d(α, β, Q) = 1.000000
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Figure 1: A Comparison of Profile Maximum Likelihood Estimator (PL)
and Mantel-Haenszel Estimator (MH) for Sparse Multicenter Trial with Re-
spect to Bias based upon a Simulation
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Figure 2: A Comparison of Profile Maximum Likelihood Estimator (PL)
and Mantel-Haenszel Estimator (MH) for Sparse Multicenter Trial with Re-
spect to Variance based upon a Simulation
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Figure 3: A Comparison of Variance Formulas provided by (19) (PML)
and Greenland and Robbins (20) (Green) for Sparse Multicenter Trial with
Respect to Bias based upon a Simulation
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Figure 4: A Comparison of Variance Formulas provided by (19) (PML)
and Greenland and Robbins (20) (Green) for Sparse Multicenter Trial with
Respect to Variance based upon a Simulation
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Figure 5: Gradient function d(θ, θ̂PMLE) for Lidocaine trial (see also Table
2)
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Figure 6: Gradient function d(θ, θ̂PMLE) for Cholesterol Lowering trial (see
also Table 3)
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Figure 7: Gradient function d(θ, Q̂PNMLE) (see also Table 5) for Cholesterol
Lowering trial (see also Table 3)
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Figure 8: An Example of a Multicenter Study with Three Covariates (from
DuMouchel and Normand 2000)
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Figure 9: Comparing the Profile Likelihood Approach (PL) with the Multi-
Level Model by Means of a Simulation Study with Two-Component Treatment
Heterogeneity and under Baseline Heterogeneity (upper panel) and Homo-
geneity (bottom panel)
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Figure 10: Comparing the Bias of the Profile Likelihood Approach (PL)
with the Multi-Level Model by Means of a Simulation Study with Treatment
Homogeneity and Baseline Heterogeneity
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