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SuMMARY. This article is about modeling count data with zero truncation. A parametric count density
family is considered. The truncated mixture of densities from this family is different from the mixture of
truncated densities from the same family. Whereas the former model is more natural to formulate and to
interpret, the latter model is theoretically easier to treat. It is shown that for any mixing distribution leading
to a truncated mixture, a (usually different) mixing distribution can be found so that the associated mixture
of truncated densities equals the truncated mixture, and vice versa. This implies that the likelihood surfaces
for both situations agree, and in this sense both models are equivalent. Zero-truncated count data models
are used frequently in the capture-recapture setting to estimate population size, and it can be shown that
the two Horvitz—Thompson estimators, associated with the two models, agree. In particular, it is possible to
achieve strong results for mixtures of truncated Poisson densities, including reliable, global construction of
the unique NPMLE (nonparametric maximum likelihood estimator) of the mixing distribution, implying a
unique estimator for the population size. The benefit of these results lies in the fact that it is valid to work
with the mixture of truncated count densities, which is less appealing for the practitioner but theoretically
easier. Mixtures of truncated count densities form a convex linear model, for which a developed theory
exists, including global maximum likelihood theory as well as algorithmic approaches. Once the problem
has been solved in this class, it might readily be transformed back to the original problem by means of an
explicitly given mapping. Applications of these ideas are given, particularly in the case of the truncated
Poisson family.

KEY worDs: Capture-recapture; Mixture of truncated count densities; Population size problem; Truncated

mixture of count densities.

1. Introduction

Let f(i, A) denote a density for count variable value I, where
Itakes value i € {0, 1, 2,...} and ) is an unknown parameter.
The standard example is f(i, \) = Po(i, A\) = e *\/il, the
conventional Poisson density. Suppose we are looking at zero
truncation, for example, zeros are not observed. The associ-
ated truncated count density is fi (i, A) = f(¢, A)/{1 — f(0,
A} for i=1,2,.... Zero truncation arises frequently in many
practical situations. Two different categories are underlined:

® Zero counts cannot occur due to the observational model,
for example, counts of occupants of passing cars. A study
of pregnant women in mother-child health will lead to a
nonzero count (gravida) of previous pregnancies includ-
ing the present one. A computer-assisted telephone in-
terviewing survey asking for the number of telephones in
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a household will necessarily have only nonzero counts in
the sample. This situation is discussed and reviewed in
Grogger and Carson (1991), Cameron and Trivedi
(1998), and Winkelmann (2003).

Zero-truncated count models are used in capture-
recapture studies. From the individual capture history of
a person, an animal, or an item, an attempt is made to
predict the frequency of units missed by the sample. To
illustrate, suppose that the police are keeping records in
a particular community of the number of times a person
has been identified with some deviant behavior. Clearly,
those persons with deviant behavior who have never been
identified will not be present in the database. One can
use a truncated count model to predict this quantity.
Other applications include the estimation of drug users
in a community, and the suicide or terroristic potential
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in a society. In economic studies, the number of illegal
workers, for example, is of interest. This situation has
been investigated mostly with emphasis on the Poisson
distribution, for example, in Dahiya and Gross (1973),
Blumenthal, Dahiya, and Gross (1978), Scollnik (1997),
and van der Heijden et al. (2003). Also, Bunge and
Fitzpatrick (1993) provide a review.

Mixtures of truncated count densities f (i,

k
mi = pifi(i,A) (1

Aj) are given as

for i = 1, 2,...,where the p; > 0 and sum to 1. Alterna-
tively, we might consider zero-truncated mixtures of untrun-
cated densities f(3, A;) given as
ZPJ i, A5)
my = ——————— (2)

1— ij FO,X))
for i =1, 2,..., where again the p; > 0 and sum to 1. We call

the discrete distribution P = ()‘l1 e ;)’:) giving weight p; to \;

in (1) the mizing distribution of size k. Similarly for (2). For
a general introduction to mixture models, see Titterington,
Smith, and Makov (1985), Lindsay (1995), McLachlan and
Krishnan (1997), McLachlan and Peel (2000), and Bohning
(2000).

The mixture (1) of truncated count densities
Z?Zl pjf+(i,A;) does not coincide with the truncated
mixture of untruncated count densities (2) with p}; = p; and
X; = A;. To illustrate, let f(i, A;) = Po(i, A;) and the weights
pj = p > 0 be arbitrary, but ﬁxed. We choose k = 2, p; =
pzzp’l:;1)’2:0.5,a1(1d)\1=)\’1:17 A2 = X, = 4. The two
densities, corresponding to (1) and (2), are shown in Table 1.

In Table 1, in addition to the two mixture densities, the
ratio of the truncated Poisson mixture to the mixture of trun-

Table 1
Comparing a mizture of truncated Poisson densities and a
truncated mizture of untruncated Poisson densities; k = 2, all
weights are 0.5, \y = 1, Ay = 4

Truncated Mixture of
i Poisson mixture truncated Poissons Ratio
1 0.273355 0.328303 0.83263
2 0.204774 0.220124 0.93027
3 0.159053 0.148004 1.07465
4 0.130558 0.111630 1.16956
5 0.098747 0.082030 1.20380
6 0.064882 0.053474 1.21333
7 0.036940 0.030383 1.21579
8 0.018453 0.015170 1.21640
9 0.008199 0.006740 1.21656
10 0.003280 0.002696 1.21660
11 0.001193 0.000980 1.21661
12 0.000398 0.000327 1.21661
13 0.000122 0.000101 1.21661
14 0.000035 0.000029 1.21661
15 0.000009 0.000008 1.21661
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cated Poisson densities is given in column 4. As it was pointed
out in the editorial process, this ratio converges to a specific
limit if I becomes large. It can be shown that this limit is
given by

1 — (exp(—Aumax))
I —{prexp(=A1) + -+ prexp(—Ax)} =1

where Ap.x = max{\j,..., A\x}.

Models (1) and (2) have different characteristics. Model (1)
is convez linear in the mixing distribution, whereas model (2)
is of practical working interest to the practitioner, in the sense
that it is easier to interpret (the untruncated counts experi-
ence unobserved heterogeneity leading to the marginal dis-
tribution of a mixture, and truncation, consequently, leads
to model (2)). Hence it is not surprising that it is typically
model (2) that appears in the relevant literature (Norris and
Pollock, 1996, 1998; Pledger, 2000; Link, 2003). The article
will show that it is possible to work with model (1), which is
considerably easier to treat, and to transfer results uniquely
to model (2), and vice versa.

DEFINITION 1: Let the following sets be defined as:

My = {(m17m27m37-“)T|mi

k
= ijﬂ(i, Aj), for some Pj,)\j}
=

Mj, = ¢ (mh,my,my, )T ]
Zpﬂ (4, 7)
, for some p, X 5,
1—2 p;f(0,\))

where A;, X, p;, p; are all nonnegative, and ijj:

/
2P =1
2. Results
Although the mixture of truncated count densities
Zf 12 f,A) /{1 = f(0,);)} does not coincide with

the truncated mixture of untruncated count densities

E] i fG, ) /{1 = Zlepjf(o,)\j)}, the two sets M; and
M, are identical.

THEOREM 1: The two sets of distributions are identical, that
iS, Mk = M;C

Proof.

(a) We show M) C M. Let m' € M/, in other words,
there exists some g;, A;, j = 1,...,k such that m} =

Zle q; % f(i, ) /{1 — 25:1 q;f(0,A;)}. Define new
weights
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g {1 — f(0,X;)}

D an{l—£(0,20)}

pj =

Then,

qu f@@, )
mem S = S
1—2% £(0, ;)

and it follows that m’' € M.
(b) We show M, C Mj. Let m € M;, in other words,
there exists some p;, A;, 7 = 1,...,k such that m; =

Zle pjf+(i,A;) forall =1, 2,.... Define new weights

p;i /{1 = f(0,);)}

J k )
> pn/{1 - £0,00)}
h=1

for j=1,...,k Then,

k

> s

j=1
k

172ij(0’>\j)

j=1

k k
[ijf(i,Aj)/{lf(O,Aj);|/[ij/{1f(O,Aj)}]

_ J:k J:k
1- lzpjfm,xj)/{l—f<o,xj>}]/[zpj/{1—f<o,xj>}]

k

ijf(i,

j=1

k
D pi /(= FOA)} = D pif0.29)/{1 = £(0,:))
j j=1
k
> pifiin)
= J:1
- ! 10.)
R e e A el
j=1

1= f(0,2;)
%
= ijﬁ(iw\j) =m;,
j=1

as p1 +---+ pr = 1. It follows that m € M) and ends
the proof.

)/ = £(0,75)}

Suppose frequencies n, ng, ..., for the different count val-
ues 1, 2,...,have been observed in a sample. Let v be the
largest observed count. Then, the log likelihood is I(P) =
L(m) =Y"7_ nilog(m;) for model (1), where
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{1-71(0,2)}

k
m; =m;(P) = ijf(ia&')/

and I'(Q) = L(m/) = Zl , ni log(my) for model (2) with

m;—m;(Q)—Zp}f(iJ})/{lij F(0, X)) }

where P is giving weights pi,...,pr to Ai,..., Ax and @Q is
giving weights pi,...,p) to Xj,..., L.
We mention a few consequences—a theorem and two

corollaries—for the sake of brevity without proof.

THEOREM 2: Let Q. denote the set of all discrete mixing
distributions of size k. Then,

{(Lm),m)T | m € My} = {(L(m),
{a@),P)T|Pe} = {(Q),Q7T]Q € X}

COROLLARY 1: Let P be the mazimum likelihood estimate
with respect to I(P) for P € Qi and let Q be the mazimum
likelihood estimate with respect to U'(Q) for Q € Q, if they
exist. Then,

m/)T ‘ m € M,’c}

[(P) = L(m(P)) = L(m'(Q)) = Q).
A basic cornerstone of the analysis is the mapping

TQkBPHT(P):QGQk,

which maps model (1) for any P = (;‘1' o ;:) to the
equivalent model (2) with @ = (211 : ;‘:), where ¢; =
p; /{1—F(0,X;)} . .
Zh, ESVTETRWE Vice versa, the mapping
T : % 2Q—-T(Q)=PeQ,
maps model (2) for any Q = (>‘I' o 2:) to the equivalent
d l 1 thP — A1 C A h — Qj{lff(UvAj)} .
model (1) wi G o ), where p; = —Zh:l%{lff(ﬂ»/\h)}

In Figure 1, an illustration of the mappings T and T’ is
provided.

1.0 _|
=
K=y
[}
= 05 _|
[
0.0 _|
T T T
0.0 0.5 1.0
first weight
Figure 1. Illustration of the mappings T and T’ for the

Poisson case with k =2, \{ =1, Ay = 4.
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With the help of T and T”, the maximum likelihood esti-
mates of the mixing distributions with £ components can be
equivalently provided.

COROLLARY 2: Let P be the mazimum likelihood estimate
with respect to I(P) for P € Qy and let O be the mazimum
likelihood estimate with respect to U'(Q) for Q € Q, if they
exist. Then,

T(P)=Q and T'(Q)=

3. Some Consequences

3.1 Implications for the Horvitz—Thompson Estimator
of the Population Size

Assume that a sample of frequencies n,, ns,..., of counts 1,
2,...,has been observed. However, the frequency ny of zero
counts is unobservable, and we wish to estimate it. Let n =
n1 + ny + -+ -+ n, be the size of the observed sample, where
v is the largest count observed. Also, let N = ny + n denote
the unknown population size. Define the Horvitz—Thompson
estimate of the population size as

k
oo Pj
Vend o)

based upon model (1) with P = (3 - ;’») and

~ n

N =

k
L= 5 f0.%)
j=1

based upon model (2) with P’ = (A:' )‘:’ﬂ)
[

THEOREM 3: Let P = (;11 A’») and @ = ( Lo 2:) be con-
nected by means of T and T such that T(P) = Q and T'(Q) =
P. Then,

: b
\ J n 7/
- - - N
" z]: 1- f(07 )‘j) k
=

1= g, f(0,%)

q; {1 - f(0,A;)}

Y on an{l=F0AR)}

Proof. Since T'(Q)

for all j. From here we have that

= P we have that p; =

P
i

D an{l - £(0, M)}

D pi {1 - £(0,0)} =

= {1_Zth(07/\h)} ;

and the result follows.

Theorem 3 implies that, if a P for model (1) is equivalent
to a @ for model (2) (e.g., T(P) = Q or T"(Q) = P), then the
Horvitz—Thompson estimators of the population size are iden-
tical. In practice, P and @) need to be replaced by their max-

Biometrics, December 2006

imum likelihood estimates and, given that P and Q are con-
nected by means of Tand T" (e.g., T(P) = Q or T'(Q) = P),
the associated population size estimators will agree.

3.2 Some General Points for Miztures of Truncated Densities

From the analysis given so far it is clear that inference can be
based upon the mixture model of truncated densities (1):

k
m; = Zp]f+(27)\j)
j=1

Now, assume that the nonparametric maximum likelihood es-
timator (NPMLE) P of the mixing distribution is available
leading to m; = Ele pj [+ (4, j\j). Then several questions arise
with relation to consistency, identifiability, and number of sup-
port points for P. van de Geer (2003) reviews asymptotic the-
ory for maximum likelihood in nonparametric mixture mod-
els and shows consistency of the model space vector estimate
m under mild conditions for the mixture kernel, for exam-
ple, f.(i, A) in the case here. Consistency of P depends on
the identifiability of the mixing distribution P. Lindsay and
Roeder (1993) give strong results for discrete mixture mod-
els if the v functions f.(1, A),..., fi (v, A) form a Tcheby-
cheff system (Karlin and Studden, 1966) where again v is the
largest count observed. As a typical example, the truncated
Poisson densities form a Tchebycheff system. In this setting
Lindsay and Roeder (1993) establish that the identifiable mix-
ing distributions are those with number of support points <
v/2. Also, under these conditions the NPMLE of the mixing
distribution is unique. If there are no restrictions on f (i, ),
then it can be also shown as a consequence of the Theorem of
Carathéodory (see Eggleston, 1966) that the NPMLE of the
mixing distribution is discrete with number of support points
bounded by v (see also Lindsay, 1995).

In the following some results are discussed that do not re-
quire special conditions on f, (4, A).

3.3 Mixture Mazximum Likelihood Theory

The benefit of working with model (1) can be seen in the fact
that an existing global maximization theory can be used. This
was developed by various authors including Simar (1976),
Laird (1978), Bohning (1982), Lindsay (1983), Leroux (1992),
and Bohning (2000), among others. Let a sample of size n
of zero-truncated counts be available and let ny, no,...,n,
be their frequencies. Then, the log likelihood with respect to
model (1)

k
- Zm log (Z f+(i,/\j)Pj>

is a concave functional on the set of all discrete probability
distributions (though it is not concave on ). This is the
main reason for achieving the following global results.

An important analytical tool is the gradient function de-

fined for any discrete distribution P = (;]1 o ;l’j) as
Z O
f+ (1, P

where f (i, P) = p1f+ (i, M) + pafi(iy Aa) + -+ pif 4 (4, Ag).
With the help of the gradient function, the NPMLE can
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be characterized. The general mixture maximum likelihgod
theorem (Bohning, 1982; Lindsay, 1983) states that for P =
Aoeae A

(ﬁll cee ﬁ:)

Pis NPMLE < d(\P)<1 forall XA>0. (3)

In addition, d(A, 15) =1for e {5\1, ceey :\k}, the set of all sup-
port points of P. The benefit of the mixture maximum likeli-
hood theorem for count densities like the truncated Poisson is
even greater than for the untruncated Poisson family where
other, simple diagnostic techniques like overdispersion tests
are available (Bohning, 1994).

We will illustrate the mixture maximum likelihood theorem
using a historic data set.

Ezample 1 (cholera epidemic in India). The numbers of
cholera cases per house observed in a community in India of
223 houses were n; = 32, ny = 16, ng = 6, and ny = 1. These
data have been used in numerous publications, but are fre-
quently incompletely referenced. Lindsey (1995, p. 149) refers
to Dahiya and Gross (1973) while Mao and Lindsay (2003)
and Scollnik (1997) reference Blumenthal et al. (1978). Orig-
inally, the data were presented by McKendrick (1926) in his
paper presentation to the Edinburgh Mathematical Society.
According to Meng (1997), the ingenious work of McKendrick
was ignored for a long time. Irwin (1963), as president of the
Royal Statistical Society, wrote:

McKendrick was in earlier life a lieutenant-colonel in the

Indian Medical Service.... Though an amateur, he was a
brilliant mathematician with a far greater insight than many
professionals.

It can be assumed that McKendrick was confronted with the
data of the cholera epidemic during the period of his service in
India. It is interesting to note that there is also a number ny =
168 reported, the frequency of houses with no cholera cases.
However, McKendrick knew that some unknown percentage of
these houses was affected by the cholera epidemic, though no
cases were observed in these houses. It should be recalled that
cholera is a water-borne disease. In this case, the epidemic
was caused by a specific, contaminated well, and houses sup-
plied with drinking water from that contaminated well were
exposed to developing the disease. This implies also that a
certain number of houses were unexposed. Consequently, a
simple Poisson distribution is not adequate, since at least the
zero cell cannot be adequately described by the simple Pois-
son. To estimate the cholera-affected houses with no cases, two
approaches are possible. One can either use a latent class ap-
proach leading to a zero-inflated Poisson distribution, or, al-
ternatively, one can work only with the houses having at least
one cholera case. (It can be shown that both approaches lead
to the same result.) McKendrick chose to follow the second ap-
proach and developed a moment estimator for the parameter
of the truncated Poisson distribution from which an estima-
tor for the number of affected houses with no cases could then
be derived. Dahiya and Gross (1973) investigated asymptotic
properties of the McKendrick estimator. Irwin (1963) looked
at maximum likelihood estimation for this case and proposed
an iterative procedure which Meng (1997) used to illustrate
the expectation-maximization (EM) algorithm. Blumenthal
et al. (1978) investigated maximum likelihood estimation for
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Figure 2. Gradient function for cholera data of McKendrick
(1926) (arrow indicates position of MLE).

this case. At present, the McKendrick data are still used
frequently without giving appropriate credit to the original
contribution from McKendrick. Meng (1997) showed that
McKendrick’s moment estimator (and the improved maxi-
mum likelihood solution) provides an excellent fit to the data.
This has been confirmed in Mao and Lindsay (2003). Here,
we can also show that the nonparametric maximum likelihood
estimator of the mixture of truncated Poisson distributions is
a singular distribution giving all its mass to a single compo-
nent with a mean of 0.972. A graph of the associated gradient
function is given in Figure 2. The graph is below the bound
1, only becoming sharp at A =0.972. No further investiga-
tion of heterogeneity is required. Indeed, as the discussion in
Meng (1997) shows, the zero-truncated Poisson provides an
excellent fit to the observed counts.

3.4 Algorithms

A variety of numerical algorithms exist to find the global
maximum likelihood estimator, the NPMLE, if it exists.
These include vertex direction methods and vertex exchange
methods (Bohning, 2000) or intra-simplex direction methods
(Lesperance and Kalbfleisch, 1992). However, it has become
very popular to use the EM algorithm (Dempster, Laird, and
Rubin, 1977) in connection with mixture models (McLachlan
and Krishnan, 1997; McLachlan and Peel, 2000). The EM
algorithm has the additional advantage of providing a maxi-
mum likelihood solution conditional upon the number of mix-
ture components k though there is no guarantee for a nonlocal
solution.

To proceed in the EM context we need the complete data
log likelihood, which is given in this case as

v k v k
Znizzijlogﬂ(i,/\j)+ZniZzijlogpj, (4)
i=1 J=1 i=1 j=1

where the unobserved covariate z; is 1 if ¢ belongs to com-
ponent j, and 0 otherwise. The EM algorithm replaces in the
E-step the unobserved indicator variates z; by their expected
values conditional upon the observed data and current values
of A\j, pj, j = 1,...,k leading to
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f+(i5)‘j)p]’ (5)

eij:E(Zij"I’Lij;pj,Aj,jzl,...,k): % .
P AY
i'=1

In the M-step new values 5\1, e j\k,ﬁl, ...,Pr are found,
which maximize the expected version of (4) leading to

L1y :
pj:ﬁzniem forj=1,....k (6)
i=1

as new estimates for the weights. The new estimates ;\1, RN S\k
will depend on the form of f, (i, A\) and need to be found as
solutions of

m 9 .
Znieij—logﬂ(i,)\j) =0, forj=1,...,k. (7)
— N

In the case of the Poisson, for example, f(i,A;) = %,
- J

equation (7) takes the form

Note that (8) does not provide a closed-form solution for
Aj, but rather suggests an iterative solution of the form

inie;j

~ _3old
/\;e“‘ = il 1—e ), which needs to be iterated un-

4oy €8

til convergence.

Ezample 2 (number of drug users in Bangkok). In the
second example, interest lies in estimating the number of il-
licit drug users in the Bangkok metropolitan area. Data stem
from 61 private and public treatment centers in the region,
which are permitted to treat drug addicts, and arose out of
the surveillance system of the Office of the Narcotics Control
Board (ONCB) of the Ministry of Public Health (Thailand) in
the fourth quarter of the year 2001. Most of the drug users are
heroin or methamphetamine users. Details of the study can
be found in B&hning et al. (2004). For this application inter-
est is solely focused on heroin users. The variable of interest
is the number of occasions i a specific drug user visited one
of the treatment institutions in the given time period. The
data for heroin users are n; = 2955, n, = 1186, n3 = 803,
ny = 611, ns; = 416, ng = 338, ny = 278, ng = 180, ng =
125, Ny = 74, nyy = 38, Ny = 20, ni3 = 147 nyy = 11, nis =
4, nig = 1, nyiy = 3, ms = 4, nyg = 1. This means that 2955
drug users have visited one of the treatment centers exactly
one time, 1186 have visited exactly two times,.... In total,
there are n = 7062 heroin users, and interest is in finding an
estimate of N = n + ny.

Table 2 shows the results from the EM algorithm for mix-
tures of truncated Poisson distributions for various numbers
of components k, starting from the homogeneous case k =
1. Note that the population size estimator is increasing with
heterogeneity, illustrating a general monotonicity result for
truncated count mixtures (Bohning and Schon, 2005). There
is no further likelihood increase beyond four components, so
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Table 2
Results of EM algorithm for various number of components k
k Log likelihood AIC BIC N
1 —15462 —30927 —30934 7543
2 —13214 —26434 —26455 10226
3 —13134 —26279 —26313 13350
4 —13120 —26255 —26303 17278

that here the NPMLE is reached. It gives mass 0.3215, 0.4114,
0.2598, 0.0073 to Poisson components with respective parame-
ters 0.1895, 2.0820, 5.8255, 12.1568. Figure 3 shows the gradi-
ent function for the NPMLE verifying that indeed the largest
possible likelihood has been reached. Note that at the four
support points of the mixing distribution the gradient func-
tion bound becomes sharp only here. To avoid oversmoothing
compromise criteria that adjust for model complexity such as
AIC = 2 x log likelihood — (2k — 1)2, the Akaike information
criterion, and BIC' = 2 X log likelihood — (2k — 1) log(n), the
Bayesian information criterion, have been computed as well.
The values of these statistics confirm that the full NPMLE is
necessary for these data.

The gradient function can also be used to construct maxi-
mum likelihood estimates of the mixing distribution for fixed
numbers of components, as suggested in Bohning (2003). The
EM algorithm with gradient function update (EMGFU) starts
with homogeneous (k = 1) maximum likelihood estimate X
and finds a new parameter point A, that maximizes the

gradient function d(), \) in A. Then, (5‘ ’\"‘“)) is formed that

& (1-&
serves as initial value for the EM algorithm with k£ = 2 com-
ponents. The line maximizer & is found to maximize the log
likelihood I((1 — a)85 + ab,,.) in a € [0, 1]. Here, 6, denotes
the Dirac measure that puts all its mass at z. Suppose now
the EM algorithm has iterated a maximum likelihood solu-
tion Py for k components. Then, again, a new parameter
point Ap.. is found which maximizes the gradient function

d()‘»}sk) in A and form ( Moo A >\max)

(I-&)py ... 1-&)pr, &
as initial value for the EM algorithm with £ + 1 components.

, which serves

1.000
A
S
5 0.999 —
c
>S5
C
€
.2 0.998 —
S
g
O
0.997 —
Y
T 1 T T T T T T T T T T 1
01 2 3 4 5 6 7 8 9 10 11 12 13
A
Figure 3. Gradient function for heroin data (arrows indi-

cate positions of support points of NPMLE).
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Again, the line maximizer & is found to maximize the log
likelihood I((1 — )Py, + aby,..) in a € [0, 1]. This forward se-
lection algorithm identifies the maximum likelihood estimates
of the mixing distributions for all components k, starting with
k=1 and terminating at k = k defined by the NPMLE. This
was used to construct the mixture maximum likelihoods in
Table 2.

3.5 A Property of the NPMLE

For a variable Y let f.(y,Q)=

Z?Zl fi(y,Aj)g; be the mixture of truncated densities
where () is the associated mixing distribution with £ com-
ponents. Also, assume that A is a discrete random variable
with distribution @), and expected value Eg(A). Then:

truncated count

THEOREM 4:

where e(A\) = E(Y | \) = ZZ;O yf(y,A), the conditional expec-
tation of (untruncated) Y given .

Proof.

) 0 k

E(Y) =) yf-0Q) =Y y> fiy:\)g
0 =
=Z{ny+(y7%j)}qj

i > ufy,N)
B Z T

k
_ e(;) _ e(d)
_;1_f(07)‘])qj_EQ{l_f(O7A)}7

which ends the proof.

For the Poisson case the result is simply E(Y) =
EQ{ﬁM} The identity given in Theorem 4 also holds
with population parameters replaced by their sample esti-
mates. To see this we need the following lemma. We provide a
simple form of this lemma although more general versions are
possible. Let a sample of size n of zero-truncated counts be
available with frequencies n, ns, ..., n,. For the untruncated
case, there is also the frequency ng of zeros.

LEMMA 1: Suppose the MLE of X in the untruncated count
density f(i, \) is the mean \ = M, then the MLE X in

ng

=0
the zero-truncated count density satisfies
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Proof. We consider the EM-steps for maximum likelihood
estimation in zero-truncation models. We have in the E-step

that 7g = E(ng | A\ ni, .. SMy) = 1f(;<:>>\)n Using that in the
M-step (untruncated situation) the maximum likelihood esti-
mate is the sample mean we have

3 = =0 _ i=0 _ =0
n + My F(0,3) . n
1—£(0,))
and the result follows.

Now, we are able to give the following theorem, which is a
modification of the (known) result for the untruncated case,
namely, that the sample mean equals the mean of the mix-
ing distribution (Proposition 10 in Lindsay, 1995; Karlis and
Xekalaki, 1999).

{1-r(0. 0},

THEOREM 5: As in Lemma 1, it is assumed that the MLE
of X in the untruncated count density f(i, \) is the mean \ =

v

izl Then
Zi:lni
Zini k .
i=1 R Aj
=) b,
Z} T1-£(0,4))

E n; =
=1

where ;\1, .. .,j\k,ﬁl, ..., Pr are the maximum likelihood es-
timates for the mixing distribution for arbitrary, but fixed
number of components k.

(10)

Proof. The complete expected data log likelihood for a mix-
ture of truncated count densities with £ components is given
in (4). Taking partial derivatives, the necessity conditions (6)
and (7) are deduced. Because of Lemma 1, equation (7) takes
the form

This implies that

L k v

: A 1

R k i=1
g P .= - E ni€ij—p
pat 1— £(0,;) — N <

v k v
1 .1 .
75 un (Zeij>ZEZ’LTLi,
i=1 j=1 i=1
as e; is a probability distribution on j for fixed ¢ (in fact, it is
the posterior probability for count i to belong to component j),
so that 25:1 e;; = 1 for all 4. This ends the proof.

A potential application and further value of Theorem 5 lies
in the development of a stopping rule for the EM algorithm
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for component numbers k lower than the NPMLE (for which a
good stopping rule is available by means of the gradient func-
tion) or using it for reducing the labor in the EM algorithm.
Theorem 5, for the truncated case, provides a modification
of the result which, in the untruncated case, states that the
sample mean equals the mean of the mixing distribution. This
has been discussed in detail in Karlis and Xekalaki (1999) in-
cluding using it as a diagnostic tool for checking convergence
of the EM algorithm. It can be easily shown by means of the
result from Karlis and Xekalaki that the maximum likelihood
solution given by Hasselblad (1969) for the TIMES mortality
data (consisting of the counts of death notices in the newspa-
per TIMES in the 3-year time period from 1910 to 1912 for
women aged 80 and above) is incorrect (see also Titterington
et al., 1985, p. 90) as is the solution given by Simar (1976) for
the accident data of Thyrion (1960) (see also Bohning, 2000,
p. 40).

To illustrate Theorem 5 for the data of the heroin users in
example 2, it can be seen that the sample mean is (2955 X
14 1186 x 2 + --- + 19 x 1)/7062 = 2.9384 = 0.3215 x
0.1895/(1 — exp(—0.1895)) + --- + 0.0073 x 12.1568/(1 —
exp(—12.1568)), which corresponds to the numerical value of

Ek o Aj
Jj=1 Dj 1- cxp(f;\j) '

4. Discussion

Recently there has been an increased interest in zero-
truncated count models. These models can be used in social
contexts such as illegal gun owners, illegal immigrants, illicit
drug users, or car drivers without licenses to provide esti-
mates of the size of the unobserved population. This article
has shown that working with truncated mixtures of count den-
sities and mixtures of truncated count densities is equivalent.
This enables the researcher or practitioner to restrict oneself
to the second, easier approach without losing generality.

Here, the results were formulated for a general parametric
family of count densities f(¢, A) with the Poisson as standard
example in mind. As another example of a one-parametric
family one could consider the binomial family, that is, a dis-
ease registry where a case is notified by y out of S sources
where the sources notify independently with the same noti-
fication probability A. Conditional upon S and the notifying
probability A the count of notifications Y will have a binomial
distribution. Allowing nonparametric mixing here is appro-
priate to capture potential source dependence and notification
heterogeneity. Most of the results given here will hold for the
mixture of truncated binomials though results on identifia-
bility and number of support points need modifications (see
Lindsay and Roeder, 1993; Mao and Lindsay, 2002).

The algorithmic approach suggested here avoids the prob-
lem of choosing initial values, since it starts with the readily
available maximum likelihood estimate for the homogeneous
case (k = 1), and then increases the number of components
in the mixing distribution by means of the gradient function,
adding one component a time and updating the mixing dis-
tribution with the EM algorithm. As a by-product of this
approach the occurrence of local maxima is reduced and the
chances of reliably maximizing the likelihood in spaces with
dimension lower than the one of the NPMLE are increased.

Biometrics, December 2006

Finally, it is emphasized here that specifically the meth-
ods suggested for estimating population sizes need evaluation.
This could be done by means of simulation or, even better, by
means of existing data where true population size is known.
This will be considered in future work.
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