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Abstract

Most of the researchers in the application areas usually use the EM algorithm to *nd estimators
of the normal mixture distribution with unknown component speci*c variances without knowing
much about the properties of the estimators. It is unclear for which situations the EM algorithm
provides “good” estimators, good in the sense of statistical properties like consistency, bias, or
mean square error. A simulation study is designed to investigate this problem. The scope of this
study is set for the mixture model of normal distributions with component speci*c variance, while
the number of components is *xed. The asymptotic properties of the EM algorithm estimate is
investigated in each situation. The results show that the EM algorithm estimate does provide
good asymptotic properties except for some situations in which the population means are quite
close to each other and larger di9erences in the variances of the component distributions occur.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

In many applications in medicine, biology, or the social sciences situations are stud-
ied in which data such as systolic blood pressure, blood cholesterol level and glu-
cose level are of the following type: under standard assumptions the population is
homogeneous, leading to a simple, one or two parametric and natural density. Exam-
ples include the binomial, the Poisson, the geometric, the exponential and the normal
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distribution. We consider a most common one, the normal distribution. If these stan-
dard assumptions are violated because of population heterogeneity, mixture models can
capture these additional complexities easily. The mixture model arises as the marginal
distribution over the (latent) variable describing sub-population membership. In this
setting here, we assume that the number of sub-populations g is known, leading to
a discrete non-parametric mixing distribution. Moreover, we allow the mixture ker-
nel to be normal with component-speci:c variance. Maximum-likelihood estimation
with the EM algorithm has been the approach to the mixture density estimation prob-
lem, which is a particular iterative procedure for numerically, iteratively approximating
maximum-likelihood estimates of the parameters in mixture densities. This procedure
is a specialization to the mixture density estimation problem of a general method for
a approximating iteratively maximum-likelihood estimates in an incomplete data con-
text which was formalized by Dempster et al. (1977) and termed by them the EM
algorithm (E for “expectation” and M for “maximization”). It has been found in most
instances to have the advantage of rather reliable convergence, low cost per iteration,
economy of storage and ease of programming, as well as a certain heuristic appeal; un-
fortunately, its convergence can be slow even in simple problems (Redner and Walker,
1984; Meng, 1997).
Nevertheless, the practitioners in applied statistics and elsewhere make intensive

use of the EM algorithm which is likely to provide some local maximum of the
likelihood function and the estimator might be considered as some form of local
maximum-likelihood estimator (Behboodian, 1970). It is, however, by no means guar-
anteed that the EM algorithm provides a global maximum (Wu, 1983). In addition,
in the case of normal mixtures with component-speci*c variances, the log-likelihood
is unbounded and attains +∞ for certain values of the parameter space. Whereas al-
gorithmic approaches of global character such as gradient function based techniques
(B/ohning, 2000) fail miserably in this case (“they climb up the hill for ever”), the
local character of the EM algorithm adds to its advantage—as many practitioners feel
that the EM algorithm provides rather reasonable solutions. Though used much, sur-
prisingly little theoretical knowledge is available for this estimator. In fact, it might
be unclear to which extent asymptotic properties of the estimator such as consistency,
asymptotic eFciency and asymptotic normality hold.
As there are no *nite parameter values existing which maximize the likelihood, in

our opinion, it is only fair not to speak about maximum-likelihood estimates, but rather
about the estimates which the EM algorithm provides (some sort of solution of the
score equation) and call them EM algorithm estimates. The problem is quite well
known in the literature. McLachlan and Peel (2000, p. 41) write in connection with
this notational problem: “We shall henceforth refer to �̂ as the MLE even in situations
where it may not globally maximize the likelihood. Indeed, in some of the examples
on mixture models to be presented, the likelihood is unbounded. However, for these
models there may still, under regularity conditions, a sequence of roots of the likelihood
equation corresponding to local maxima with the properties of consistency, eFciency,
and asymptotic normality.”
Since the EM algorithm has to be started with certain values for the parameters it

is optimizing, the answers will depend to a certain degree on the initial values used
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to start it (B/ohning, 2000). Therefore, emphasis will be also given to the strategy of
choosing initial values.
In the following we brieJy describe the EM algorithm, the initial value strategy, the

design of the simulation study and the results in terms of Bias and MSE.

2. EM algorithm for normal mixture model

The EM algorithm is a general-purpose algorithm to iterative computation of
maximum-likelihood estimates when the observations can be viewed as incomplete
data. It consists of an expectation step followed by a maximization step (Dempster
et al., 1977). We assume that y1; : : : ; yn are independent random variables each having
a discrete mixture of g normal distributions with mean parameter 
i and variance pa-
rameter �2

i . Denote with p1; : : : ; pg; 
1; : : : ; 
g; �2
1 ; : : : ; �

2
g all the unknown parameters

in these g normal component densities, and let � contain all of the unknown param-
eters. Note that there are 3g− 1 independent parameters, since the weights p1; : : : ; pg

have to sum to 1. Then, the incomplete-data log-likelihood function for � is given by

log LI(K) =
n∑

j=1

log

{
g∑

i=1

pifi(yj; 
i; �2
i )

}
; where fi(yj; 
i; �2

i )

denotes the normal distribution with mean 
i and variance �2
i :

For the purpose of the application of EM algorithm, the observed-data yobs=(y1; : : : ; yn)
are regarded as being incomplete. The latent variables zij are introduced, where zij is
de*ned to be one or zero according to whether yj did or did not arise from the ith
component of mixture model (i=1; : : : ; g; j=1; : : : ; n). So, the complete-data xc is given
by xc=(x1; : : : ; xn), where x1=(y1; z1); : : : ; xn=(yn; zn) are taken to be independent and
identically distributed with z1; : : : ; zn being independent from a multinomial distribution
consisting of a draw on g categories with respective probabilities p1; : : : ; pg. For this
speci*cation, the complete-data log likelihood is

log Lc(�) =
g∑

i=1

n∑
j=1

zij log{pifi(yj; 
i; �2
i )}:

The EM algorithm is easy to program and proceeds iteratively in two steps, E (for
expectation) and M (for maximization) (McLachlan and Krishnan, 1997). On the
(k +1)st iteration, the E-step requires the calculation of the conditional expectation of
the complete-data log-likelihood log Lc(�), given the observed data yobs, using current
*t �(k) for �.

Q(�;�(k)) = E�(k){log Lc(�) |yobs}:
Since log Lc( ) is a linear function of the unobservable component label variables zij,
the E-step is calculated simply by replacing zij by its conditional expectation given yj,
using  (k) for  . That is, zij is replaced by

z(k)ij = E�(k){Zij|yj}

=
p(k)

i f(yj; 

(k)
i ; �2(k)

i )∑g
m=1 p(k)

m f(yj; 

(k)
m ; �2(k)

m )
;
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which is the estimate after the kth iteration of the posterior probability that the jth
entity with yj belongs to the ith component (i = 1; : : : ; g; j = 1; : : : ; n).
The M -step requires the computation of p̂(k+1)

i ; 
̂(k+1)
i ; �2(k+1)

i (i = 1; 2; : : : ; g) by
maximization log Lc(�); it is equivalent to computing the sample proportion, the
weighted sample mean and sample variance with weight zij.
As log Lc(�) is linear in the zij, it follows that zij are replaced by their conditional

expectations z(k)ij . On the (k + 1)th iteration, the intent is to choose the value of �,
say �(k+1), that maximizes Q(�;�(k)). It follows that on the M -step of the (k + 1)st
iteration, the current *t for the mixing proportions, the component means, and the
variances is given explicitly by

p̂(k+1)
i =

n∑
j=1

z(k)ij =n;


̂(k+1)
i =

n∑
j=1

z(k)ij yj

/
n∑

j=1

z(k)ij ;

�̂2(k+1)
i =

n∑
j=1

z(k)ij (yj − 
̂(k)
i )2=n

for i=1; : : : ; g. The E- and M -steps are alternated repeatedly until the likelihood change
by some small amount (to be set) in the case of convergence.

3. Simulation

We de*ne the measures for the evaluation of the asymptotic properties of the esti-
mators � as follows.

1. Bias of the estimate � for the ith component

BIAS(�̂i) =
1
r

r∑
m=1

�̂
(m)
i −�i;

where �̂i = [p̂i; 
̂i; �̂
2
i ]; �i = [pi; 
i; �2

i ], and r is the number of simulation runs

�̂
(m)
i = [p̂(m)

i ; 
̂(m)
i ; �̂2(m)

i ] of the mth iteration with m= 1; : : : ; r.
2. Mean square error (MSE) of the estimate �i for the ith component

MSE(�̂i) =
1
r

r∑
m=1

(�̂
(m)
i −�i)2:

In this study, we use FORTRAN 90 with IMSL library to develop the simulation
program. We simulate 2–5 components of normal data with the combination of mean

 (equal to 5; 10; 20; 50, and 100), variance �2 (equal to 1; 2; 5; 10; 20; 50, and 100) and
the mixing weight p of 0.1(0.1)0.9. Since there are a large number of combination
values of the three parameters, we combine these into one index D to have a measure
in the heterogeneity of these parameters.
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Table 1
Typical combinations of � for small, medium and large value of D

Gp. D p1 
1 �2
1 p2 
2 �2

2 p3 
3 �2
3 p4 
4 �2

4 p5 
5 �2
5

2 Small 0.5 5 10 0.5 20 20
Medium 0.5 50 50 0.5 100 10
Large 0.5 10 100 0.5 100 20

3 Small 1=3 5 1 1=3 10 5 1=3 20 10
Medium 1=3 5 100 1=3 20 100 1=3 50 50
Large 1=3 5 20 1=3 10 20 1=3 100 100

4 Small 0.25 10 5 0.25 10 20 0.25 20 10 0.25 20 20
Medium 0.25 20 20 0.25 20 20 0.25 50 20 0.25 100 20
Large 0.25 5 100 0.25 20 100 0.25 50 50 0.25 100 1

5 Small 0.2 5 2 0.2 5 10 0.2 5 20 0.2 10 20 0.2 20 5
Medium 0.2 20 20 0.2 50 50 0.2 20 50 0.2 50 20 0.2 50 100
Large 0.2 10 10 0.2 20 10 0.2 50 100 0.2 100 50 0.2 100 100

We de*ne for a given vector �

D =
g∑

i=1

pi[(
i − R
)2 + (�2
i − R�2)2];

where R
 = p1
1 + · · · + pg
g and R�2 = p1�2
1 + · · · + pg�2

g. If 
i’s are equal, then
D=

∑g
i=1 pi(�2

i − R�2)2. If �2
i ’s are equal, then D=

∑g
i=1 pi(
i − R
)2. If 
i’s are equal

as well as the �2
i ’s, then D=0. To interpret D, note the following. If one looks at the

bivariate distribution giving mass pi to the g 2-vectors (
i; �2
i )

T, then D represents just
the trace of the covariance matrix of this distribution. Other possible measures would
be the determinant, though we are not proceeding in this direction.
For each simulation set we *xed the total size (n) of the all components from 25

to 10,000 as n = 25; 50; 100; 200; 500; 1000; 2000; 5000, and 10,000. Then do the
following steps of simulation process and repeat it 1000 times.
Steps in each simulation process:

1. Create a data set of size n
1.1. Use multinomial distribution to generate the size of each component.
1.2. Generate normal data for each component
1.3. Combine the normal data sets into one ordered data set, yi of size n

2. Setting initial values
2.1. Partition yj into g components with size greater than one by slide the g − 1

cut points for all possible partitions. For g=2; 3; 4, and 5, we have the number
of partition t = n − 3, t =

∑n−1
j=5 (n − j), t =

∑n−7
i=1

∑n−1
j=i+6(n − j), and t =∑n−9

k=1

∑n−9
i=k

∑n−1
j=i+8 (n− j), respectively.

2.2. In each partition set, compute p̂i; 
̂i; �̂
2
i and use it as initial values.
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Fig. 1. Bias in proportion for two to *ve components with the small, medium and large value of D.

3. For each partition set do the EM -algorithm to *nd L(�̂
(q)
i ); �̂

(q)
i where q=1; 2; : : : ; t

and select �̂
(m)
i = �̂

(q)
i which gives the maximum value of L(�̂

(q)
i ) for q=1; 2; : : : t.

4. Repeat step 1–3, 1000 times and compute BIAS(�̂i); MSE(�̂i), and D.

4. Results

As the index D combines mixing proportion, mean and variance of the normal data
sets, we can classify D into small, medium and large value. The small value of D
represents mixture of normal data that overlap largely, while the medium value of D
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Fig. 2. Bias in mean for two to *ve components with small, medium and large value of D.

comes from mixtures of normal data that have some overlap. When the normal data
sets show only slight overlap D has a large value. For this study we set D about 100
for the small, about 1000 for the medium and about 3000 for the large one. Some
typical combinations for � are shown in Table 1. After all, we run these simulations
and provide the results in Figs. 1–6.
Consider the bias in the mean. Here, the estimates with medium and large D achieve

a bias less than 0.01 for a sample size greater than 200 and the estimates with small
D do this for a sample size greater than 500. For estimates of variances with small,
medium and large D the bias becomes less than 1 for a sample size greater than 100.
Whereas the estimates in proportion with medium D of sample size greater than 200
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Fig. 3. Bias in variance for two to *ve components with the small, medium and large value of D.

and large D of sample size greater than 100 achieve a bias in proportion less than
0.01. In generality, the bias tends to approach zero as there is increase in the sample
size. The pattern in bias is similar for two to *ve components.
For the MSE of mean, there is no di9erence in the pattern of convergence to zero

for small, medium and large D. With a sample size greater than 100, the MSE of mean
has value less than 0.1. For the MSE of variance, it tends to have a value less than
100 for small, medium and large D when the sample size greater than 500, 200, and
100, respectively. For the MSE of proportion, the components with small, medium and
large value of D tends to have the MSE less than 0.001 for the sample size greater
than 1000, 500 and 200, respectively.
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Fig. 4. Mean square error of proportion for two to *ve components with small, medium and large value of D.

5. Conclusions and discussion

For all situations investigated in this simulation study we have seen that the EM
algorithm gives reasonable solutions of the score equations in an asymptotic unbiased
sense. The value of the index D or the trace of covariance matrix of mixing the
distribution of the normal distribution inJuences the pattern of convergence. For the
data with medium valued D, reasonably small bias in mean and variance seem to occur
for the sample size greater than 200.
As has been demonstrated the EM algorithm estimate seem to provide reasonable

estimates of the parameter values. A special strategy has been used to *nd initial
values. It remains up to future research how dependent these results are on the initial
values chosen here, and if less favorable results are to be expected if other strategies
are used.
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