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Abstract

We examine variance estimators of a binomial parameter established under cluster sampling

using data from a cross-sectional study of bovine trypanosomosis in Mukono County, Uganda. Fifty

farms (referred to as clusters), were sampled with a total sample size of 487 cattle. Trypanosomes

were found in 17.9% (87/487) of the total sample. The cluster-level (CL) prevalences were not

homogeneously distributed. According to maximum-likelihood parameters established by mixture-

distribution analysis, 18% of the cluster had 0% prevalence whereas 48% and 34% of the clusters

could be allocated to subpopulations of clusters with mean prevalences 11.6% and 31.9%,

respectively. We show that this form of heterogeneity invalidates the applicability of the Beta

distribution as a model for the distribution of CL prevalences. Furthermore, we provide empirical

evidence for a variance inflation due to heterogeneity (inflation factor 2.07) that exceeds the design-

based variance inflation due to clustering alone (inflation factor 1.82). The variance inflation due to

heterogeneity is given in a closed form so that the approach can be conveniently applied to survey

data that involve cluster sampling under heterogeneity. # 1998 Elsevier Science B.V.

Keywords: Trypanosomes sp.; Cluster sampling; Variance in¯ation; Mixture distribution

1. Introduction

Sampling weights, stratification and clustering are important sampling-design features

that must be considered for the analysis of observational studies. Sampling weights

reflect the probabilities of selection ± which may vary between different observations.
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Generally, the weight of a given observation is proportional to the inverse of the

probability of being sampled. Stratification involves an independent sampling across

predetermined strata which are mutually exclusive parts of the sampling frame.

Clustering occurs if the sampled observations stem from clusters such as ± in veterinary

epidemiology ± herds, litters or flocks. The effects of these sampling-design

characteristics must not be ignored during analysis because they may affect parameter

estimates (sampling weights) and variance estimates (stratification and clustering).

Variance estimates tend to be smaller when established for individual strata than for the

entire sample. In contrast, cluster sampling tends to inflate variances due to intracluster

correlation. The relevance of the latter effect referred to as `cluster effect' ± for veterinary

epidemiology has been discussed in detail by McDermott et al. (1994). Methods are

available for the estimation of design-based (e.g. accounting for complex sampling)

variances including the variance inflation derived from the intracluster correlation

(Donner, 1993).

The parameter of interest in prevalence studies is the proportion of events. The primary

sampling unit (PSU) in veterinary epidemiology is usually the herd, litter or flock, which

we denote as `cluster' from now on. Thus, the distribution of cluster-level (CL)

prevalences becomes an issue. The methods proposed to account for cluster effects

accommodate variability in the CL prevalences which is often modelled using the Beta

distribution (e.g. Donald et al., 1994). The distribution shapes that can be modelled using

the Beta distribution comprise the unimodal with zero-inflation (L-shape), peaked

distribution and one-inflation (J-shape) and the unique bimodal distribution with a

combined zero- and one-inflation (U-shape). However, we have empirical evidence for

distribution types that reflect heterogeneity of CL prevalences and that cannot be handled

by the Beta distribution model. In our example, we are concerned with the prevalence

estimation under a cluster-sampling design (Section 2.1). We use an estimate of the

intracluster correlation coefficient (ICC) to estimate a variance inflation factor that takes

into account the cluster sampling design. We denote this procedure as `ICC-approach'

(Section 3.1). The underlying assumptions of the ICC-approach are explained using the

Beta-binomial distribution model. A more flexible approach is derived that has its

foundation in the empirical observation of distribution heterogeneity in the CL

prevalences. We denote this approach as `heterogeneity-approach' (Section 3.2). We

provide a formal argument that the heterogeneity-approach is less biased than the ICC-

approach in case of unequal cluster sizes (Section 3.3). We suggest using well-established

methods of non-parametric mixture modelling as a natural way to proceed (BoÈhning et

al., 1998) and to identify heterogeneity in the sample (Section 3.4). Finally, the practical

relevance of this work is discussed (Section 4).

2. Material and methods

2.1. Example data set

The data were collected during a cross-sectional study in June 1994 in Mukono

County, located in the southeastern part of Uganda. The sampling frame consisted of 187

dairy farms existing in the region (information from census April 1994) from which 50
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farms were selected at random, stratified on small (1±10 cattle), medium (11±30) and

large (>30) farms. A total of 487 cattle was sampled. The prevalence of bovine

trypanosomosis was established using parasitological techniques. We have not reckoned

with a strong ICC in our data set based on earlier analyses (Greiner et al., 1997; wherein

further details of this study are described). Biologically, ICC of bovine trypanosomosis ±

if present ± can be thought of reflecting a similar exposure and disease management for

animals stemming from one farm. The herd-level prevalences are listed in Table 1. The

mean sample size of the 50 farms was 9.7. Fig. 1(A) shows the frequency-distribution

histogram of CL prevalences. According to a formula suggested by Kairisto (1995), we

arbitrarily selected the bin width (b�0.9 [min (s, IR/1.34)] nÿ0.2) for construction of the

histogram, where s, IR and n denote the standard deviation, the interquartile range and the

number of clusters, respectively.

2.1.1. Computer software used

The one-factor analysis of variance (ANOVA; see Section 3.1) requires that the

aggregated count data for CL prevalences are to be rearranged into binary data (infection

Table 1
Prevalence estimation of bovine trypanosomosis in cattle sampled from 50 dairy farms in Mukono County,
Uganda. Number of infected cattle (cases), sample size, prevalence and classification into one out of three
subpopulations of farms identified by mixture analysis (data from June 1994, total sample size 487)

Farm Cases Sample

size

Prevalence Subpopulation Farm Cases Sample

size

Prevalence Subpopulation

1 4 9 0.44 3 26 1 7 0.14 2

2 0 5 0 2 27 1 3 0.33 3

3 3 9 0.33 3 28 1 11 0.09 2

4 14 32 0.44 3 29 1 3 0.33 3

5 2 17 0.12 2 30 1 3 0.33 3

6 0 3 0 2 31 1 9 0.11 2

7 1 4 0.25 2 32 4 9 0.44 3

8 3 17 0.18 2 33 0 9 0 1

9 0 7 0 2 34 0 7 0 2

10 0 15 0 1 35 3 19 0.16 2

11 0 8 0 2 36 1 13 0.08 2

12 0 12 0 1 37 0 12 0 1

13 0 9 0 1 38 5 18 0.28 3

14 0 16 0 1 39 2 11 0.18 2

15 6 16 0.38 3 40 0 12 0 1

16 2 5 0.40 3 41 0 2 0 2

17 0 9 0 1 42 2 7 0.29 3

18 0 6 0 2 43 2 7 0.29 3

19 2 8 0.25 3 44 4 10 0.40 3

20 0 6 0 2 45 3 10 0.30 3

21 0 3 0 2 46 1 3 0.33 3

22 1 7 0.14 2 47 1 15 0.07 2

23 1 8 0.13 2 48 0 6 0 2

24 0 10 0 1 49 1 6 0.17 2

25 12 28 0.43 3 50 1 6 0.17 2
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status) at the element (animal level in our case) level (EL) with the cluster identification

(farm number) as the grouping variable. A computer program (clusDATA) is available

from the authors for this purpose (http://city.vetmed.fu-berlin.de/�mgreiner/clusDATA/

clusdata.htm). The distribution of observed CL prevalences is displayed using a cosine

kernel density estimation graph (short `density trace'; Stata, Statacorp., 1997). The shape

of a frequency-distribution histogram critically depends on the bin widths (b) of intervals

and may not always adequately visualise the underlying distribution. This is especially

true for small sample sizes, where the arbitrary selection of fixed-interval limits

introduces a subjective element in the graphical representation of the data. The kernel

density trace provides a solution to this problem. Similar to a moving average, this

function evaluates the local probability density for each point basing on overlapping

ranges of prevalence data. This technique is a simple non-analytical method of displaying

a frequency distribution of a continuous variable (here, a proportion). The correlation

between cluster (farm) size vs. prevalence and cluster sample size vs. prevalence were

assessed by the coefficient of determination (squared Pearson's product-moment

correlation) based on a linear-regression analysis with the prevalence as dependent

variable (Stata; Statacorp., 1997).

Fig. 1. Prevalence study of bovine trypanosomosis in Mukono County, Uganda (data from June 1994, total

sample size N�487). (A) Observed frequency distribution of cluster-level (farm) prevalences. (B) Cosine kernel

density trace of the same data. The shape suggests that the distribution is not unimodal but has three modes. (C)

Beta distribution model of the same data using the total prevalence p̂ � 0:1786 (with mean cluster size 9.7) and

the intracluster correlation coefficient �̂ � 0:0939 as coefficients. According to the Beta-distribution model, the

mode and the expected value (vertical line at p�0.1786) do not coincide. Note that the x-scale of A and B refer

to observed prevalences whereas the x-scale of C refers to expected prevalences under the Beta-distribution

model.
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3. Prevalence estimation in the presence of extrabinomial variation

3.1. Variance inflation due to the cluster effect

In prevalence studies of infectious diseases, the parameter of interest is usually the

prevalence p. The prevalence is estimated as pÃ�y/N, where N denotes the total

sample size and y the total number of infected animals out of N. Under the assumption of

simple random sampling (srs), the naive expected variance using the binomial model is

VARsrs-bin�p̂� � p̂�1ÿ p̂�=N (we omit the hat on VAR for all variance estimates). In our

study, the prevalence estimate is �p̂ � 87=487 � 0:1786� with VARsrs-bin�p̂� � 0:00030.

The latter estimate is not adequate with regard to the cluster sampling. The cluster effect

results in a variance inflation because the number of independent observations is less than

the denominator N. Thus, confidence limits for the prevalence are too small; the precision

of the parameter estimate is overestimated (McDermott et al., 1994). As described by

Brier (1980); Donner (1993); McDermott and Schukken (1994), we can analytically

account for the cluster effect using the variance-inflation factor

c � 1� ���nÿ 1�; (1)

where � and �n denote the intracluster correlation coefficient (ICC) and the average cluster

sample size, respectively. The variance-inflation factor is equivalent to the so-called

`design effect' (deff) that expresses the ratio of the design-based variance and the variance

expected under simple random sampling (Kish, 1965). Thus, the design-based inflated

variance is given as VARICC�c VARsrs-bin*. This formula is widely used but we are not

aware of a formal derivation of it. Therefore, a formal justification is presented in the

appendix. If the sample was collected from a number of k clusters with the number of

cases yi and sample size ni for the ith cluster we can estimate � from the data as

p̂ � �MSBÿMSW�=�MSB�MSW��nÿ 1�� (2)

where

MSB � 1=�k ÿ 1�
Xk

i�1

�yi ÿ nip̂�2=ni

and

MSW � 1=�N ÿ k�
Xk

i�1

�ni ÿ yi�=ni

denote, respectively, the mean square between clusters and the mean square within

clusters (Fleiss, 1981). For our study data, nÅ�9.7, MSB�0.2681, MSW�0.1334 and

p̂�0.0939 ± resulting in the estimate for the variance-inflation factor ĉ � 1:82. We derive

MSB and MSW from one-factor ANOVA with the cluster identification as the

independent (grouping) variable and the event of infection on the individual-animal

level (EL) as dependent variable. The 95% confidence interval (CI) for the prevalence p̂

according to the Normal approximation CI�p̂� � p̂� 1:96�var�p̂��0.5 is CIsrs-bin�p̂� �
�0:1446, 0.2127] for the naive and CIICC�p̂� � �0:1327; 0:2245� for the inflated
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(design-based following the ICC-approach) variance estimation. According to the

coefficient of determination (R2), there was no evidence of a correlation between cluster

(farm) sizes and prevalence (R2�0.04) or between cluster sample sizes and prevalence

(R2�0.028).

3.2. Variance inflation due to heterogeneity

Variance inflation can have various causes. One of these can be seen in the fact that the

parameter p of the Binomial distribution is varying in the population. This phenomenon is

called (parameter) heterogeneity. Approaches differ in the way the heterogeneity

distribution is modeled. A frequently employed model for the distribution of CL

prevalences p is the Beta distribution (e.g. Donald et al., 1994):

B�p=�; �� � p��ÿ1��1ÿ p���ÿ1� ÿ��� ��
ÿ���ÿ���

where � and � are parameters and ÿ(�) denotes the Gamma function. The Beta

distribution has mean ���/(���) and variance �2���/[(����1)(���)2]�
[1/(����1)] �(1ÿ�)���(1ÿ�). Note that � can be interpreted as the overall prevalence

in the population. Also, the notation � has been used to distinguish it from the prevalence

p under homogeneity. The link to the prevalence estimation under cluster sampling is

through the parameters which can be established using as �̂ � p̂=�̂ÿ p̂ and

�̂ � �1ÿ p̂�=�̂� p̂ÿ 1, where p̂ and �̂, respectively, are sample estimates of the

prevalence � and the intracluster correlation coefficient �. In our case, �̂�1.724 and

�̂�7.928. Since �̂>1 and �̂>1, we obtain a unimodal, peaked distribution density with the

mode at p�(�̂ÿ1)/(�̂� �̂ÿ2)�0.0946 (Fig. 1(C)). Since this distribution model is

explicitly unimodal, it is not suitable for modelling multimodal distributions. In order to

account for extrabinomial variation, the Beta distribution of p can be used instead of the

fixed binomial parameter p in a discrete distribution model leading to the Beta-binomial

distribution:

Beta-binomial�Y � y=�; �; n� � n

y

� �
ÿ��� ��ÿ��� y�ÿ�� � nÿ y�

ÿ���ÿ���ÿ��� � � n�
A meaningful parameterisation is ���/(���) and the so called index of aggregation

��1/(���). The latter can be linked to the intracluster-correlation coefficient through

���/(1��) (Madden and Hughes, 1995). The variance of the Beta-binomial is

n�(1ÿ�)[1��(nÿ1)] which turns out to be the variance of the Binomial distribution

[n�(1ÿ�)] multiplied by the variance-inflation factor given in Eq. (1). The Beta-binomial

is an overdispersion model and equivalent to the classical Binomial if and only if ��0. In

this case, the variance of the Beta distribution becomes zero and the variance of the Beta-

binomial distribution becomes equal to the variance of the binomial.

Empirically, we are aware of distributions of CL prevalences that cannot be described

by the Beta distribution. The latter model is inflexible in the sense that it can only

accommodate peaked distributions (in case of �>1 and �>1), L-shaped (i.e. zero-inflation

incase of �>1��) and J-shaped (i.e. one-inflation in case of ��1<�) and the unique

bimodal case with U-shaped distribution (i.e. combined zero- and one-inflation in case of
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�<1 and �<1). Distributions with more than two modes or bimodal distributions with

modes others than zero and one cannot be accommodated. We also note that the unique

case of bimodal distribution of the U-shape requires that p̂ < �̂=�1ÿ �̂� and

�̂ > �1ÿ p̂�=�2ÿ p̂�. The unimodal distribution model (Fig. 1(C)), however, is not in

agreement with the empirical evidence for heterogeneity in our data. The frequency-

distribution histogram (Fig. 1(A)) and ± even more clearly ± the density trace (Fig. 1(B))

suggests that three subpopulations of farms (clusters) exist, with mean prevalences of

about 0%, 15% and 35%, respectively. Such a distribution cannot be modeled using the

Beta distribution. In the following, we are interested to provide a more flexible, general

approach for modelling heterogeneity.

For the sake of simplicity, we consider the Poisson approximation for the variance of

the estimated prevalence VARsrs-poi�p̂� � p̂=N, which is equivalent to y/N2. In our study,

the naive (Poisson-based) variance is VARsrs-poi�p̂� � 0:00037. In the case of cluster

sampling with k clusters, the pooled estimator p̂pool�(y1�. . .�yk)/(n1�. . .�nk) is the

commonly used estimator of the overall prevalence p. The variance of p̂pool under

homogeneity is readily provided as VARsrs-poi(phatpool)�(p̂n1�. . .�p̂nk/(nk�. . .�nk)
2�

p̂/N, with N�n1�. . .�nk. Note that this variance can be estimated by (y1�. . .�yk)/N
2. In

the case of heterogeneity, the variance of the total prevalence p̂pool is inflated by a term

corresponding to the variance of the population prevalence p (BoÈhning et al., 1998). This

variance is denoted by �2. In formula,

VARhet�p̂pool� � p̂=N � �2�n2
1 � . . .� n2

k�=N2 (3)

Here, p̂ is the overall prevalence (the weighted mean of the CL prevalences) and �2 the

variance of the population prevalence. Obviously, the variance in Eq. (3) consists of two

terms: the first one is due to the random variability within each cluster (it is the binomial

variance approximated here by the Poisson variance) and a second term due to the

heterogeneity between clusters (the variation of the CL prevalence parameter in the

population). The term �2 can be obtained from the parameters of a mixing distribution as

shown under Section 3.4. Eq. (3) demonstrates clearly that if population heterogeneity is

ignored (�2>0), the variance of the prevalence estimator is underestimated by the term

�2�n2
1 � . . .� n2

k�=N2. Also, if there is population homogeneity (�2�0), both approaches

and formulae coincide.

Approaches differ in the way �2 is estimated. According to the ICC approach outlined

in the previous section, �2 is estimated in the parametric Beta distribution as �̂p̂�1ÿ p̂�
(which is 0.0138 for our data set). In Section 3.4, a non-parametric approach for

estimating it2 is outlined.

Suppose for the moment, that a non-parametric estimator of �2 would be available

(given in Section 3.4). Then, according to Eq. (3), the estimated variance that accounts

for heterogeneity in our study data is VARhet(p̂pool)�0.00076; the corresponding

variance-inflation factor (established as the ratio of VARhet and the Poisson variance

for simple random sampling) is 2.07. We denote this as `heterogeneity-approach'.

Incorporation of heterogeneity leads to the confidence interval CIhet�[0.1246, 0.2327].

The different widths of naive, design-based and data-based (accounting for heterogeneity)

confidence intervals are visualised in Fig. 2. The CIs based on naive (i.e. assumption of
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simple random sampling) variance estimators are smaller than those based on the design-

based (i.e. accounting for intracluster correlation) variance. The CI based on the variance

estimation that accounts for heterogeneity is even wider than that based on the

intracluster correlation coefficient.

3.3. Comparison of the two variance inflation approaches

Two approaches for estimating the inflated variances need to be compared. For

simplification, we used the Poisson approximation p/N of the Binomial variance

p̂�1ÿ p̂�=N. We consider a cluster sampling with k clusters. According to Eq. (1), we

estimate the inflation factor as ĉ � 1� �̂��nÿ 1� and the inflated variance becomes

�p̂=N��1� �̂��nÿ 1�� � p̂=N � p̂�̂��nÿ 1�=N � �p=N � �2=k

where we have used that for the Beta distribution, the variance �2 � �̂p̂�1ÿ p̂� � �̂p̂

and the more severe assumption that all ni � �n for all i�1,. . ., k.

According to Eq. (3) the inflated variance becomes

p̂=N � �2�n2
1 � . . .� n2

k�=N2 � p̂=N � �2k�n2=�k�n�2 � p̂=N � �2=k

and both approaches coincide. Clearly, to achieve this result, the same sample size for the

clusters had to be assumed. This might even introduce a more-severe bias than the

differences due to using different estimators of �2. Indeed, a direct and simple argument

shows that for all possible combinations of cluster sizes n1, n2,. . .,nk

�n2
1 ��n2

k�=N2 � 1=k

Fig. 2. Confidence intervals for the prevalence of bovine trypanosomosis in Mukono County, Uganda (data from

June 1994, total sample size 487; 50 farms; mean farm size 9.7; intracluster correlation 0.0939) with 95%

confidence intervals (CI, Normal approximation). The underlying variance was estimated under assumption of

simple random sampling (VARsrs-bin for Binomial and VARsrs-bin for Poisson approximation), cluster sampling

(VARICC), and heterogeneity (VARhet).
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where the inequality is binding (becoming equality) if all cluster sizes coincide. This

implies that �1� �̂��nÿ 1�� underestimates the variance inflation factor ± in case of

unequal cluster sample sizes ± potentially even drastically. Consequently, the

heterogeneity-approach using Eq. (3) should be preferred since it is more realistic. If

the cluster sizes are similar, the approaches will not be too different.

3.4. Diagnosis of heterogeneity

Frequently, the heterogeneity in the distribution of CL prevalences is so striking that

simple graphical methods (such as frequency-distribution histograms and density traces)

provide non-parametric density estimates of the involved subpopulations. From the

density trace of CL prevalences of our study data (Fig. 1(B)), it is evident that not only

one mode is present in the distribution but about three, one at zero, the second around

0.15, and the third around 0.35. Having more than one mode in the distribution of CL

prevalences ± as in our example ± is what we denote as population heterogeneity in the

context of prevalence estimation under cluster sampling. If there is evidence for

population heterogeneity the problem remains how this heterogeneity can be estimated. It

has been pointed out that the appropriate solution to this problem is a mixture model with

unspecified mixing distribution giving weights w1, w2,. . ., wm to the parameters

(prevalences) p1, p2,. . ., pm (BoÈhning et al., 1992). Heterogeneity can be interpreted as the

distribution of a parameter in the (super-) population that consists of subpopulations with

different mean parameter values. These subpopulations are having (prevalence)

parameters p1,. . ., pm and the (super-) population is partitioned into these subpopulations

according to the weights w1, w2,. . ., wm. Note that `weight' refers here to the proportion of

the identified subpopulation and is not to be confused with the sampling weights

mentioned in the introduction. Conditionally, in subpopulation with index j, the number

of cases yi in cluster i is assumed to follow the Poisson distribution Poi(yi, �ij)�
exp(ÿ�ij)�

yi

ij /yi! with the parameter �ij�pjni. The probability that the number of cases

in herd i is given by Pr(Yi�yi)��jPr(Yi�yi| cluster i 2 subpopulation j) Pr(cluster

i 2 subpopulation j) � �j Pr(Yi�yi|pj) wj. Now, the conditional probability is just

Pr(Yi�yi |pj)�Poi(yi,pjni). Therefore, unconditionally, (i.e. not knowing the membership

to the subpopulation), the following mixture model is valid for the number of cases yi in

herd i:

Pr�Yi � yi� � Poi�yi; p1ni�w1 � Poi�yi; p2ni�w2 � . . .� Poi�yi; pmni�wm

The parameters p1,. . .,pm and w1,. . .,wm as well as the number of subpopula-

tions are estimated by a maximum-likelihood method using algorithms described

by BoÈhning et al. (1992). In fact one considers the log-likelihood function

�i log[Poi(yi,p1ni)w1�. . .�Poi(yi, pmni)wm] as a function of p1,. . .,pm, w1,. . .,wm, m and

uses optimisation procedures to find those values of the parameters pj, wj, j�1,. . .,m and

m itself, which maximise the log-likelihood.

For our study's data, the mixture analysis identified three subpopulation with

the weights 0.1690, 0.4753, 0.3557 and the parameters 0.0, 0.1161, 0.3195, respectively.

This means that about 17% of the clusters (herds) are infection-free, 48% have

an infection prevalence of 12%, and 36% of the clusters show an infection prevalence
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of 32%. From this heterogeneity distribution, mean and variances can easily be calculated

leading to

p̂ � w1p1 � w2p2 � w3p3

and

�̂2 � w1�p1 ÿ p̂�2 � w2�p2 ÿ p̂�2 � w3�p3 ÿ p̂�2 (4)

In our case, we find �̂2�0.01428 ± which is somewhat larger than the Beta-binomial

based estimate of �2.

4. Discussion

The Beta-binomial distribution is considered a useful model of a discrete

frequency distribution under cluster sampling in the presence of a positive intracluster

correlation (i.e. extrabinomial variation) (e.g. Donald et al., 1994). Maximum-likelihood

estimators are available to estimate the parameters of the Beta-binomial (i.e. p[overall

prevalence] and � [index of aggregation]), from empirical data (Smith, 1983;

Madden and Hughes, 1994). A two-parameter model, however, apparently imposes

limitations to the structure of CL prevalences that can be appropriately modelled. We

were interested in the estimation of the design-based variance of the binomial parameter

p. Our data suggest that this variance ± although accounting for extrabinomial

variation ± might still underestimate the data-based variance. This situation is due to

heterogeneity in the distribution of CL prevalences as previously described by BoÈhning

et al. (1998). The variance inflation based on heterogeneity can be expressed num-

erically if the parameters that describe heterogeneity (i.e. the number of subpopulations

of clusters, their means and weights) are known or estimated. The diagnosis of

heterogeneity ± as well as the estimation of the involved parameters (number of

subpopulations of clusters, the weights and mean prevalences if identified sub-

populations) ± is addressed by the concept of mixture-distribution analysis. Computer

software that ± besides the Binomial case ± handles other distribution types as well

(including Normal, Poisson,. . .) is available (BoÈhning et al., 1992) and has been used for

diagnosis of heterogeneity in the context of seroepidemiology (Greiner et al., 1994,

1997).

The variance inflation due to heterogeneity should be distinguished from the inflation

due to clustering in general ± the latter being used frequently in an unspecific way. We

have outlined above that the Beta-binomial (clustering) approach may not be sufficient in

the presence of heterogeneity. The effect of variance inflation has been reviewed for a

series of studies published in Preventive Veterinary Medicine ± covering a wide range of

epidemiological surveys (McDermott and Schukken, 1994). The cluster effect partially

invalidated inferences from studies if the cluster sampling had not been accounted for in

analysis. Additional variance inflation due to heterogeneity could be thought of

producing the same trend of bias towards small p-values. We could not adjust our point

estimate of the overall prevalence because information on the selection probabilities in
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the sampling strata was missing. The resulting bias is probably mild since no correlation

was found between cluster size and prevalence.

5. Conclusion

Cluster sampling may be perceived as an undesired but inevitable complexity in the

analysis of veterinary epidemiological studies ± e.g. if one is concerned with sample-size

limitations. On the other hand, a certain form of cluster sampling is necessary to

investigate the distribution of disease. Ignoring cluster sampling, thus, not only

potentially invalidates study inferences but also leads to a failure to reveal the pattern

of disease. This aspect may be even more important than getting proper variance

estimates. A situation of distinct bi- or multimodal shapes of CL prevalences should be

the starting point to investigate explanatory factors for different CL prevalence levels.

Stratification of clusters according to such factors could potentially both enhance the

statistical power of hypothesis testing and improve the understanding of the underlying

biological background. The mixture distribution approach presented in this paper

provides a suitable tool for the detection of heterogeneity and is, therefore, potentially of

great practical significance.

With regard to the findings of this study, we suggest to consider the following eight

points for the estimation of a prevalence under cluster sampling. (1) What kind of

distribution of CL prevalences is expected? In case of highly contagious infections, a high

intracluster correlation could be expected, where some clusters are having high

prevalences and others are infection-free. On the other had, spontaneous disease

outbreaks with low contagiousness would probably go along with a homogeneous

distribution of CL prevalences. (2) A sampling strategy should be used that is suitable to

verify the presumed kind of CL prevalence distribution. Generally, sampling should

include clusters such as litters, flocks farms or herds. (3) The information of CL

prevalences should be available (no aggregation of data without checking the distribution

of CL prevalences). (4) Analysis of the data with descriptive and explorative methods.

These methods include frequency-distribution graphs (kernel density estimates and

histograms) of the CL prevalences. The relation of cluster size and prevalence may be

analysed using linear regression. (5) Formal tests may be used to detect heterogeneity

(i.e., extra-binomial variation or `overdispersion'). A �2-test may be based on the

(observed) calculated variance of the proportions divided by the expected value for the

binomial distribution. Software is available for this purpose (Madden and Hughes, 1994).

(6) In case of evidence for a heterogeneous distribution of CL prevalences (steps 4 and 5),

the parameters of the mixed distribution could be found by mixture analysis. The

computer-assisted mixture analysis (C.A.MAN, BoÈhning et al., 1992) provides

maximum-likelihood estimates of the number of subpopulations (according to prevalence

levels), their means (prevalences) and weights (proportions of the total population). (7)

The variance of the overall prevalence that accounts for heterogeneity can be established

using the results of step 6. We provide a closed form of this estimate Eq. (3). (8) The

estimate of variance so established should be the basis for any inferences from the study

data (construction of confidence intervals and statistical test).
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Appendix

Eq. (1) provides the formula for the variance-inflation factor c which we have used for

the ICC-approach of adjusting the simple random sampling variance. In the following, we

outline the formal justification of this approach. First of all we note that the intracluster

correlation addresses the within-cluster correlation. Therefore, we are concerned with a

statistical model of autocorrelation in a single, hypothetical cluster. We call this cluster `i'

from now on. Let yi denote the number of cases out of ni observations for the ith cluster

with i�1,. . ., k and let Xij denote an indicator variable for the jth observation from the ith

cluster that takes the value 1 if the observation is a case and the value 0 otherwise, such

that yi �
Pni

j�1 Xij.

Using the cluster-level prevalence Pr(Xij�1)�pi, we can write the variance of Xij as

VAR(Xij)�pi(1ÿpi) and the expected value of the number of cases in the ith cluster as

E(Yi)�nipi. We are interested in the components of the variance of Yi

VAR�Yi� � VAR
Pni

j�1�Xij�
� �

�Pni

j�1 VAR�Xij� �
Pni

j�1

P
a 6�j Cov�Xij;Xia�

�Pni

j�1 Pi�1ÿ pi� �
Pni

j�1

P
a 6�j Cov�Xij;Xia�:

(5)

In case of independent observations Xij, the covariance term Cov(.,.) becomes zero and

the variance VAR(Yi)�nipi (1ÿpi). this situation applies to a simple random sampling

strategy. Supposed, however, there is autocorrelation (i.e. intracluster correlation) with

Cov(.,.)6�0. The definition of the intracluster correlation coefficient � can be simplified

because VAR(Xij)�VAR(Xia)�pi(1ÿpi)

� � Cov�Xij;Xia�=�VAR�Xij�VAR�Xia��0:5
� Cov�Xij;Xia�=pi�1ÿ pi�

(6)

We resolve Eq. (6) for Cov(.,.) and insert the result into Eq. (5). Thus, in the presence

of positive autocorrelation (infection leads to infection; �>0) the naive variance is inflated

by [1�(niÿ1) �]

VAR�Yi� �
Pni

j�1 pi�1ÿ pi� �
Pni

j�1

P
a6�j �pi�1ÿ pi�

� nipi�1ÿ pi� � ni�ni ÿ 1��pi�1ÿ pi�
� nipi�1ÿ pi��1� �ni ÿ 1���:
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For the analysis of data under cluster sampling, Eq. (1) uses the mean cluster size �n.

The exact factor that accounts for unequal sample sizes is [1�(�ini(niÿ1)/N)�] where the

sum is from 1 to k. Eq. (2) provides an estimate of � based on the information out of k

cluster.
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