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Summary

Estimation of a population size by means of capture-recapture techniques is an important problem
occurring in many areas of life and social sciences. We consider the frequencies of frequencies situa-
tion, where a count variable is used to summarize how often a unit has been identified in the target
population of interest. The distribution of this count variable is zero-truncated since zero identifica-
tions do not occur in the sample. As an application we consider the surveillance of scrapie in Great
Britain. In this case study holdings with scrapie that are not identified (zero counts) do not enter the
surveillance database. The count variable of interest is the number of scrapie cases per holding. For
count distributions a common model is the Poisson distribution and, to adjust for potential heteroge-
neity, a discrete mixture of Poisson distributions is used. Mixtures of Poissons usually provide an
excellent fit as will be demonstrated in the application of interest. However, as it has been recently
demonstrated, mixtures also suffer under the so-called boundary problem, resulting in overestimation
of population size. It is suggested here to select the mixture model on the basis of the Bayesian
Information Criterion. This strategy is further refined by employing a bagging procedure leading to a
series of estimates of population size. Using the median of this series, highly influential size esti-
mates are avoided. In limited simulation studies it is shown that the procedure leads to estimates
with remarkable small bias.

Key words: Bagging; Bootstrap; Boundary Problem; Nonparametric Mixture Model; Popula-
tion Size Estimator; Zero-truncation.

1 Introduction

The size N of some population is often unknown and requires determination. It is assumed that the
identifying mechanism leaves a number of the members of the population of interest undetected. In
the biological sciences this is often a wildlife population (and the identifying mechanism is an animal
trap) whereas in the life or social sciences this population might be a group of people who are diffi-
cult to sample such as illicit drug users (with identifying mechanism a hospital register) or car drivers
without a license (with identifying mechanism a police data base). Suppose that a specific mechanism
identifies some, say n, but not all units of a population of size N. Furthermore, assume that identifica-
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tion occurs independently for each population unit with probability 1� p0. This stochastic situation
can be described by tuples of size N

ðd1; d2; . . . ; dNÞ
where di ¼ 1 indicates that the i-th unit is identified (and observed) and di ¼ 0 otherwise (and the

unit remains unobserved). Each of these tuples occur with probability ð1� p0Þ
PN

i¼1
di p

N�
PN

i¼1 di

0 . We

are interested in the probability that exactly n units are identified. Since there are
N
n

� �
tuples

ðd1; d2; . . . ; dNÞ with
PN

i¼1 di ¼ n the probability of observing exactly n units is a simple binomial
probability:

N
n

� �
ð1� p0ÞnpN�n

0 : ð1Þ

Then, the maximum likelihood estimator of N is the well-known Horvitz-Thompson estimator (Hor-
vitz and Thompson, 1952) of the population size given as

N̂N ¼ n
ð1� p0Þ

: ð2Þ

Note that (1) can be viewed as a likelihood function in N which is maximized for N being the integer
part of (2) (Lindsay and Roeder, 1987). However, p0 will be known only in exceptional cases and
usually an estimate of p0 will be required for practical use. In addition, some modeling for p0 will be
required. We will address this in the following section. For a more general introduction into the cap-
ture-recapture methodology see Bunge and Fitzpatrick (1993).

2 Capture-Recapture Studies Leading to Frequencies
of Repeated Identifications

The mechanism that identifies units with probability 1� p0 can be quite general. It might be that
several sources identify the units leading to a log-linear modeling approach for the estimation of p0

and N (Bishop et al., 1975). Another common method for deriving an estimator of p0 is based upon
counting repeated identifications of the same unit by the same mechanism over a given time span.
This is usually referred to as capture-recapture data in the form of frequencies of frequencies. For
example, in a capture-recapture study repeated occurrences of dolphins are counted by some mechan-
ism or the number of times a patient receives treatment for a certain disease at a medical facility may
be counted. We will denote by f0, f1, f2; . . . ; fm the frequency of those units identified exactly
0; 1; 2; . . . ;m times where m is the largest occurring count. Also, we will denote with p0, p1,
p2; . . . ; pm the probability of exactly 0; 1; 2; . . .. m identifications. Clearly, f0 is unobserved and target
of the inference. We have that n ¼ f1 þ f2 þ � � � þ fm and N ¼ nþ f0.

Example 1 Sheep are kept in holdings in Great Britain and the occurrence of scrapie is monitored
by the Compulsory Scrapie Flocks Scheme. This was established in 2004 and summarizes three sur-
veillance sources. The frequency distribution of the scrapie count within each holding for the year
2005 is presented in Table 1. See also Del Rio Vilas and B�hning (2008) for further details. Pre-
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Table 1 Scrapie data for Great Britain 2005 (Del Rio Vilas and B�hning 2008).

Number of scrapie cases 0 1 2 3 4 5 6 7 8 n

Frequency of holdings � 84 15 7 5 2 1 2 2 118

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



viously, the under-ascertainment adjusted prevalence has been estimated via anonymous postal surveys
(Hoinville et al., 2000; Sivam et al., 2003). More recently, multiple-list capture-recapture methods
were applied to estimate the number of scrapie-affected holdings not detected by any of the surveil-
lance streams in place (Del Rio Vilas et al., 2005). In the following we attempt to develop a methodol-
ogy for providing an adjustment for disease undercount.

Example 2 To illustrate the frequencies of frequencies situation we look at the following capture-
recapture data: Oremus (2005) tried to estimate the size of a small community of spinner dolphins
which are resident around the island of Moorea (near Tahiti). In 2002, over an interval of 8 months,
skin samples were randomly taken and 12 microsatellite loci were genotyped which makes mis-match-
ing of dolphins very unlikely. f1 ¼ 42 dolphins were sampled only once, f2 ¼ 7 dolphins were
sampled exactly twice and f3 ¼ 2 dolphins were sampled exactly three times. This leads to n ¼ 51
different dolphins that were observed in the experiment. For more details see B�hning (2008).

3 Mixture Modelling and the Boundary Problem

The problem of modelling the probability pj for observing count j arises, where j ¼ 0; 1; 2; . . .. The
Poisson density Poðj; lÞ ¼ exp ð�lÞ lj=j! does not often provide enough flexibility to give an adequate
fit. Mixture models (Norris and Pollock, 1996, 1998; Pledger, 2000; Mao and Lindsay, 2002, 2003)
are more flexible, and we consider a discrete mixture of Poisson distributions of the form

f ðj; QkÞ ¼
Pk
‘¼1

Poðj; l‘Þ q‘ ; ð3Þ

where the mixing distribution Qk ¼
l1 . . . lk

q1 . . . qk

� �
is giving weight q‘ � 0 to parameters l‘ for

‘ ¼ 1; . . . ; k, and k is the number of components (Poisson densities) in the mixture. Note that
q1 þ . . .þ qk ¼ 1. For a general introduction into mixture models see the books of Titterington et al.
(1985) and Lindsay (1995). B�hning and Sch�n (2005) discuss maximum likelihood estimation for a
given number of components k. Likelihood analysis focuses on the zero-truncated mixture log-likeli-
hood

log LðQkÞ ¼
Pm
j¼1

fj log ½f ðj;QkÞ� � n log ½1� f ð0;QkÞ� : ð4Þ

Equivalently, a log-likelihood based upon mixtures of zero-truncated Poisson distributions could be
considered (B�hning and Kuhnert, 2006). In this situation the log-likelihood can be maximized in the
set of all discrete probability distributions, leading to the nonparametric maximum likelihood estimate
(NPMLE). For more details see the appendix. For the surveillance data on scrapie (see Table 1) the
NPMLE corresponds to k ¼ 3 components. Details of the likelihood analysis for k ¼ 1 to 3 compo-
nents, including the associated maximised log-likelihood, are presented in Table 2. Column 1 in Ta-
ble 2 contains the number of components in the mixture model (3) and it can be seen that with k ¼ 3
the nonparametric maximum likelihood is achieved (see column 2). The differences in the likelihoods
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Table 2 Mixture likelihood analysis for the scrapie data of Table 1.

Number of components k log LðQ̂QkÞ BIC f̂f 0 N̂N

1 �155:9 313:9 52 170
2 �126:9 260:0 274 392
3 (NPMLE) �126:4 263:2 1117 1235
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for models with k ¼ 2 and k ¼ 3 components are minor, which is clearly evident when the Bayesian
Information Criterion (BIC) is considered:

BIC ¼ �2 log L ðQ̂QkÞ þ ð2k � 1Þ logðnÞ : ð5Þ
The BIC penalizes the log-likelihood with the number of parameters ð2k � 1Þ multiplied by the log-
sample size and works well as model selection criterion in mixture model settings as it does not suffer
under likelihood irregularities that are typical for mixture models (Chen et al., 2001; McLachlan and
Peel, 2000). Models are selected on the basis of small BIC-values: the smaller the BIC-value, the
better the model. According to the analysis provided in Table 2, the model of choice is the two-com-
ponent model. Having identified the model and the associated parameter estimates we can estimate
the probability for a zero count p0 as

p̂p0 ¼
Pk
‘¼1

Poð0; l̂l‘Þ q̂q‘ ¼
Pk
‘¼1

exp ð� l̂l‘Þ q̂q‘ ð6Þ

so that N̂N ¼ n=ð1� p̂p0Þ and f̂f 0 ¼ N̂N � n. Results for the scrapie data are presented in Table 2. As can
be seen in Fig. 1, the two-component mixture model provides a good fit to the observed frequencies
whereas the simple Poisson is clearly not adequate. It is however crucial that a selection criterion is
employed, such as the BIC, which penalizes for oversmoothing the data. As can also be seen from the
analysis in Table 2, the NPMLE although providing an excellent fit, also carries the risk of overesti-
mation of the population size, potentially drastically. Not only do practitioners consider the estimate
of N̂N ¼ 1235 as unrealistically high, but well-established alternative nonparametric population size
estimators such as Chao’s lower bound estimator N̂NC ¼ nþ f 2

1 =ð2f2Þ ¼ 353 (Chao, 1987) and Zelter-
man’s robust estimator N̂NZ ¼ n=½1� exp ð�2f2=f1Þ� ¼ 393 (Zelterman, 1988) are either close or in the
vicinity of the estimate N̂N ¼ 392 from the BIC-selected mixture model with k ¼ 2 components (and
not close to the NPMLE given with k ¼ 3 components).

Example 2 (continued). To illustrate the overestimation in an extreme case we look at the spinner
dolphins data again. Table 3 provides the results of the mixture model based likelihood analysis. Evi-
dently, the one-component model is the right choice leading to an estimate of 153 for the population
size. The alternative estimators of Chao with 177 and Zelterman 180 are close. The nonparametric
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tributions fitted by simple Poisson and mixture of two Poisson dis-
tributions; data are from Example 1.
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maximum likelihood estimate is provided for k ¼ 2 components leading to a spurious estimate of 111,
729. This example shows that results based on the non-parametric mixture maximum likelihood esti-
mator should be considered with great caution.

The problem becomes even more apparent if the following simulation experiment is considered.
N ¼ 100 counts are sampled from a two-component Poisson mixture giving equal weights to compo-
nent means l1 ¼ 1 and l2 ¼ 3. The frequencies f0; f1; . . . ; fm are constructed and f0 is ignored. The
experiment is repeated 100 times and N̂N is computed on the basis of the NPMLE for each of the 100
samples. The results are presented as an individual value plot on the left-hand-side of Fig. 2. It can be
seen that there are a large number of values overestimating the true value dramatically. The mean
estimate was 31,856 and the largest estimate of N was 263,163 which indicates how useless the non-
parametric maximum likelihood approach can become in this situation. However, it is also clear from
Fig. 2 that there are numerous reasonable good estimated values in the vicinity of the true population
size. Hence the approach suffers from the occurrence of many influential points and it appears wise to
choose a robust estimate of population size. In the simulation study this is easy to accomplish by
looking at the median which is 109 for the scenario above. Although there is a tremendous improve-
ment in reducing overestimation bias, a slight overestimation bias appears to persist. A different strat-
egy follows the BIC-selected modelling approach. For the scenario above we find the majority of
estimated population sizes (estimated on the basis of the BIC-selected mixture model) in the vicinity
of the true population size (see the right-hand-side of Fig. 2). However, even here large influential
population size estimates occur and lead to a mean estimate of 7,369, vastly overestimating the true
size of 100. The median with a value of 92 does better and we will suggest a general estimation
strategy based on the median of BIC-selected population size estimates.

Biometrical Journal 50 (2008) 6 997

Table 3 Mixture likelihood analysis for the spinner dolphin data of Example 2.

Number of components k log LðQ̂QkÞ BIC f̂f 0 N̂N

1 �29:1 59:2 102 153
2 (NPMLE) �28:9 61:1 111,678 111,729
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Figure 2 Distribution of estimates based upon the NPMLE and
the BIC-selected mixture model.
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The reason for this (potentially severe) overestimation bias has been debated for some time. One of
the reasons, potentially the central reason, is the so-called boundary problem which describes the fact
that for untruncated Poisson mixture models Nf ð0; Q̂QÞ � f0 and Eðf ð0; Q̂QÞÞ � p0. The result is due to
Harris (1991) and covered in more generality by Wang and Lindsay (2008). See also the associated
part in the appendix.

4 A Median-Correction for the Mixture Model Estimator
of Population Size

If repeated samples are available it is a simple task to consider a diversity of location estimators such
as the mean or, as was suggested here, the median. Unfortunately, only one sample of frequencies of
counts f1; f2; . . . ; fm is available in practice, leading to only one estimate N̂N of N. Further, this estimate
does not carry any salient characteristic which let practitioners decide if it is a “trustworthy” or spur-
ious observation.

We will utilize available techniques for improving unstable estimators, in particular, we will consid-
er bagging (bootstrap aggregating) as suggested by Breiman (1996) which we will modify for our
purposes. According to B�hlmann and Yu (2002) (who also provide a theoretical foundation for the
method) bagging consists of three steps: (i) B bootstrap samples are constructed from the original
sample, (ii) for each of the B bootstrap samples the estimator of interest is computed, and (iii) the
expected value of the estimator with respect to the bootstrap distribution is computed. The last step is
usually implemented by replacing the expected value with the sample mean of the B estimators gener-
ated by each of the B bootstrap samples. This mean is called the bagged estimator. The benefit of the
method lies in the fact that the variance of the bagged estimator is reduced in comparison to the
original estimator. As B�hlmann and Yu (2002) point out, this gain can be drastic if the original
estimator is “unstable”, e.g. small changes in the data can lead to large changes in the estimator. For
our purposes, we need to modify step iii) since large values for the population size estimator will
affect the mean which is known to be sensitive to large values. Instead, we will use the median as a
summary measure for the bootstrap estimates.

Hence, we suggest the following nonparametric bootstrap procedure:

Nonparametric Bootstrap

1. Sample n counts Y*1; . . . ; Y*n from a multinomial distribution with size parameter n and category
probability parameters fj=n.

2. Construct from this sample the frequencies f *1; . . . ; f *m.
3. Construct N̂N * using the BIC-selected mixture model.

Suppose the above nonparametric bootstrap has been used to generate B samples of size n each and
there are now B population size estimates N̂N *1; . . . ; N̂N *B available where each of these has been deter-
mined on the basis of a BIC-selected mixture model. Then we are able to determine a variety of
measures including the median. We define the median-adjusted bootstrap estimator or bagged estima-
tor of population size as

N̂NM ¼ medianfN̂N *1; . . . ; N̂N*B g: ð7Þ
Note that the above bootstrap algorithm is different from the one suggested in van der Heijden et al.
(2003) in that it samples from the observed distribution f1=n; f2=n; . . . ; fm=n in contrast to sampling
from f̂f 0 =N̂N, f1=N̂N, f2=N̂N, . . . , fm=N̂N which is required for obtaining an estimate of the variance of N̂N.

Example 1 (continued) We apply the bootstrap algorithm to the scrapie surveillance data presented
in Example 1. A bootstrap sample was generated on the basis of the observed f1; . . . ; f8. All mixture
models up to the nonparametric maximum likelihood estimate were generated and the one with the
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best BIC-value selected. Also the alternative estimators of Chao and Zelterman were computed for
comparison. This process was repeated 100 times. Table 4 shows the median and mean estimates for
this bootstrap distribution. Whereas there are only minor differences between the two for the estima-
tors of Chao and Zelterman, there is a considerable difference for the mixture-model based estimator
which shows the importance of the median-correction in this case. In fact, the large value for the
mean was caused by just one single value in the bootstrap distribution of the mixture-model based
estimator of population size (see Fig. 3).

5 A Simulation Study

Although the median-adjusted bootstrap estimator of population size behaved well in the examples,
there is no guarantee that this will generally be the case. For a more systematic approach we under-
took the following simulation experiment. Counts we generated from a two-component mixture of
Poisson distributions with equal weights attached to the component means l1 and l2. The population
size to be estimated was N ¼ 1000. For each simulated data set f0; f1; f2; . . . ; fm was determined with
f0 þ f1 þ f2 þ . . .þ fm ¼ N. Then, f0 was ignored and the zero-truncated frequencies f1; f2; . . . ; fm were
used to determine the BIC-selected mixture model. This model was used to estimate N on the basis of
(6). In addition, for each of the simulation samples a bootstrap sample f *1; . . . ; f *m was generated and
the population size estimated on the basis of the BIC-selected mixture model. This was done for each
of B ¼ 30 bootstrap samples. Then, the median of the bootstrap estimates of the population size deter-
mined.

Biometrical Journal 50 (2008) 6 999

Table 4 Population size estimators for the scrapie surveillance data based upon
the median-corrected mixture model estimator and the alternative estimators of
Chao and Zelterman (computation is based upon the bootstrap distribution).

Location measure BIC-mixture model Chao Zelterman

median 396 364 401
mean 3717 374 417
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Figure 3 Distribution of estimates based upon the NPMLE and the
BIC-selected mixture model.
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The results are found in Tables 5–7, for N ¼ 1000, N ¼ 500, N ¼ 100, respectively. Following
Wang and Lindsay (2008) to adjust for the skewness of the distribution, we present the median of all
population size estimators as well as the associated median absolute errors. The median-adjusted boots-
trap mixture model estimator with BIC-selection of the number of components has consistently smal-
ler median bias than Chao’s estimator and Zelterman’s estimator, which we have included in the
computations for comparison. In Table 5 we have also included the bagged NPMLE. It is overestimat-
ing and, hence, BIC-selection of mixture models appears appropriate. The overestimation bias of the
bagged NPMLE is similar and relatively constant over the different populations and it is less than
Zelterman’s bias which becomes large with increasing values of the second component. Note that the
median absolute error of the median-adjusted mixture model estimators is comparable or even lower
than Zelterman’s estimator. However, it is clear that Chao’s lower bound estimator has the better
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Table 5 Median of population size estimators of Zelterman, Chao and
the median-adjusted bootstrap mixture model (median absolute devia-
tions) for 8 mixture populations of the form 0:5Poð1Þ þ 0:5Poðl2Þ;
medians are based on 100 replications and median-adjusted mixture
model estimator is based upon 30 bootstrap replications, true popula-
tion size is N ¼ 1000.

l2 Zelterman Chao Median – adjusted mixture model

BIC-selected NPMLE

1 992 (39) 991 (35) 1000 (25) 1031 (48)
2 987 (27) 975 (20) 967 (30) 1098 (145)
3 996 (25) 952 (14) 1010 (37) 1083 (102)
4 1034 (32) 952 (21) 1003 (39) 1042 (57)
5 1096 (39) 960 (16) 997 (24) 1038 (53)
6 1157 (48) 972 (20) 999 (24) 1032 (47)
7 1197 (58) 982 (21) 998 (25) 1032 (46)
8 1239 (55) 985 (19) 1001 (21) 1027 (37)

Table 6 Median of population size estimators of Zelterman, Chao and
the median-adjusted bootstrap mixture model (median absolute devia-
tions) for 8 mixture populations of the form 0:5 Po ð1Þ þ 0:5 Po ðl2Þ;
medians are based on 100 replications and median-adjusted mixture
model estimator is based upon 30 bootstrap replications, true popula-
tion size is N ¼ 500.

l2 Zelterman Chao BIC-selected

1 495 (29) 496 (23) 503 (18)
2 493 (20) 486 (15) 479 (17)
3 499 (18) 478 (13) 506 (27)
4 518 (22) 475 (10) 503 (21)
5 557 (28) 486 (15) 503 (22)
6 591 (31) 488 (13) 508 (13)
7 615 (40) 496 (15) 504 (13)
8 622 (46) 494 (19) 506 (12)
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standard error. Several other mixture model constellations had been considered (in particular with more
than two components) with similar results. Hence, the results are not reported here. The simulation re-
sults have been developed with a stand-alone program which is available from the authors upon request.

6 Discussion

Discrete mixture models offer a wide and flexible modelling framework to cope with heterogeneity in
the parameters representing capture-recapture probabilities. They are potentially the most suitable
models for fitting recapture counts – as has been demonstrated by many authors (Mao and Lindsay,
2002, 2003; Norris and Pollock, 1996, 1998; Pledger, 2000). However, when discrete mixture models
are to predict unobserved zero counts and hence the population size, overestimation bias may be
severe. The bias, due to the boundary problem, may not be obvious to a practitioner implementing an
estimation procedure to obtain the nonparametric maximum likelihood estimator. Consequently, adjust-
ments to the model selection procedure are required with respect to the number of components in the
mixture model. We have suggested using the BIC criterion for model selection. Other criteria are
possible, but these have not been considered here since the BIC criterion is widely accepted and has
been shown to perform well in mixture problems (McLachlan and Peel, 2000; Schlattmann and B�hn-
ing, 1997). Ray and Lindsay (2008) suggest a selection criterion based upon a quadratic-risk approach
and show that this criterion performs well in the mixture context. It is, however, remarkable that in
their evaluations based upon simulation studies (Table 1, 2, and 4 in Ray and Lindsay, 2008) the
conventional BIC criterion performs considerably well. A further refinement to reduce bias is to uti-
lize the best BIC-selected model with a nonparametric bootstrap procedure, resulting in a bootstrap
adjusted estimator which has performed well in examples and in limited simulation studies.

On the negative side it should be noted that the suggested approach is computationally intensive
and needs computational skill in computing the mixture model maximum likelihood estimator cor-
rectly. The gain in reducing the bias needs to be seen against this enormous computational burden. In
addition, standard errors are occasionally large with the mixture model approach whereas Chao’s esti-
mator retains a rather low standard error. It will be left to future research to compare this mixture
approach to simpler nonparametric procedures such as generalizations of Zelterman’s or Chao’s esti-
mator. In addition, it might be valuable to include the penalized nonparametric maximum likelihoo-
dapproach suggested by Wang and Lindsay (2005) in such comparisons.

Biometrical Journal 50 (2008) 6 1001

Table 7 Median of population size estimators of Zelterman, Chao and
the median-adjusted bootstrap mixture model (median absolute devia-
tions) for 8 mixture populations of the form 0:5 Po ð1Þ þ 0:5 Po ðl2Þ;
medians are based on 100 replications and median-adjusted mixture
model estimator is based upon 30 bootstrap replications, true popula-
tion size is N ¼ 100.

l2 Zelterman Chao BIC-selected

1 100 (11) 99 (9) 100 (8)
2 99 (9) 98 (8) 96 (6)
3 101 (10) 96 (7) 92 (6)
4 109 (12) 98 (6) 103 (13)
5 112 (16) 97 (8) 104 (14)
6 117 (17) 98 (7) 102 (8)
7 124 (20) 101 (8) 103 (9)
8 128 (22) 101 (9) 101 (9)
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Appendix

Mixture Maximum Likelihood Theory

The benefit of working with a mixture model of zero-truncated Poisson densities
fþðj; l‘Þ ¼ Poðj; l‘Þ=½1� exp ð0; l‘Þ�

fþðj; QÞ ¼
P
‘

q‘fþðj; l‘Þ�

can be seen in the fact that an existing global maximization theory can be used. This was developed
by various authors including Simar (1976), Laird (1978), B�hning (1982), Lindsay (1983), Leroux
(1992) and B�hning (2000), among others. Let a sample of size n of zero-truncated counts be avail-
able and let f1; f2; . . . ; fm be their frequencies. Then, the log-likelihood with respect to fþðj; QÞ

log LþðQÞ ¼
P

j
fj log ðfþðj; QÞÞ

is a concave functional on the set of all discrete probability distributions (though it is not concave on
the set of all discrete probability measures with exactly k support points). This is the main reason for
achieving the following global results. An important, analytical tool is the gradient function defined

for any discrete distribution Q ¼ l1 . . . lk

q1 . . . qk

� �
as

dðl;QÞ ¼ 1
n

Pm
j¼1

fj
fþðj; lÞ
fþðj;QÞ

where fþðj;QÞ ¼ q1fþðj; l1Þ þ q2fþðj; l2Þ þ . . .þ qkfþðk; lkÞ. With the help of the gradient function,
the nonparametric maximum likelihood estimator (NPMLE) can be characterized. The general mixture

maximum likelihood theorem (Lindsay, 1983, B�hning, 1982) states that for Q̂Q ¼ l1 . . . lk

q1 . . . qk

� �

Q̂Q is NPMLE , dðl; Q̂QÞ � 1 for all l > 0: ð8Þ
In addition, dðl; Q̂QÞ ¼ 1 for l 2 fl̂l1; . . . ; l̂lkg, the set of all support points of Q̂Q. The benefit of the
mixture maximum likelihood theorem for count densities like the truncated Poisson is even greater
than for the untruncated Poisson family where other, simple diagnostic techniques like overdispersion
tests are available (B�hning, 1994).

The Boundary Problem

We can illustrate the usefulness of the mixture maximum likelihood theorem by showing the boundary
problem (Wang and Lindsay, 2008; Mao and Lindsay, 2007). For the case of mixtures of zero-trun-
cated Poisson densities we have

fþð1; Q̂QÞ � f1=n;

where Q̂Q is the NPMLE. To verify this result we note first that

liml!0
lj=j!

expðlÞ � 1
¼ 1; if j ¼ 1

0; otherwise

�

so that

lim
l!0

dðl; Q̂QÞ ¼ lim
l!0

1
n

Pm
j¼1

fj
fþðj; lÞ
fþðj; Q̂QÞ

¼ f1=n

fþð1; Q̂QÞ
:

Since dðl; Q̂QÞ � 1 for all l > 0 by (8) the claimed overestimation result fþð1; Q̂QÞ � f1=n follows.
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Algorithms

A variety of numerical algorithms exist to find the global maximum likelihood estimator, the nonparam-
etric maximum likelihood estimator (NPMLE), if it exists. These include vertex direction methods and
vertex exchange methods (B�hning, 2000) or intra-simplex direction methods (Lesperance and Kalb-
fleisch, 1992). However, it has become very popular to use the EM algorithm (Dempster, Laird, and
Rubin, 1977) in connection with mixture models (McLachlan and Krishnan, 1997; McLachlan and Peel,
2000). The EM algorithm has the additional advantage of providing a maximumlikelihood solution con-
ditional upon the number of mixture components k though there is no guarantee for a non-local solution.
To proceed in the EM context we need the complete data log-likelihood which is given in this case as

Pm
j¼1

fj
Pk
‘¼1

zj‘ log fþðj; l‘Þ þ
Pm
j¼1

fj
Pk
‘¼1

zj‘ log q‘ ð9Þ

where the unobserved covariate zj‘ is 1 if j belongs to component ‘ and 0 otherwise. The EM algo-
rithm replaces in the E-step the unobserved indicator variates zj‘ by their expected values conditional
upon the observed data and current values of l‘; q‘; ‘ ¼ 1; . . . ; k leading to

ej‘ ¼ Eðzj‘ j fj; q‘; l‘; ‘ ¼ 1; . . . kÞ ¼ fþðj; l‘Þ q‘Pk
i¼1 fþðj; liÞ qi

: ð10Þ

In the M-step new values l̂l1; . . . :; l̂lk; q̂q1; . . . :; q̂qk are found which maximize the expected version of (9)
leading to

q̂q‘ ¼
1
n

Pm
j¼1

fjej‘; for ‘ ¼ 1; . . . k ð11Þ

as new estimates for the weights. The new estimates l̂l1; . . . :; l̂lk need to be found as solutions of

l̂l‘ ¼
Pn

j¼1 jnjej‘Pn
j¼1 njej‘

ð1� e� l̂l‘Þ; for ‘ ¼ 1; . . . k : ð12Þ

Note that (12) does not provide a closed form solution for l̂l‘, but rather suggests an iterative solution

of the form l̂l
new

‘ ¼
Pm

j¼1 jnjej‘Pm
j¼1 njej‘

ð1� e�l̂lold
‘ Þ which needs to be iterated until convergence. The EM algo-

rithm can be largely improved upon if gradient function techniques are incorporated (B�hning, 2003).
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census. Sankhyā: The Indian Journal of Statistics 64, Series A, 626–639.
Mao, C. X. and Lindsay, B. G. (2003). Tests and diagnostics for heterogeneity in the species problem. Computa-

tional Statistics and Data Analysis 41, 389–398.
Mao, C. X. and Lindsay, B. G. (2007). Estimating the number of classes. Annals of Statistics 35, 917–930.
Mao, C. X. (2006). Inference on the number of species through geometric lower bounds. Journal of American

Statistical Association 101, 1663–1670.
McLachlan, G. and Krishnan, T. (1997). The EM Algorithm and Extensions. Wiley, New York.
McLachlan, G. and Peel, D. (2000). Finite Mixture Models. Wiley, New York.
McLean, A. R., Hoek, A., Hoinville, L. J., and Gravenor M. B. (1999). Scrapie transmission in Britain: a recipe

for a mathematical model. Proceedings of the Royal Society: Biological Sciences 266, No. 1437, 2531–2538.
Oremus, M. (2005). Personal communication.

1004 R. Kuhnert, V. J. D. R. Vilas, J. Gallagher et al.: A Bagging for the Mixture Model Size Estimator

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



Norris, J. L., III. and Pollock, K. H. (1996). Nonparametric MLE under two closed capture-recapture models with
heterogeneity. Biometrics 52, 639–649.

Norris, J. L., III. and Pollock, K. H. (1998). Non-parametric MLE for Poisson species abundance models allowing
for heterogeneity between species. Environmental and Ecological Statistics 5, 391–402.

Pledger, S. (2000). Unified maximum likelihood estimates for closed capture–recapture models using mixtures.
Biometrics 56, 434–442.

Ray, S. and Lindsay, B. G. (2008). Model selection in high dimensions: a quadratic-risk-based approach. Journal
of the Royal Statistical Society, Series B 70, 95–118.

Schlattmann, P. and B�hning, D. (1997). Contribution to a paper by Richardson and Green. Journal of the Royal
Statistical Society, Series B 59, 782–783.

Simar, L. (1976). Maximum likelihood estimation of a compound Poisson process. Annals of Statistics 4, 1200–
1209.

Sivam, K., Baylis, M., Gravenor, M. B., Gubbins, S., and Wilesmith, J. W. (2003). Occurrence of scrapie in GB:
results of a postal survey in 2002. Veterinary Record, 782–783.

Titterington, D. M., Smith, A. F. M., and Makov, U. E. (1985). Statistical Analysis of Finite Mixture Distribu-
tions. Wiley, New York.

van der Heijden, P., Bustami, R., Cruyff, M. J., Engbersan, G., and van Houwelingen, H. C. (2003). Point and
interval estimation of population size using the truncated Poisson regression model. Statistical Modelling 3,
305–322.

Wang, J.-P. and Lindsay, B. G. (2005). A penalized nonparametric maximum likelihood approach to species rich-
ness estimation. Journal of the American Statistical Association 100, 942–959.

Wang, J.-P. and Lindsay, B. G. (2008). An exponential partial prior for improving nonparametric maximum like-
lihood estimation in mixture models. Statistical Methodology 5, 30–45.

Zelterman, D. (1988). Robust estimation in truncated discrete distributions with application to capture recapture
experiments. Journal of Statistical Planning and Inference 18, 225–237.

Biometrical Journal 50 (2008) 6 1005

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com


