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Abstract. In the past few years meta-analysis has become increasingly popular
in many areas of science such as medicine and pharmacy, psychology and other
social sciences. In these areas of application meta-analyses have been performed
in order to obtain a pooled estimate of various single studies. Obtaining a single
summary measure implicitly assumes homogeneity of these studies, i.e. the results
of individual studies differ only by chance. In this case a combined estimate of the
individual studies provides a powerful and important result. However this pooled
estimate may be seriously misleading if study conditions are heterogenous.

Thus, increasingly an approach has been advocated which considers meta-
analysis as a study over studies. This approach seeks to investigate heterogeneity
between studies. An important feature of this type of meta-analysis lies in the fact
that it tries to identify factors which cause heterogeneity.

It has been the focus on this project (in corporation with the unit of quality
assurance of ASTA Medica at location Kiinsebeck) to extend this approach appro-
priately to the area of quality control, where batches of the produced goods replace
the role of studies in medicine or the social sciences. Clearly, in this setting an in-
vestigation of heterogeneity is equally attractive, since identification and modelling
of heterogeneity helps to improve the production process.

1 Imntroduction

The paper reviews an approach which enables a global perspective on aspects
of homogeneity and heterogeneity which occurrs when applying methods
of meta-analysis to clinical studies in medicine and pharmacy, psychology
and other social sciences, but also in quality control and quality assurance
in the pharmaceutical industry. In conventional meta-analysis investigations
are done in such a way that a specific measure can be computed utilizing
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numerous single studies. Frequently, statistical questions of efficiency are
dominating in the literature (Hedges and Olkin, [1985]), which is achieved by
pooling the various single studies and, thus by, achieving an increased sample
size. This procedure, no doubt, is of great benefit, if the various studies to be
combined in the meta-analysis, have emerged under comparable conditions
and are different in a statistical sense only by chance. This is the situation
of homogeneity. However, pooled analysis is often considered problematic if
study conditions are heterogenous, especially if the interpretation of pooled
estimators are kept in a traditional way.

1.1 Meta-Analysis of Clinical Studies in Medicine and Pharmacy

In clinical trials often a treatment group is compared with a control group,

and the risk of some event (like survial after treatment) is compared between

both groups. Let p; be the risk (probability) in the treatment group and pg the

risk in the control group, then typical measures considered are the relative risk

RR = p; /pg or the risk difference RD = p; —po. These measures are estimated -
in several, say n, studies and then pooled in a summary measure, for example

in the case of the risk difference we have Z:;l wini where the weights w;

are proportional to the inverse variance Var(RD;),i = 1,...,n. There are

numerous examples of this kind of meta-analysis and a recent reference to

introductory reviews is Normand ([1999]) or earlier Jones ([1995]).

1.2 Meta-Analysis of Experimental Studies in Psychology

In the social sciences, primarily in psychology, an effect measurure is com-
puted for experimental or quasi-experimental studies which is often the stan-
dardized difference (difference of the means in treatment and control, then
devided by the common standard deviation) or the correlation coefficient. A
detailed discussion on the standardized difference is provided in Hedges and |
Olkin ([1985]), Cooper and Hedges ([1994]), and, in terms of the distributional
aspects involved, in Malzahn, B6hning and Holling ({2000]). Details on the
measure of the correlation coefficient are found in Hedges and Olkin ([1985]) |
and Cooper and Hedges ([1994]). Typically, the correlation coefficient p is
used in it’s Fisher-transformed version having an approximate variance of
Var{log(z;)} = =1, where z; = 0.5}—}‘;'} is the Fisher-transformation and

mi—3’ i .
m; is the sample size of study ¢, ¢ = 1,...n. Consequently, the summary

. _ . . . Yo Mm%
Fisher-transformed c?rrelatlon c‘oefﬁment takes on the simple form _fo:ll_rm—
which is popular for it’s simplicity.

2 Meta-Analysis in Quality Control

The project and consequently the paper at hand investigates parallel aspects
of meta-analyis and quality control. The cornerstone of this analogy are the
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numerous batches which are drawn in quality control for monitoring purposes,
which play the role of the single studies in meta-analysis. Measures of interest
are here frequently count variables (counts of contamination particles) or
other quality indeces. In this situation — even if homogeneity conditions are
present — deviations from a given standard might occurr, as well. It is quite
important whether these deviations might have emerged from a homogenous
process (as random variations) or are due to certain heterogeneities present
in the production process. By means of the mixture distribution analysis we
are able to model potentially present heterogeneity and furtheron, to classify
each batch into one of the heterogneity components. This might allow to
diagnose certain common attributes and therefore be able to explore for the
causes of heterogeneity.

2.1 Legal Background for Pharmaceutical Production

Pharmaceutical production of drug products and drug substances is world-
wide regulated by the rules of Good Manufacturing Practices. For Europe
and Germany producers have to follow the regulations of

1. Arzneimittelgesetz (AMG)
9. EU-Guideline for Good Manufacturing Practices (1989)

3. “Betriebsverordnung fiir pharmazeutische Unternehmer” (PharmBetrV
1994)

Production and quality control of drug products and drug substances have to
recognize state of the art and current worldwide practices in accordance with
the application. All procedures used in production and quality control must
be validated and regularly revalidated. Drug products are mainly produced
in batches, which should conform with the specification from batch to batch.
Drug products brought into the market should be produced and controlled
according to the application and the quality has to confirmed before a batch
can be released for distribution.

The quality of a drug product or a drug substance is defined by identity,
assay, chemical, physical and biological properties. A batch is the quantity of a
drug produced under suitable uniform conditions to guarantee a homogeneous
quality.

2.2 The Tasks and Objectives of Quality Assurance
in Pharmaceutical Industry
The production of drugs is accompanied by

1. batch-and product related in-process controls (on line)
2. batch- and product related controls (off line)
3. not batch and not product related controls
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Parenteral drugs are products which have to comply with additional, specific
properties like sterility and essentially free of visible particles because of |
their parenteral application. Sterility is controlled by a sterility test which
is destructive test on limited samples of a batch. In connection with in-
process controls for the clean environment of rooms, air, surface and personnel
hygiene during production especially parenteral drugs produced by aseptic
processing sterility can be assured in all parts of a batch.

Each parenteral container is controlled by a 100%-inspection for partic-
ulate matter. The quality of this inspection is controlled by samples which
are again inspected for subvisual particles. These are destructive tests on a
limited number of samples. The quality is evaluated on the basis of quality
index like the one which can be found in the Deutscher Arzneimittel Codez
(DAC), Codex Probe no. 5. The particulate matter is evaluated for particles
which can be seen easily, good or difficult. For instance:

1. No visible particle: no point

2. Particle difficult to be seen within 5 seconds: one point

3. Particle easily to be seen within 5 seconds: two points

4. Particles to be seen immediatly and in higher numbers: ten points

The formula for evaluation is: Qg = %, where A stands for number of points
recorded by three test persons and N stands for the number of controlled
containers.

The results of all controls for one batch and from batch to batch is very
important for the evaluation of the quality and the release for distribution.
Trends for a homogeneous or heterogeneous process should be addressed and
recognized as soon as it happens. Statistical evaluation of all avalaible data ‘
is essential for the routine evaluation of the drug quality.

2.3 Meta-Analytic Modelling of Data Occurring
in Quality Assurance

Very often quality assurance is based on the availability of a number of batches
each having a certain number of items. For example, we might consider again
Q7r and define X as

X = Number of Times with Qrp positive in a series of n investigations.

This is best demonstrated by means of an example which is taken from the
book of Derman and Ross ([1997]). The data are provided in Table 1.

As has been pointed out in the literature (Pettiti [1994], Cooper and
Hedges [1994]), the area of meta-analyis has received various impulses during
its historic development. In psychology the development of measures were
achieved which could be suitably used for meta-analysis such as the stan-
dardized effect difference. Another impulse was the development of suitable
statistical methods such as the appropriate form of a pooled mean.
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Batch Number of defectives Batch Number of defectives

1 24 11 4
2 22 12 13
3 12 13 17
4 13 14 5
5 15 15 9
6 11 16 0
7 25 17 19
8 16 18 0
9 23 19 22
10 14 20 17

Table 1. Number of defective items for 20 batches of 200 items each

Meta-analysis experienced tremendous impulses by means of embedding
important application areas such as evaluation research or health reporting.
It is hoped that both areas discussed in this paper, namely quality control and
assurance and meta-analysis, experience a similar impulse from each other.

It is quite obvious that in quality control the single batch can play the role
of a single study in conventional meta-analysis. This can avoid various tech-
niques including control charts and repeated testing which can be statistically
flawed. For example, if for the data provided in Table 1 20 binomial tests are
employed it can be expected that 1 of these will show a significant deviation
from a desired standard though there is in fact no deviation from the desired
standard (process is still in control). Similarly, if control charts are used it is
well-known that the boundaries of these charts are reached for some batch,
though the process is still in control. As consequence, investigators in quality
assurance are forced to investigate for a non-existing source of deviation of
the production process.

3 The Problem of Heterogeneity

3.1 The Occurrence of Heterogeneity

In fact, we are interested in separating random deviations which are occuring
always in non-deterministic systems! and systematic deviations. Only the
latter are relevant and prone for further investigation and research.

. How can we accomplish this separation? The first step is to model the
gituation when the process is in control which is called the situation of
homogeneity. Typically, it is possible to derive some probability distribution
for the measure of interest under homogeneity. We call the associated density

1 The question which system is deterministic and which is not is a mere philosoph-

ical question. Our point of view is that it is appropriate and useful to consider
- stochastic variation even measurements and processes are done with the highest
accurracy.
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170.836
151.854
132,872
113.890
94.008
75927

56.945

37903

18.982

0.000

Fig. 1. Confidence interval plot from the package META for a textbook example
of proprotion of defective items for 20 batches with 200 items each

of the measure of interest X: f(z,6), where 6 is some parameter involved
in this density. In our example, the Number of Defective Items, X, follows a

binomial distribution with density f(z,0) = n; 6°(1 — 6)™=*, where m is

the size of the batch and the parameter @ corresponds to the allowed number
of defectives. The question at hand is: what will happen if a deviation (loss
in quality) occurs and how is this reflected in the statistical model. Clearly, if
this happens homogeneity conditions no longer hold and the simple statistical
model f(x,) will no longer be correct.

3.2 Diagnosis of Heterogeneity

There are some simple tests available which allow to diagnose this situation
rather quickly. One of these tests is based upon the Chi-Square-statistic
defined as

ZX E(X)))?/Var(X;).

Typically, E(X;) and Var(X;) will be functions of the unknown parameter
6 and plug-in-estimates must be utilized. These plug-in estimators must be
constructed with care to achieve y2-distribution under homogeneity, at least
approximately. To give a demonstration we note that in our binomial quality
control example E(X;) = m#; and Var(X;) = mb;(1 — ;) which might lead
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to the plug-in estimates E()\(z) = X; and Va;(\X,-) = X;(1—X;/m). It can be
shown that the associated distribution under homogeneity is quite different
from a x?-distribution with n — 1 df if sample sizes per batch, m, are small
or moderate, even if the number of batches m becomes large. The right thing
to do here turns out to be a variance estimate utilizing information from all

batches: Var(X;) = Sp(1 — S,/m), where S,, = > i1 Xi/n. The associated
x?-statistic (with Ef)\(,) = Sn) can be shown to be validly approximated by
a x-distribution with n — 1 df even for small batch size m (like m = 5). For
further discussion see Béhning ( [2000]) and Hartung ([1999]). To finish this
aspect we find a value of x? = 70.41 with 19 df for the data of Table 1 which
indicates strongly the presence of heterogeneity.

. In the following section we will concentrate on the aspect: what can be
done if heterogeneity is present?

4 Modelling Heterogeneity
Using Mixture Distributions

If heterogeneity is present it is implied that the proportion of defectives in the
batch is deviating in a systematic way from the required standard, in other
words, it can be assumed that the hypothesis 01 =0 =.. =6, =0 is wrong
and it is more reasonable to assume that for certain parts of the population of
all possible batches a value (for the proportion of defectives) of 8;, for other
parts a value of 6, is valid and so forth. That is the population of possible
batches consists of a proportion p; of batches with 6;, for j = 1,..., k. It can
be shown (Bohning [1999]) that then X; has a mixture distribution

k
f(@, Py =3 £(ai,0)p; (1)

j=1
which takes the form of a mixture of binomial distributions for our textbook
example:

k

f@,P) =3 (;”) 61 (1 — ;)™ =ip; 2)

i=1

To mention a second example, let us consider the effect measure of the Fisher-
transformed correlation coefficient: § = 0.5log[i—fg]. If we assume a normal

distribution as conditional distribution for §; with variance 1 /(m; —3) in the
i-study, then the mixture distribution takes on the form

k
f(6i, P) = /m; = 3_290{\/"% =3(0: - 6;)}p; (3)

where ¢ is the standard normal density.
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170.835

154,854 The rest
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132,872 component 3
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fora—

w » ws s [

Fig. 2. Classification of the batches into their associated components for the text-
book example of proprotion of defective items for 20 batches with 200 Items each

The distribution which gives probability mass p; to 6; is called mizing
distribution and is denoted by P. To estimate the parameters involved in
(2), in other words the mixing distribution P we use maximum likelihood
estimation including the number of components in the mixture k. This can
be accomplished with the computer package C.A.MAN, see Bohning et al
([1992],(1998]). The associated maximum likelihood estimate (NPMLE) of
k and 6;,p; for j = 1,...,k is called nonparametric mazimum likelihood
estimate (NPMLE) of the mixing distribution P. It is usually advisable to
check whether the number of components k can be reduced which can be
accomplished by comparing log-likelihoods for reduced values of k such as
k—1, k—2, ... until no significant drop in the log-likelihood is notable. For
these fixed values of k estimation is done via the EM-algorithm (Dempster
et al. [1977]).

To provide a demonstration for this technique we again study the data of
Table 1 and use the mixture model provided in (2). Tables 2 and 3 provide
the results. There is empirical evidence for heterogeneity (see Table 2) and
that this heterogenity consists of 3 components (Table 3).

It can be seen that the population of batches can be separated into
three components. One component consists of batches which are free of de-
fective items (9.9%). The second component has 2.87 defective items per
100 (13.3%), whereas the last one has 8.6 defective items per 100 and this
components represents the majority of all batches (76.8%).
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Number of components k Log-likelihood

4 (NPMLE) —63.1454
3 —64.0984
2 —70.9835

Table 2. Heterogeneity structure for 20 batches of 200 items each

Proportion 6; Weight p;

0.0000 0.0996
0.0287 0.1326
0.0865 0.7678

Table 3. Estimated mixing distribution for k = 3

Finally, it is even possible to allocate each observed (investigated) batch to
one of the components in the mixture. This can be accomplished by utilizing
Bayes theorem and calculate the posterior distribution of 8 as

f(zi,0,)p;
Zf:l f(xi: al)ﬁl

and f(f|z;) = 0 otherwise, where éj and p; corresponds to the maximum
likelihood estimate identified in the previous estimation process. Each batch
t with Number of Defectives X; is allocated to that component j for which
f(05]2;) is largest of all j = 1, ..., k. This is done for the data in Table 1 and the
results are provided in Table 4. Figure 2 also visualizes this reclassification.
This technique might enable the practitioner to search for common sources for
the occurred heterogeneity and finally identify sources for the loss in quality
standards.

f|z;) = if & = 4, for some j € {1,...,k} (4)

5 META - A Software Package for Meta-Analysis
in Medicine, Social Sciences
and the Pharmaceutical Industry

The software META has been developed to provide a tool which allows to
perform meta-analyses within the areas of application described above. The
focus of meta is on the analysis of heterogeneity, which may be considered
here the unifying concept for several fields of application.

For different areas of application different measures of effect are important
and necessary. Thus META enables the meta-analyst to choose out of a variety
of measures of effect such as the relative risk in medicine, the standardized
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Batch i X; Component j Batch i X; Component j

1 24 3 11 4 2
2 22 3 12 13 3
3 12 3 13 17 3
4 13 3 14 5 2
5 15 3 15 9 2
6 11 3 16 0 1
7 25 3 17 19 3
8 16 3 18 0 1
9 23 3 19 22 3
10 14 3 20 17 3

Table 4. Classification of each batch into the components

!
,’ 808.00000 14400.00000 | 0.05597 0.05603 3.00000 0.05594
Z

78.00000 1370.00000 0.05710 0.05604 3.00000 005594
107.00000 1550.00000 0.06839 0.06666 3.00000 0.05534
94.00000 3260.00000 0.02885 0.02938 2.00000 0.03142
66.00000 3130.00000 0.02106 0.02167 1.00000 002122
71.00000 1970.00000 0.03611 0.03674 2.00000 0.03156
423.00000 8100.00000 0.05298 0.05288 3.00000 0.05594

Fig. 3. Spreadsheet with original data and empirical Bayes estimates

difference in psychology and proportions in quality control, just to mention
a few.

META provides various statistical methods to perform meta-analyses such
as simple pooled estimates, random effects models and graphical procedures
such has confidence interval plots, funnel plots etc. We will illustrate the
possible use of META using a data set from psychiatric epidemiology.

5.1 A Worked Example from Psychiatric Epidemiology

The following meta-analysis investigates the prevalence of agoraphobia based
on seven studies (Eaton, [1995]) in several countries all over the world. Ago-
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raphobia may be defined as space anxiety, as a fear of being in public places.
This psychiatric disorder may even lead to total avoidance of public places
and thus may cause severe disability.

An initial step in any meta-analysis might be to plot the effect measure
together with a 95-percent confidence interval. This may be done using META
and its graphics facilities. Figure 2 shows a screen dump of META and its data
window. The data window shows the prevalent cases of agoraphobia together
with the population at risk of the respective study.

The simplest model possible assumes parametric density f(z,6,0?) for
some random quantity X where 6 is a parameter of interest and o2 is a
nuisance parameter which might or might not be present in the model. In
the example at hand, f(z,) = (7)6%(1 — )™=, In this case all studies
are assumed to measure the same overall effect 9 and that they only differ
in variability. Thus the summary measure needs to assign weights according
to the inverse of the variance of the individual study in order to obtain the
summary measure.

Looking at the confidence interval plot (Figure 5) there seems to be a
large degree of variability to be present. However frequently one is interested
in obtaining a summary measure for all studies. Using META we obtain the
following results:

POOLED ESTIMATOR FOR PROPORTIONS

RESULTS

Pooled estimate: 0.048892

Common variance: 0.00000145

95 percent confidence interval (0.04654, 0.05125)

Chi-Square test for homogeneity of proportions:
115.23539 df = 6 p-value: 0.00000

Clearly looking at the value of the x>3-test of homogeneity we reject the
null-hypothesis and conclude that there is substantial heterogeneity in terms
of the prevalence of agoraphobia in the countries studied. As a result the
computation of an overall rate is not very meaningful, since we ignore the
underlying heterogeneity.

In order to deal with heterogeneity a mixture model has been implemented
in META, as described in the previous sections. As it is assumed that 6 is
not constant, but is varying itself according to some further distribution
P, we are able to consider the moments Ep(0) = p and Varp(g) = 72
of the heterogeneity distribtuion P. Frequently 72 is called the heterogeneity
" variance. META offers modelling according to two different concepts in order to
deal with heterogeneity: One is a moment approach and is based on equating
the expected value of the x>-statistic to the oberserved one and the solve for
2. Actually this is the approach by DerSimonian and Laird ([1986]). The
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DerSimonian-Laird-Estimator is provided by
e X_ln 1 ®)
E‘ Wi — > W]
(add 'Et_wz_
where w; = Var(;)~!, the inverse of the variance of the measure of interest
in the i-th study and 2 = > wi(6; — 2)? with g = >, wiéi/zi w;. 72
will only be computed if x?2 is larger than n — 1; otherwise it is set to zero.
Having estimated 72 a pooled estimator is computed using the weights w) =
{Var(é;) + 72},
The other approach does find the nonparametric maximum likelihood
estimator of the mixture model as outlined in section 4.

We proceed in our analysis with the estimation of the DerSimonian-Laird
estimator:

RESULTS
Pooled estimate : 0.0455
(adjusted for heterogeneity using Dersimonian-Laird)

Heterogeneity variance: 0.0003
Variance of pooled estimator: 0.0000465

0.04545 95 percent CI: (0.0321, 0.0588)

Please note that we find a substantial value for the heterogeneity variance
72 in this data set. As expected incorporating heterogeneity leads to a larger
variance for the DerSimonian-Laird estimator. As a result we obtain a much
wider confidence interval compared to the pooled estimator where we assume
a constant value for 6 (see also Figs. 3 and 6).

Frequently there is a debate, whether one should use a suminary measure
in the presence of heterogeneity. One might argue that this may be done,
but one has to be careful how to interpret the results. Under the presence
of heterogeneity a summary measure will reflect the overall mean in the
population well knowing that this effect might be different in subparts of
the population.

If the presence of heterogeneity has been identified one might wish to
model the structure of this heterogeneity and for example find the levels of
effect in subparts of the population. This can be accomplished using the finite
mixture model approach outlined above.

A convenient computational strategy uses a fixed grid of potential support
points (subpopulation means 6;) which may or may not receive weights p;.

Figure 4 shows the dialog box which allows the user to define a grid
of potential support points. Depending on the current measure of effect an
appropriate mixing kernel may be chosen by the user. In this case since we
are dealing with rates and the binomial distribution is the natural choice.
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i Mixture model

MNormal (Fixed variance)
Foisson

0.0211 0.0690 | sllr_l

Fig. 4. Dialog box for flexible number of components mixture model

Initial number of components: 5

Parameter: 0.0211, Weight: 0.1441
Parameter: 0.0317, Weight: 0.2840
Parameter: 0.0530, Weight: 0.3073
Parameter:  0.0584, Weight:  0.1533
Parameter: 0.0690, Weight: 0.1113

Log-likelihood at iterate: -34.8009

Based on this grid META identifies five potential subpopulations. Now these
grid points with positive support may be used to find a refined solution using
the EM algorithm (Dempster, Laird and Rubin, [1977]). Here we keep the
number of components fixed and update mixing weights and subpopulation
means. Frequently some population means coincide and thus the number
of components decreases. For our data at hand we find after applying the
EM-algorithm four remaining components. (Results not shown here). Now a
backward elimination approach may be used in order to reduce the number
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0.0211

Fig. 5. Dialog box for fixed number of components mixture model

of mixing components. This would imply that we test k = 4 vs k —3 using a
Likelihood Ratio test approach.

NPMLE for Fixed support size
Number of components after combining equal parameter estimates: 3

Parameter: 0.0212, Weight: 0.1440
Parameter: 0.0316, Weight: 0.2844
Parameter: 0.0559, Weight: 0.5716

Log-likelihood at iterate: -34.3889

Clearly the log-likelihood is only slightly smaller for this three component
mixture model and we would conclude that a three component solution is
appropriate.

Once a mixture model has been chosen, one might be interested in clas-
sifying the individual study. Due to their discrete structure mixture models
provide a natural way of classifying the individual study. This is achieved by
applying Bayes theorem (see (4)). According to this rule the i-th study is
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Fig. 6. Data window and confidence interval plot

then assigned to that subpopulation J for which it has the highest posterior
probability of belonging. META offers the option to classify the studies and to
store the results of this classification in the data spreadsheet.

META also computes the posterior expectation for the measure of effect
for the individual study based on the assumed distribution. Likewise also the
posterior expectations may be stored within the data frame.

5.2  Availability

META is designed to be platform independent and uses the wxWindows 2.0
class library (Julian Smart [2000]). META may be obtained for Microsoft Win-

dows 9x/NT and for Unix(Linux) operating systems. META is available from
the authors on request.

6 META’s Special Module: Quality Control

6.1 Quality Measures for Parenteral Drugs

As has been outlined in Sect. 2.2, parenteral drugs are products which have
to comply with additional, specific properties like sterility and essentially
free of visible particles because of their parenteral application. Fach par-
enteral container is controlled by a 100%-inspection for particulate matter.
The particulate matter is evaluated for particles which can be seen easily,
good or difficult, leading to the index Qrr = %, where A stands for number
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of points recorded by three test persons and N stands for the number of
controlled containers. This measure and similar measures are forming the
first part of this module which provides then a heterogeneity analysis in the
sense of DerSimonian-Laird.

6.2 Estimating Mixture Distributions for Grouped Count Data

A more complete modelling is provided for the following situation. During the
production process of a pharmaceutical product there are conducted a num-
ber of controlling measurements concerning bacteriological contamination in
the air, on surfaces and on working clothes. This is denoted by microbiological
inprocess controlling (MIPC). From this process result counting data w;,
t=1,---,n. Here w; denotes the number of colony forming units per surface
— respectively volume unit (CBU = colony building units), and n is the total
number of measurements. The particular issue here consists in the fact that
for the statistical analysis the data are not available as in its original form
as exact count W;, but as grouped data: there is a disjoint decomposition of
the positive half axis given in the form

0=ro<r1<-~-<rL_1<rL:=oo,n€]N,ISISL—I.

Furthermore we have the following notation: R; = {ri—1, -, 7 — 1},1 =
L,-~-,L—1, Ry ={rp_1,rp_1 + 1,---}. The observations available for the
analysis are

n = #{ie{l,---,n}: w; € R} (6)

that means, n; is the number of measurements for which the number of
detected CBU falls within the group R;. We have a loss of information: instead
of the vector w= (wy,---,w,) of original data the vector of ‘observed’ data
isnowy = (ny,---,ng).

Let us consider an example from microbiological environmental monitor-
ing. The raw data (Table 5) consist of the number of detected CBU per surface
unit on the overalls of personal staff in an inprocess control department.
Here, the total number of measurements is n = 164 with ny = 84 steril
measurements(e.g. those samples with w; = 0), and we have L = 16 groups.

The following heterogeneity model is implemented in our analysis. The
variables W; are independent distributed according to a mixture of Poisson
distributions with mixing distribution P. This mixture distribution P is mix-
ing k Poisson components Po(6;) :

ov
P(W; = wl|6;) = je‘oj,w=0,l,-~- with6;, >0, j=1,..-k.

If we interprete the objects resp. individuals on which the measurements
are done as representatives of a heterogenuous population and for which the
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Group number ] Left bound for the group r;_; Number of CBU n;

1 0 84
2 1 27
3 2 14
4 3 10
5 4 5
6 5 4
7 6 6
8 7 1
9 8 4
10 9 1
11 10 1
12 11 1
13 16 1
14 21 2
15 31 2
16 51 1

Table 5. CBU counts for personal overall in inprocess control department

subpopulation membership in unknown, then the mixture model arises as the
marginal model where the margin is taken over the latent variable denoting
the subpopulation membership. The population weight of the component
number j is denoted by p; with

k
0<pj<1,j=1,--k, > p; = 1.
i=1

The following quantities have to be determined resp. to be estimated:

1. k, the number of components,
2. the mixing fractions p;,
3. the corresponding parameter 6;, the means within the single components.

The mixture distribution model is of the following form:

k k w
f(w;k, ) := Poy ({W=w}) = ijf(w;ej) = ij %!—e‘oj , (D)

=1

with & = (61,---,60k;p1,-- - pe—1)T. Combining (6) and (7) the estimation
problem presented here exhibits two aspects:

1. There are to be estimated the parameter of a mizture distribution, for
which
2. the data are at hand are of grouped form.
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We use the maximum-likelihood principle for estimating the parameter V.
For this we have to begin with forming the likelihood function of the data
y, which are available. It appears, that the problem can be divided into two
subproblems:

(i) The determination of the number k of mixture components and supplying
initial estimations resp. starting values for part (ii).

(ii) The estimation of the parameter vector V.

With regard to an algorithm for the numerical solution of the estimation
problem it turns out, that the likelihood based on the ‘observed’ data y, { (¥),
is not much helpful. For example, within the score equation (8/0p;)I(y) it is
not possible to separate the parameter p;. Therefore we preferred a solution
by means of the EM-algorithm via constructing a ‘complete-data-likelihood’
(see for instance McLachlan and Krishnan [1997]). META is using the derived
iterative equations to sequentially approximate the maximum-likelihood es-
timation according to the EM-algorithm. These iterative equations are of the
structure

0§t+1) _ 0§.t)F9(j, !—,(t)) ’ p§t+1) _ p;t)Fp(j, W(t)).

At this Fy and F,, are expressions depending on the parameter values of the
preceding step.

To solve the subproblem (i) we developed an initial algorithm. Within this
algorithm initially we set kK = L and then generate a sequence of estimations
k(o)W (s) =(01,°**, Ok(s)i P, - ,pk(s)_l)T which is stopped if a stoppping rule
is met, say at step number s = Sp. Then, we set k := k(g,) and ¥(g,) is the
vector of starting values for the algorithm of subproblem (ii).

For our example of counted CBU on personal overalls the output of the
algorithm is a mixing distribution with k& = 7 components (see Table 6).
Note that the weight is concentated on components with small mean value,
nevertheless there are three components with very small weight but rather
large mean value: '

Component Weight Mean value

1 0.26176  0.00000
0.30838 0740775
0.25031 1.71035
0.14184  5.92506
0.02016  22.4260
0.01269  43.4509
0.00486  59.5728

OO R W

Table 6. Estimated mixing distribution for the example data in Table 5
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In the light of the application we interpret the result as follows. It appears
that the practitioner will focus attention on the components 5,6, 7 and, con-
sequently, on the samples which are associated with these components, in
order to identify potential sources of defiencies.

7 Discussion

—
We touched upon an approach which explicitly allows the modelling of hetero-
geneity. To do this it is important to emphasize that an appropriate measure
of interest (describing the quality standards) has to be chosen. Given the
chosen measure of interest it is furthermore equally important to find the
corresponding statistical model under homogeneity conditions and further
the associated mixture model which models potential heterogeneity. Impor-
tant measures of interest have been considered from the areas of medicine
and pharmacy (relative risk and risk difference), psychology (standardized
difference and correlation coefficient) and — as a new area of application —
quality control and assurance (quality index and count index). For these
three application areas different modules have been developed and assembled
to form a package META which allows the user in a simple way to analyze
data in his/her application. As a special feature of the package META hetero-
geneity analysis is provided for each application area on the basis of mixture
modelling.
Important aspects of future research will be:

1. walid computation of standard errors of the parameters involved in the
mixture model and their associated confidence intervals

2. extension of the mixture models to allow covariate modelling

3. inclusion of these aspects in the package META

At the current stage not much is known about the correct computation of
standard errors for the parameters of a mixture model. Basford, Greenway,
McLachlan and Peel ({1997]) compare two methods of getting standard errors
for the parameters of a mixture model of normal distributions. One method
used in their computation is based on the conventional method of inversion of
the information matrix. The other is based on the technique of the Bootstrap
(Efron and Tibshirani [1993]). Their competitive analysis of both methods
provides evidence that — though the information theoretic (and less compu-
tational expensive) approach is frequently close to the Bootstrap method —
the Bootstrap seems to provide a useful alternative, especially for extreme
cases of mixture models and small sample sizes. In addition, the paper by
Basford, Greenway, McLachlan and Peel ([1997]) provides an example with
larger sample size, in which the information based standard error is in consid-
erable disagreement with the Bootstrap standard error. Therefore, it will be
investigated whether it is possible to implement the Bootstrap appraoch for
the mixture models used in our application areas to provide valid standard
errors and, thus by, confidence intervals.
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Another important area of further research will be the question in which
way covariates can be inlcuded into the mixture modelling. Often additional
information is provided to be used in the explanation of heterogeneity found
in the data. For example, quality control sample data might come from dif-
ferent departments, from different shifts of quality control workers, or might
have been collected at varying points in time. All these pieces of information
might be collected and might form covariates which can be investigated for
their potential in explaining heterogeneity. If the heterogeneity can be fully
explained by the observed covariates, then the sources of variation in the
quality control measure or index has been captured. It will be of impor-
tance to allow for heterogeneity given the covariates: we call this residual
heterogeneity. If there is no residual heterogeneity, search for further sources
of variation will be superfluous, at least in the sample data. Therefore, it
will be important to model residual heterogeneity, which can be only validly
accomplished if the univariate mixture model is extended for covariates.

It is targetted to extend META for these additional complexities in the near
future.
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