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1. Introduction

In many clinical trials, including those undertaken by large
cooperative cancer groups, patients are randomized to one
of two treatment groups within a center (i.e. hospital), with
treatment allocation (approximately) balanced within cen-
ters. The interest in the clinical trial lies in estimating the
difference in the success rates of the two treatments, some-
times called the risk difference or treatment difference. As
Lipsitz et al. (1998) pointed out, the risk difference is often
used as the measure of effect in practice, and it has a nice
interpretation in a clinical trial. The risk difference measures
the actual gain expected in terms of percentage of patients
treated.

Consider k centers in which two treatments are compared
and the outcome measures are binary. Let p; be the probabil-
ity for positive response in treatment 1 and ¢; the probability
for positive response in treatment 2 for centers i = 1,2,..., k.
In particular, it is allowed that the p;’s are different (baseline
heterogeneity). The parameter of interest is the risk differ-
ence, defined as 7; = ¢; — p; for i = 1,2,..., k. Convention-

ally, interest lies in the hypothesis Hyo: 7; = 7 or in certain
subhypotheses, such as Hog;: 7 = 0. ‘

This situation has received considerable interest, also
through the work of Lipsitz et al. (1998). Lipsitz et al. were
mainly interested in the issue of developing and evaluating
(heterogeneity) tests for the hypothesis (of homogeneity) Ho:
7 =7 fori=1,2,...,k against Hy: 7; # 7; for some i # j.
The work of Lipsitz et al. (1998) was later critically discussed
and extended by Lui and Kelly (1999).

We are interested here in estimating 7 efficiently, a point
that has been overlooked in both papers mentioned above.
Estimating 7 makes the most sense if there is homogeneity of
the risk difference across study centers. However, if there is
heterogeneity in the risk difference across centers, we assume
that 7 is defined as follows: Let f(7') denote the density of the
risk difference in the population of all possible clinical trials.
Then define 7 as the expected value with respect to f(r'),
12,7 f(7)dr'.

Let n; be the sample size in center  for treatment 1 and
m; be the sample size for treatment 2, respectively. Also, let
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Table 1
Available data in each center in CALGB study
i = w; ! = Var(#) =
Center X; n; Y; m; Yi/m; — X;/n; Xi(n; — X;)/nd + Yi(my; - Y;)/m3
1 1 3 3 4 0.42 0.12
2 8 11 3 4 0.02 0.06
3 2 3 2 2 0.33 0.07
4 2 2 2 2 0.00 0.00
5 0 3 2 2 1.00 0.00
6 2 3 1 3 -0.33 0.15
7 2 3 2 2 0.33 0.07
8 4 4 1 5 -0.80 0.03
9 2 3 2 2 0.33 0.07
10 2 3 0 2 —-0.67 0.07
11 3 3 3 3 0.00 0.00
12 0 2 2 2 1.00 0.00
13 1 5 1 4 0.05 0.08
14 2 4 2 3 0.17 0.14
15 4 6 2 4 -0.16 0.10
16 3 9 4 12 0.00 0.04
17 2 3 1 2 -0.17 0.20
18 1 4 3 3 0.75 0.05
19 2 3 1 4 —0.42 0.12
20 0 2 0 3 0.00 0.00
21 1 5 2 4 0.30 0.09

X; and Y; be the associated number of positive responses in
center ¢ and 7; = Y;/m; — X;/n; the estimated risk difference
in center ¢, ¢ = 1,2,...,k. Lipsitz et al. (1998) considered
linear, unbiased estimates of the form

k k
Fu = Zwﬁi/zwi, ’ (1)
i=1 i=1
with nonrandom, nonnegative constants w;, wa, . .., wk. Since
it is well known that those w1, ws, ..., wg with

wh = var(#) = pi(1 — pi)/mi + i1 — ;) /mi,

i=1,2,...,k, minimize the variance of (1), these weights are
used in (1). Note that this implies that there is no other esti-
mator of the form £¥_; w}#;/S | w} with smaller variance.
However, the estimator (1) cannot be used in practice since
p; and ¢; are unknown. Therefore, it has become common
practice to replace them by their sample estimates X;/n; and
Y;/m;, leading to

o=, @

with &' = X;(n; — X;)/n +Y;(m; — ;) /m?. This estimator
is suggested in several textbooks of epidemiology, such as that
by Kleinbaum, Kupper, and Morgenstern (1982, p. 359) or in
textbooks of meta-analysis, such as that by Petitti (1994, p.
103). This replacement of the true weights by their sample
estimates causes considerable problems, which superficially
appear as technical difficulties, though they point to deeper

problems of statistical inference. Note first that a weight in (2)
is not defined in the occurrence of any of the four cases X; = 0
or X; = n; in combination with Y; = 0 or Y; = m;. Lipsitz et
al. (1998) remove that center from the pool for which such a
case has occurred. Second, the estimator defined in (2) is not
necessarily unbiased. This is primarily due to the occurrence
of the product terms ;7;, for which the expected value is not
necessarily equal to w;7; since ®; and 7; are not independent
in this case.

We will show that the estimator (2) is no longer efficient.
Even of greater concern is the appearance of considerable bias
when the study sizes in the centers are small. In fact, we will
develop a new estimator of the Mantel-Haenszel type that is
unbiased and has smaller variance for small sample sizes in
the centers. This result remains persistent even if the number
of centers gets large.

2. A New Estimator
We consider again 7; = Y;/m; — X;/n;, which evidently can
be written as
. _ Yini — Xim;
Ffi= ———.
n;m;
Now, instead of taking (l/k)2f=1 7;, we consider the ratio of
sums
k
Z(Yini - Xim;)

i=1

MH= 3)
S
=1 ,
We think that this estimator is in line with Mantel-
Haenszel because of its similarity in first taking sums and
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then ratios. Note that 7y is a weighted average of the 7;’s,
i.e., it is of the form fmu = =) w,-ﬁ/Ef:I w; with w; =
nim;. Note that these weights are nonrandom. Consequently,
#Mu is unbiased. In addition, its variance is readily available
as

k

3 {n?migs(l - @) + minpi(1 - pi)}
var(fmu) = =2 2 i (4)

(%5m)

from which an estimated variance can be easily derived as

k
Z {ndY;(m; — Yi)/mi + m2 X;(ni — Xi)/mi}

i=1
k 2
(&)
R ®)

Note that a strong advantage of A is that it is defined in
all data constellations, in particular, if X; =0 (or X; = ny)
and Y; =0 (or Y; = my).

var(fmu) =

3. An Application

We return to the data considered previously by Lipsitz et al.
(1998). The data are from the Cancer and Leukemia Group B
(CALGB) randomized clinical trial comparing two chemother-
apy treatments with respect to survival (lived/died by the end
of the study) in patients with multiple myeloma (Cooper et
al., 1993). A total of 156 eligible patients was accrued in the
91 centers. The data are presented in Table 1. Note first that
there are five centers with an estimated variance of zero for
their risk difference estimator ;. These are centers 4, 5, 11,
12, and 20. Consequently, these five centers are deleted when
computing 7. This implies that 24 patients are lost in the
analysis through the statistical procedure. Second, for the five
centers that are deleted from the analysis, the risk difference is
nonnegative. This clearly shows that #3 is more negative than
#my in this case. Indeed, we find that 75 = —0.0181 (0.00467)
and Ay = 0.0199 (0.00694). The numbers in parentheses are
the estimated variances according to 1/ Ef=1 ; for the esti-
mator 73 and (5) for the estimator fvu-

4. A Simulation Study

To compare fy with the conventional estimator T, a sim-
ulation study was done following the design of Lipsitz et al.
(1998). Baseline risks p1,p2, - - - , Pk Were generated from a uni-
form distribution on 0 to 0.8. To mimic variation in the sample
sizes, n; and m; were generated from a Poisson distribution
with parameter nfori =1,...,k. (If for small parameter val-
ues of n, values for n; = m; =0 or 1 were sampled as sample
sizes, then these were replaced by the sample size of two.) Bi-
nomial variates X; with parameters n; and p; and binomial
variates Y; with parameters m; and ¢; = p; +7 = Di +0.1
were drawn for each center i,i = 1,...,k. Both estimates
#mu and 7 were then computed. The procedure was repli-
cated 10,000 times. From these replicates, bias and variance
were computed. The sample sizes in the centers varied as
n = 4,8,16,32 and the number of centers as 4,8, 16, 32,64.
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Table 2
Bias and standard error as a
function of number of centers (k)

Sample
size n Bias(7mH) SE(#mu) Bias(s) SE(%w)
k=4
4 0.0016844 0.172589 0.0171581  0.223894
8 0.0019042 0.120244 0.0092945  0.139923
16 —0.0007421 0.082643  0.0022685  0.086147
32 0.0007376 0.057654  0.0017826  0.057724
k=8
4 —0.0008645 0.123719 0.0126881  0.163317
8 —0.0020579 0.085822 0.0060327  0.103213
16 —0.0002045 0.058414  0.0020076  0.060898
32 0.0000662 0.040782 0.0011932  0.040903
k=16
4 —0.0001277 0.086965 0.0137672  0.119625
8 0.0007735 0.059676 0.0074448  0.074363
16 0.0002429 0.041131 0.0024659  0.043126
32 0.0001952 0.028723  0.0013385  0.028934
k= 32 )
4 0.0006703 0.061514 0.0153914  0.084838
8 —0.0005359 0.042436 0.0057000  0.052207
16 -0.0003399 0.029611 0.0012639  0.031472
32 —0.0001426 0.020489  0.0010254  0.020616
k=64
4 0.0002278 0.043309  0.0153416  0.060391
8 —0.0001824 0.030054 0.0065411  0.038046
16 0.0003329 0.020753 0.0019735 ~ 0.021963
32 —0.0000531 0.014406  0.0010678  0.014517

A total of 20 constellations were studied. The results are pro-
vided in Table 2. Note the considerable bias of 7y for small
n. To demonstrate that this is not due to the sampling error
caused by the simulation study, we have provided the esti-
mated bias for 7y as well. Note that this trend is persistent
even if the number of centers gets large (Table 3). This might
indicate that the estimator 7y, though consistent in center
sample size n, might be inconsistent in the number of centers
k. For all sample sizes up to n = 32, "MH has smaller variance
than #3. (See Figure 1.)

5. Discussion

5.1 Estimating Optimal Weights

The results of this work shed some light on commonly believed
efficient estimators. We have demonstrated that replacing the

Table 3
Bias and standard error; sample size (n) in each center = 4
Number of
centers, k  Bias(fmu) SE(fmn) Bias(7) SE(#3)
4 0.0016844  0.172589  0.0171581 0.223894
8 _0.0008645 0.123719  0.0126881  0.163317
16 —0.0001277  0.086965  0.0137672 0.119625
32 0.0006703  0.061514  0.0153914 0.084838
64 0.0002278  0.043309  0.0153416 0.060391
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Figure 1. Bias of the two estimators versus number of
centers.

true weights by their sample estimates leads to a loss in
efficiency of the overall estimator. The reasons for this loss
can be traced. If we consider 73, we notice in forming
E(#y) the appearance of product terms w;7;/ (%; 1;), which
complicate considerably the computation of moments of
7p. We have to note that estimated center-specific weight
and estimated center-specific differences are not necessarily
independent. This assumption of independence might be
appropriate for normally distributed outcome measures in
the center since mean and variance-based estimates can be
considered independent. In the case of binomial proportions
or rates, however, we have a strong binding of mean and
variance, so this assumption appears not to be justified, at
least not for small sample sizes.

If the sample sizes for each treatment arm coincide across
centers MH reduces to the simple mean of the risk differences

= (1/k)(Zk, (Yi/m — X;/n)) = Y/m — X/n, which

seems appropriate since none of the centers is especially
pronounced with respect to the sample size.
5.2 Cochran’s Weights
Combining evidence based on the risk difference from several
studies hints at the direction of meta-analytic procedures.
However, combining the risk difference is rarely studied in
the literature. More frequently, the pooling of several log-
relative risks or log-odds ratios is studied. One of the few
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Figure 2. Comparison of Mantel-Haensze! and Cochran
weights for the 21 centers of the CALGB study.
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papers dealing with the meta-analytic handling of the risk
difference can be found in the Handbook of Research Synthesis
(Cooper and Hedges, 1994). Shadish and Haddock (1994)
discuss combining differences between risks. They suggest
using the estimator (2) under ignorance of the problems
we have discussed here. However, they give some warnings
against pooled estimators using weights that put too much
weight on large sample sizes. Looking for estimators with
nonrandom weights that put less weight on large studies
leads to the weights suggested by Cochran (1954), w; =
n;m;/(n; + m;). These weights occur when we use optimal
pooling according to (1) and there is complete homogeneity,
eg,p; =gqg;jforalli=1,... kand j = ., k. Figure 2
clearly demonstrates that the Mantel-Haenszel weights put
more weight on studies with large sample sizes in comparison
with the Cochran weights.

Let us define formally the estimator based on the weights by
Cochran as 7coc = 21_1 wn’,/El_l w;, with w; = nym;/(n; +
m;). A comparison of both (unbiased) estimators in terms of
their variance based on the same simulation study of the last
section is shown in Figure 3. (It is clear that these variances
need not be simulated since they can be calculated directly.
Nevertheless, we have done so in order to achieve a better
comparability to the simulated variance of the conventional
estimator.) There is some benefit in using 7coc, though this
benefit is rather small.

5.3 Optimal Weights Under Between-Study Homogeneity
Now suppose that there is homogeneity in the risks across
centers for each treatment arm, e.g., p; p and ¢; = ¢
for all ¢ ,k. This implies that w; var(f;) =
pi(1 —pz)/nz + ‘Iz(l —a)/m; = p(1 —p)/nz +q(1 — g)/m;.
Estimating p = =5_; X; /Zz yniand §=%8, Y;/S5  m;in
a pooled manner leads to 1, “T—pa- —p)/ni+G(1—§)/m;, and
further to fom = E;—;l Wit/ Ele ;. The estimators o
and fcoc behaved very similarly in the simulations study, so
the results are not reported here.

ACKNOWLEDGEMENTS

The authors are grateful to the editor and Dr Jérg Kaufmann
for helpful comments. This research is done under support of
the German Research Foundation.



308

RESUME

Dans cette étude, on s’intéresse & l'estimation efficiente de la
différence des risques dans une étude multicentrique en tenant
compte de 'hétérogénéité initiale. Si on considére ’estimateur
a pondération optimale pour la différence de risque commune,
on montre que cet estimateur est fortement biaisé quand les
vraies pondérations (qui sont inversement proportionnelles
aux variances des différences de risque spécifique dans chaque
centre) sont remplacées par leurs estimations d’échantillon-
nage. Aussi, on propose un nouvel estimateur pour des
situations de type Mantel-Haenszel qui n’est pas biaisé et qui,
en outre, a une variance plus petite quand les échantillons des
études multicentriques sont petits. Les résultats sont illustrés
a partir de simulations.
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