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Summary. This note generalizes Chao’s estimator of population size for closed capture–recapture studies if covariates are
available. Chao’s estimator was developed under unobserved heterogeneity in which case it represents a lower bound of the
population size. If observed heterogeneity is available in form of covariates we show how this information can be used to reduce
the bias of Chao’s estimator. The key element in this development is the understanding and placement of Chao’s estimator
in a truncated Poisson likelihood. It is shown that a truncated Poisson likelihood (with log-link) with all counts truncated
besides ones and twos is equivalent to a binomial likelihood (with logit-link). This enables the development of a generalized
Chao estimator as the estimated, expected value of the frequency of zero counts under a truncated (all counts truncated except
ones and twos) Poisson regression model. If the regression model accounts for the heterogeneity entirely, the generalized Chao
estimator is asymptotically unbiased. A simulation study illustrates the potential in gain of bias reduction. Comparisons of
the generalized Chao estimator with the homogeneous zero-truncated Poisson regression approach are supplied as well. The
method is applied to a surveillance study on the completeness of farm submissions in Great Britain.
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1. Introduction
For integer N, we consider a sample of counts Y1, Y2, . . . ,
YN ∈ {0, 1, 2, . . .} arising with a mixture probability density
function

py =
∫ ∞

0

p(y|λ)q(λ) dλ, (1)

where the mixing density q(λ) is unspecified and the mix-
ture kernel p(x|λ) comes from the Poisson family p(y|λ) =
Po(y|λ) = exp (−λ)λy/y!. Whenever Yi = 0 unit i remains un-
observed, so that only a zero-truncated sample of size n =∑m

y=1
fy is observed, where fy is the frequency of counts with

value Y = y and m is the largest observed count. Hence, f0

and consequently N are unknown. The purpose is to find an
estimate of the size N. Since frequently the count variable Y

represents repeated identifications of an individual in an ob-
servational period, the problem at hand is a special form of
the capture–recapture problem (see Bunge and Fitzpatrick,
1993, Wilson and Collins, 1992, or Chao et al., 2001, for a
review on the topic).

The sample of counts Y1, Y2, . . . , YN can occur in several
ways. A target population which might be difficult to count
consists of N units. This population might be a wildlife popu-
lation, a population of homeless people or drug addicts, soft-
ware errors or animals with a specific disease (see also Hay and

Smit, 2003; van Hest et al., 2008; Roberts and Brewer, 2006).
Furthermore, let an identification device (a trap, a register, a
screening test) be available that identifies unit i at occasion t

where t = 1, . . . , T and T potentially being random and/or un-
known itself. Let the binary result be yit where yit = 1 means
that unit i has been identified at occasion t and yit = 0 means
that unit i has not been identified at occasion t. The indi-
cators yit might be observed or not, but it is assumed that
yi = ∑T

t=1
yit is observed if at least one yit > 0 for t = 1, . . . , T .

Only if yi1 = yi2 = · · · = yiT = 0 and, consequently yi = 0, the
unit i remains unobserved. In this kind of situation the clus-
tering occurs by repeated identifications of the same unit, the
latter being the cluster.

In another setting, which is also the basis for this work,
the clustering occurs by means of a grouping variable such as
herds, holdings, farms, households, or villages. In this case, yit

denotes if the tth element in cluster i is identified (yit = 1) or
not (yit = 0). In the example given in this article the clusters
are holdings of cattle and yit informs about the disease status
of tth animal in holding i. Only yi = ∑

t
yit is observed if

it is positive. In other examples the cluster corresponds to
villages or households, one of the earliest applications of this
kind is the cholera-outbreak in a community in India studied
by McKendrick (1926) in which the cluster corresponds to
households in a village. A more recent example involves
cholera occurrence in rural East Pakistan where the cluster
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structure consists of villages (see also Mosley, Bart, and
Sommer, 1972). Böhning and Del Rio Vilas (2008) used the
clustering approach to estimate hidden scrapie in the sheep
holding population in Great Britain.

The article is organized as follows. In the next section the
estimator of Chao (1987, 1989) is reviewed and positioned into
a truncated likelihood approach. In Section 3, the major result
is provided which delivers a generalisation of Chao’s estima-
tor if covariate information is available. Section 4 provides
a small simulation study illustrating the benefits of the ap-
proach also in comparison to existing alternatives such as the
zero-truncated Poisson and zero-truncated negative-binomial
model. Section 5 presents a case study on estimating the com-
pleteness of surveillance of farm submissions of material from
dead cattle in England. The article closes with a brief discus-
sion of results.

2. Chao’s Estimator Revisited

The importance of the mixture py = ∫ ∞
0

p(y|λ)q(λ) dλ can be
seen in the fact that it is a natural model for modeling popu-
lation heterogeneity. There appears to be consensus (see, e.g.,
Pledger, 2005, for the discrete mixture model approach and
Dorazio and Royle, 2005, for the continuous mixture model
approach) that a simple model p(x|λ) is not flexible enough
to capture the variation in the re-capture probability for the
different members of most real life populations. Every item
might be different, as might be every animal or human being.
However, there has recently been also a debate on the identi-
fiability of the binomial mixture model (see Link, 2003, 2006;
Holzmann, Munk, and Zucchini, 2006). Furthermore, using
the nonparametric maximum likelihood estimate (NPMLE)
q̂(λ) of the mixing density q(λ) in constructing an estimate of
the population size N̂ = n/[1 − ∫ ∞

0
exp(−λ)q̂(λ) dλ] leads to

the boundary problem implying often unrealistically high val-
ues for the estimate of the population size (Wang and Lind-
say, 2005, 2008). Hence, a renewed interest has re-occurred in
the lower bound approach for population size estimation sug-
gested by Chao (1987). For further developments see also Mao
(2008). In the lower bound approach there is neither need to
specify a mixing distribution, nor is there need to estimate
it. In this sense it is completely non-parametric. To give some
details of the lower bound approach consider the Poisson mix-
ture kernel exp (−λ)λx/x!. It follows from the Cauchy–Schwarz
inequality that

(∫ ∞

0

exp (−λ)λq(λ) dλ

)2

≤
∫ ∞

0

exp (−λ)q(λ) dλ

×
∫ ∞

0

exp (−λ)λ2q(λ) dλ,

or equivalently, p2
1 ≤ p0(2p2). Replacing the theoretical prob-

abilities pj by their sample estimates fj/N for j = 0, 1, 2, the
Chao lower bound estimate f 2

1 /(2f2) for f0 follows (see Chao,
1987, 1989) since the unknown denominator N cancels out.
The estimate for the population size N is N̂C = n + f 2

1 /(2f2).
In the following we develop a likelihood framework in which
the estimator of Chao develops. Since the Chao estimator uses
only frequencies with counts of 1 and 2, a truncated sample

consisting only out of counts of ones and twos might be con-
sidered. The associated truncated Poisson probabilities are

q1 = 1

1 + λ/2
and q2 = λ/2

1 + λ/2
.

This truncated sample leads to a binomial log-likelihood
f1 log(q1) + f2 log(q2) which is uniquely maximized for q̂2 =
1 − q̂1 = f2/(f1 + f2). Since q2 = λ/(λ + 2) and q1 = 2/(λ +
2), the estimate λ̂ = 2f2/f1 for the Poisson parameter λ sug-
gested by Zelterman (1988) arises. In the approach of Zel-
terman the homogeneous Poisson serves only as a working
model and it was suggested by Zelterman that the estimate
N̂Z = n

1−p̂0
= n

1−exp(−λ̂)
is more robust against misspecifica-

tions of the Poisson model than the usual maximum likelihood
estimate.

Theorem 1.

(a) Let log L(λ) = f1 log(q1) + f2 log(q2) with q1 = e−λλ/

(e−λλ + e−λλ2/2) = 2/(λ + 2) and q2 = e−λλ2/2/(e−λλ +
e−λλ2/2) = λ/(λ + 2) being the Poisson probabilities
truncated to counts of ones and twos. Then log L(λ)
is maximized for

λ̂ = 2f2/f1.

(b)

E(f0|f1, f2; λ̂) = f 2
1 /(2f2), for λ̂ = 2f2/f1.

Proof. For the first part, it is clear that f1 log(q1) +
f2 log(q2) is maximal for q̂1 = f1/(f1 + f2), which is attained
for λ̂ = 2f2/f1. For the second part, we see that with ey =
E(fy|f1, f2; λ) = Po(y|λ)N we have the following:

ey = Po(y|λ)N

= Po(y|λ)

(
e0 + f1 + f2 +

∞∑
j=3

ej

)
,

so that

e0 + e+
3 = [1 − Po(1|λ) − Po(2|λ)](e0 + e+

3 )

+ [1 − Po(1|λ) − Po(2|λ)](f1 + f2)

with e+
3 = ∑∞

j=3
ej. Hence

e0 + e+
3 = 1 − Po(1|λ) − Po(2|λ)

Po(1|λ) + Po(2|λ)
(f1 + f2)

and

e0 = Po(0|λ)(f1 + f2 + e0 + e+
3 )

= Po(0|λ)(f1 + f2)
[
1 + 1 − Po(1|λ) − Po(2|λ)

Po(1|λ) + Po(2|λ)

]
= Po(0|λ)

Po(1|λ) + Po(2|λ)
(f1 + f2) = f1 + f2

λ + λ2/2
.
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Plugging in the maximum likelihood estimate λ̂ = 2f2/f1 for
λ yields the desired result. �

Theorem 1 establishes a close connection between the ap-
proach by Zelterman and Chao’s estimator. It shows that Zel-
terman’s estimator of the Poisson parameter λ arises when all
counts are truncated except counts of ones and twos and when
the resulting likelihood is maximized. If the correct predic-
tion for f0 is used, namely the conditional expectation for the
truncated Poisson model, the Chao estimator arises. Hence
the strong overestimation of the original Zelterman estimator
which is occasionally observed in practice (van der Heijden et
al., pers. comm., 2006) stems from using a wrong conditional
expectation. If λ becomes small then Chao’s and Zelterman’s
estimator become identical (Böhning, 2010).

3. Chao’s Estimator with Covariates

3.1. The Generalized Chao Estimator

Here we will develop a generalization of Chao’s estimator
for covariate information. This is a generalization in the
sense that if there is only an intercept (hence no covari-
ates) the generalization is identical to the original or simple
Chao estimator. Consider a sample with covariate informa-
tion (Y1, z1), . . . , (YN, zN) where zi is a p-dimensional vector
additional information on unit i. We assume that the het-
erogeneity expressed in the mixture (1) can be captured by
means of a Poisson regression model with log-link function

λi = exp(α + βTzi), (2)

where λi = E(Yi|zi) is the conditional Poisson mean with
P(Yi = y) = Po(y|λi). The associated truncated Poisson model
with all counts truncated besides Yi = 1 and Yi = 2 is

P(Yi = 1) = (1 − qi)= 1

1+ λi/2
and P(Yi = 2)= q i = λi/2

1+ λi/2
.

Suppose there are M different observed covariate combina-
tions with n1 + · · · + nM = n, where ni is the frequency of co-
variate combination i. Then the truncated Poisson likelihood
is given as

M∏
i=1

(
1

1 + λi/2

)fi1

×
(

λi/2

1 + λi/2

)fi2

=
M∏

i=1

(
1

1+ exp(α + βTzi)/2

)fi1

×
(

exp(α + βTzi)/2

1+ exp(α + βTzi)/2

)fi2

,

(3)

where fij is the frequencies of counts of j in the ith co-
variate combination where j = 1 or j = 2. Note that ni =
fi1 + fi2 + · · · + fim. Clearly, the likelihood (3) is identical to

a conventional binomial logistic likelihood

M∏
i=1

(1 − qi)
fi1q

fi2
i

=
M∏

i=1

(
1

exp(α′ + βTzi)

)fi1

×
(

exp(α′ + βTzi)

1 + exp(α′ + βTzi)

)fi2

(4)

with α′ = log(1/2) + α. Hence maximum likelihood estimates
for the truncated Poisson model can be found by means of a
logistic regression analysis. Having found estimates α̂′ and β̂

by maximizing the binomial likelihood (4) the estimate for λi

is provided as

λ̂i = 2
q̂i

1 − q̂i

= 2 exp(α̂′ + β̂
T
zi) (5)

for i = 1, . . . , M.
The next step is to construct an estimate for f0. For the ith

covariate combination an estimate for fi0 is found according
to Theorem 1 as the expected value of fi0 estimated using λ̂i:

f̂ i0 = Po(0|λ̂i)

Po(1|λ̂i) + Po(2|λ̂i)
(fi1 + fi2) = fi1 + fi2

λ̂i + λ̂2
i /2

.

The final estimator arises by summing up over all M different
covariate combinations to yield the generalized Chao estima-
tor

N̂GC = n +
M∑

i=1

Po(0|λ̂i)

Po(1|λ̂i) + Po(2|λ̂i)
(fi1 + fi2)

= n +
M∑

i=1

fi1 + fi2

λ̂i + λ̂2
i /2

.

The estimator achieves a particular simple and attractive for-
mat if written in case data format (ni = 1):

N̂GC = n +
N∑

i=1

�i

λ̂i + λ̂2
i /2

= n +
f1+f2∑

i=1

1

λ̂i + λ̂2
i /2

, (6)

where �i = 1 if yi ∈ {1, 2} and �i = 0 otherwise, for i =
1, . . . , N. Here we have assumed the conventional order-
ing of the sample such that 1, 2, . . . , f1 + f2 are the first
f1 + f2 observed units of counts of ones and twos, followed
by n − (f1 + f2) units of observed counts larger than 2, and
n + 1, . . . , N are the remaining N − n unobserved units. Note
that λ̂i is provided in (5). We have the following theorem for
the generalized Chao estimator.

Theorem 2. Let the Poisson regression model (2) hold.
Then the generalized Chao estimator is asymptotically unbi-
ased:

lim
N→∞

E(N̂GC)

N
= 1.
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Proof. We note that E(n|λ̂1, . . . , λ̂N) = ∑N

i=1
[1 − Po(0|λ̂i)]

and E(�i|λ̂i) = Po(1|λ̂i) + Po(2|λ̂i). Hence,

E(N̂GC|λ̂1, . . . , λ̂N) =
N∑

i=1

[1−Po(0|λ̂i)]

+
N∑

i=1

Po(1|λ̂i)+Po(2|λ̂i)

λ̂i + λ̂2
i /2

,

which becomes

N∑
i=1

[1 − Po(0|λ̂i)] +
N∑

i=1

Po(0|λ̂i)
λ̂i + λ̂2

i /2

λ̂i + λ̂2
i /2

= N.

Then argument is completed by observing that
limN→∞ E(λ̂i) = λi. �

Note that the generalized Chao estimator reduces to the
conventional Chao estimator if there are no covariates. In this
case, λ̂i = λ̂ = 2f2/f1 and

N̂GC = n +
f1+f2∑

i=1

1

λ̂i + λ̂2
i /2

= n + f1 + f2

2f2/f1 + 2f 2
2 /f 2

1

= n + f 2
1

2f2

f1 + f2

f1 + f2

= N̂C.

This result is easily extended to the case of stratified hetero-
geneity. Suppose the population consists of M strata and let
zij denote the membership indicator for unit i to belong to
stratum j (zij = 1 if i belongs to stratum j and 0 otherwise)
for j = 1, . . . , M − 1 (here the stratum M serves as reference).
Then the generalized Chao estimator coincides with the strat-

ified Chao estimator
∑M

i=1
(ni + f2

1i

2f2i
) assuming that f2i > 0 for

i = 1, . . . , M. Here ni is the observed size of stratum i, f1i and
f2i are the frequencies of ones and twos in stratum i, respec-
tively.

Theorem 3. Consider the stratified situation as above with
f2i > 0 for i = 1, . . . , M. Then the generalized Chao estimator
is at least as large as the conventional Chao estimator:

N̂GC ≥ N̂C.

Proof. We know that in this situation the generalized Chao
estimator coincides with the stratified Chao estimator

N̂GC =
M∑

i=1

(
ni + f 2

1i

2f2i

)
.

Note that the conventional (unstratified) Chao estimator can
be written as

N̂C =
M∑

i=1

ni + (
∑M

i=1
f1i)

2

2
∑M

i=1
f2i

.

We show
∑

i

f2
1i

f2i
× ∑

i
f2i ≥ (

∑
i
f1i)

2 where the summation
goes from 1 to M as above. Recall the Cauchy–Schwarz in-
equality in the Euclidean space as(∑

i

xiyi

)2

≤
(∑

i

x2
i

)(∑
i

y2
i

)
,

where xi and yi are arbitrary real numbers. The result follows
by choosing xi = f1i/

√
f2i and yi = √

f2i where
√

x refers to
the positive root of a non-negative number x. �

The result implies that the generalized Chao estimator is
at least as large the conventional Chao estimator whether the
observed heterogeneity explains all heterogeneity (including
the unobserved heterogeneity) or not. This explains some of
its potential for bias reduction. The result was proved for the
stratified situation, but the conjecture is that it holds in more
generality.

3.2. Standard Errors of the Generalized Chao Estimator

Standard errors of the generalized Chao estimator are derived
following the conditioning techniques used in van der Heijden,
Cruyff, and van Houwelingen (2003a) and Böhning (2008). We
use the result

Var(N̂GC) = Var[E(N̂GC|�i, i = 1, . . . , N)]

+ E[Var(N̂GC|�i, i = 1, . . . , N)].

For the first term, we have

E(N̂GC|�i, i = 1, . . . , N)

= E

(
n +

N∑
i=1

�i

λ̂i + λ̂2
i /2

∣∣∣∣∣�i, i = 1, . . . , N

)
≈

N∑
i=1

�iwi,

where wi = 1 + exp(−λi)/pi and

pi = P(Yi = 1 or Yi = 2) = Po(1|λi) + Po(2|λi).

Note that �i is binary with

E(�i) = P(Yi = 1 or Yi = 2) = Po(1|λi) + Po(2|λi) = pi

and Var(�i) = pi(1 − pi). Hence, we have

Var

(
N∑

i=1

�iwi

)
=

N∑
i=1

pi(1 − pi)w
2
i ,

which we estimate as

V̂ar[E(N̂GC|�i, i = 1, . . . , N)]

=
N∑

i=1

�i

p̂i

p̂i(1 − p̂i)ŵ
2
i =

f1+f2∑
i=1

(1 − p̂i)

[
1 + exp(−λ̂i)

p̂i

]2

,

(7)

where p̂i = Po(1|λ̂i) + Po(2|λ̂i) and λ̂i is provided in (5).
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For the second term E[Var(N̂GC|�i, i = 1, . . . , N)], we fo-
cus on developing an estimator for Var(N̂GC|�i, i = 1, . . . , N)
which we then take as a moment estimator for the ex-
pected value. We use the multivariate δ-method for deriving
a variance-estimate of g(α̂′, β̂) = ∑f1+f2

i=1
1/[λ̂i + λ̂2

i /2], where

again λ̂i = 2 exp(α̂′ + β̂
T
zi), so that

V̂ar

(
f1+f2∑

i=1

1

[λ̂i + λ̂2
i /2]

)
= ∇g(α̂′, β̂)T ĉov(α̂′, β̂)∇g(α̂′, β̂),

(8)

where the estimated covariance matrix ĉov(α̂′, β̂) of the re-
gression parameter estimates α̂′ and β̂ is readily available from
the logistic regression in (4) as the inverse of the Fisher infor-
mation matrix. Here ∇g(α̂′, β̂) denotes the vector of partial
derivatives ( ∂g

∂α′ ,
∂g

∂β1
, . . . ,

∂g

∂βp
)T evaluated at (α̂′, β̂)T. The par-

tial derivatives are easily obtained as

∂g

∂α′ =
∑

i

λ̂i + λ̂2
i

(λ̂i + λ̂2
i /2)2

,

∂g

∂βj

=
∑

i

λ̂i + λ̂2
i

(λ̂i + λ̂2
i /2)2

zij,

where λi(α
′, β) = 2 exp(α′ + βTzi), and λ̂i = 2 exp(α̂′ + β̂

T
zi) is

λi(α
′, β) evaluated at (α̂′, β̂)T ). The final variance estimate of

Var(N̂GC) is obtained as the sum of (7) and (8). The perfor-
mance of this variance estimate is investigated in the next
section.

4. Simulation

To illustrate the performance of the generalized Chao estima-
tor four simulation experiments were conducted. In the first
experiment count data were generated according to

Yi ∼ Po(exp(α + βzi)),

where zi ∼ N(20, 152) and α = 0, β = 0.04. We looked at
N = 2000, N = 1000, N = 500, and N = 200. Zeros were trun-
cated and the population size estimators of interest com-
puted. Besides N̂GC and N̂C we have also included the Tur-
ing estimator N̂T = n/(1 − f1/S) as an estimator under homo-
geneity for comparison. Here S = f1 + 2f2 + · · · + mfm. The
background of the Turing estimator as discussed (for exam-
ple) in Chao and Lee (1992) is based on the sample cover-
age estimator 1 − f1/S which was first introduced by Turing
(Good, 1953). In the equally likely case the sample cover-
age is n/N which, if equated to 1 − f1/S, leads to N̂T which
was suggested by Darroch and Ratcliffe (1980). Yet another
way of approaching Turing estimation is as follows. Write
N as Np0 + (1 − p0)N, the latter can be estimated by n, so
that the estimator n/(1 − p0) of N arises. Under Poisson ho-

mogeneity we have that p0 = exp(−λ) = exp(−λ)λ

λ
= p1/E(Y)

which can be estimated by f1/N

S/N
= f1/S, and the Turing es-

timator arises once again. The results are presented in Ta-

Table 1
Performance measures for the generalized Chao, Chao, and

Turing estimator for four populations with true sizes
N = 200, N = 500, N = 1000, and N = 2000, respectively;

Yi|zi ∼ Po(exp(α + βzi)) with α = 0, β = 0.04, and
zi ∼ N(20, 152) (experiment 1)

Estimator Mean SD Minimum Median Maximum

N = 200
G-Chao 205.0 19.0 174.5 201.4 398.0
Chao 195.5 10.8 170.1 194.6 243.5
Turing 185.5 6.3 167.1 185.6 206.0

N = 500
G-Chao 504.3 21.7 455.4 503.6 593.8
Chao 487.4 15.9 444.7 487.1 567.3
Turing 464.4 9.6 434.5 464.3 504.6

N = 1000
G-Chao 1004.4 30.0 933.0 1001.7 1115.6
Chao 971.3 20.4 913.8 970.9 1049.0
Turing 927.5 12.8 890.1 927.3 974.4

N = 2000
G-Chao 2005.1 42.3 1894.3 2002.7 2168.3
Chao 1943.7 31.9 1853.7 1942.2 2038.1
Turing 1854.9 20.0 1794.0 1854.8 1910.6

ble 1. Clearly, there is the known underestimation of Tur-
ing estimator if heterogeneity is ignored. The conventional
Chao estimator shows an improved performance, although
as a lower bound estimator it still shows an underestimation
bias. Only the generalized Chao estimator is asymptotically
unbiased. This becomes clear if we look at E(N̂GC)/N which
is 1.0250, 1.0086, 1.0044, 1.0026 for N = 200, 500, 1000, 2000,
respectively. The corresponding values for the Turing esti-
mator are 0.9275, 0.9288, 0.9275, 0.9275 and for the conven-
tional Chao 0.9775, 0.9748, 0.9713, 0.9718. Nevertheless, for
small sample sizes (200 and 500) the mean squared error of
the conventional Chao estimator is smaller than the one of
the generalized Chao estimator. This is due to the fact that
its variance is increased, a consequence of including variabil-
ity through covariate information. As with any asymptotically
biased estimator, with increasing size N the persisting bias of
Chao and Turing becomes dominant and bounds their relative
mean squared error E(N̂ − N)2/N2 away from zero. Hence the
new estimator will have greater benefit for larger studies.

A second experiment uses a binary covariate indicating
sampling Poisson counts from two different populations of
fixed size. This experiment realizes the idea of a Poisson dis-
tribution with contaminations: Yi ∼ Po(exp(α + βzi)) where
zi = 1 if count Yi is sampled from the first (uncontaminated)
component with mean exp(α) = 0.5 for i = 1, . . . , p and zi = 0
if count Yi is sampled from a second (contaminating) compo-
nent with mean exp(α + β) = 3.0 for i = p + 1, . . . , N. Two
values of N = 1000; 2000 and p = 0.5 × N; 0.1 × N where cho-
sen with results very similar to the first experiment. We
present in Figure 1 the case with N = 1000 and p = 0.5 × N.

We have also compared the estimated standard error based
upon (7) and (8) with the estimated true standard errors in
the two simulation experiments described above. To be pre-
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Figure 1. Individual value plot for the generalized Chao, the Chao and the Turing estimator using the contamination
model Yi ∼ Po(exp(α + βzi)) where zi is a dummy representing membership to the first (uncontaminated) component with
mean exp(α) = 0.5 for i = 1, . . . , p or second (contaminating) component with mean exp(α + β) = 3.0 for i = p + 1, . . . , N; the
true population size is N = 1000 and p = 500; the bullet indicates the mean of the distribution of the simulated estimates;
replication size is 1000

cise, if N̂r
GC is the estimate in the rth simulation run, then

the estimated true variance is given as 1
R

∑
r
(N̂r

GC − N̄GC)2

and the estimated true standard error is its root. This is com-
pared with the estimated variance according to (7) and (8),
averaged over the R replications. The results are provided in
Table 2. The ratio in the last column of Table 2 provides a
comprehensive performance measure for the variance estima-
tor. The target value of this ratio is 1 and approximations
become quite acceptable for sizes of 500 and above. Note that

Table 2
Comparison of estimated standard error (Estimated SE) and

true standard error (True SE) of the generalized Chao
estimator for five populations with true sizes N = 200,

N = 500, N = 1000, N = 2000, and N = 5000, respectively;
ratio refers to the ratio of Estimated SE to True SE

N True SE Estimated SE Ratio

Experiment 1
200 19.765 24.266 1.228
500 23.210 24.787 1.068

1000 30.644 32.139 1.049
2000 43.492 44.283 1.018
5000 67.140 68.900 1.026

Experiment 2
200 51.585 59.220 1.148
500 60.110 60.929 1.014

1000 76.354 78.044 1.022
2000 106.034 105.951 0.999
5000 165.092 164.629 0.997

for smaller population sizes the approximation appears to be
conservative.

In a third experiment with N = 1000, the contamination
model Yi ∼ Po(exp(α + βzi)) was modified as follows. Count Yi

was generated from a Poisson with mean exp(α + βzi), where
zi is a dummy representing membership of the first component
with mean exp(α) = 0.5 for i = 1, . . . , 450 or of the second
component with mean exp(α + β) = 3.0 for i = 451, . . . , 1000,
respectively; however, for the fitting the model it is assumed
that exp(α) = 0.5 for i = 1, . . . , 550 and exp(α + β) = 3.0 for
i = 551, . . . , 1000 so that 100 observations are misclassified
(first component has additional, unobserved heterogeneity).
In this case, the generalized Chao estimator becomes down-
wards biased, although the bias of the conventional Chao es-
timator is clearly larger (Figure 2). Hence, in these situations
with additional heterogeneity it can be expected that the gen-
eralized Chao estimator is experiencing slight to moderate
bias.

Finally, we have compared the generalized Chao estimator
with existing modeling work based upon the zero-truncated
Poisson (ZTP) model. Population size estimation with covari-
ate information has been previously considered by van der
Heijden et al. (2003a,b). Their approach assumes the valid-
ity of a Poisson regression model with only zero counts being
truncated. The estimated population size is here

N̂ =
n∑

i=1

1

1 − exp[− exp(α̂ + β̂
T
zi)]

,

where α̂ + β̂
T
zi is the fitted linear predictor with covariate

vector zi under the ZTP model. We expect—if the Poisson
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Figure 2. Individual value plot for the generalized Chao, the Chao, the Turing estimator and the ZTP-model based estimator
using the contamination model Yi ∼ Po(exp(α + βzi)) where zi is a dummy representing membership to the first component
with mean exp(α) = 0.5 for i = 1, . . . , 450 or second component with mean exp(α + β) = 3.0 for i = 451, . . . , 1000; however, for
the fitting it is assumed that exp(α) = 0.5 for i = 1, . . . , 550 and exp(α + β) = 3.0 for i = 551, . . . , 1000 so that 100 observations
are misclassified (first component has additional, unobserved heterogeneity); the bullet indicates the mean of the distribution
of the simulated estimates; replication size is 1000

model holds—that the population size estimate based upon
the zero-truncated Poisson model is asymptotically unbiased
and efficient. Indeed, Table 3 shows that the generalized Chao
estimator as well as the population size estimator based upon
the ZTP model are asymptotically unbiased. However, the
ZTP-based estimator provides the smaller standard error. It
appears that the generalized Chao estimator has 1.5-times
higher standard error than the ZTP-based estimator. This
finding might lead to a strategy which first investigates the
ZTP model for validity and if the validity check fails pro-
ceeds with the generalized Chao estimator. Indeed, if the ZTP

Table 3
Comparison of the generalized Chao estimator and the
population size estimator based upon the zero-truncated

Poisson (ZTP) regression model; ratio refers to the ratio of
the estimated SE of the generalized Chao estimator and the
estimated SE of the population size estimator under the ZTP

N G-Chao (SE) ZTP (SE) Ratio

Experiment 1
200 205.08 (20.36) 200.61 ( 8.53) 2.39
500 503.79 (23.58) 500.29 (13.44) 1.75

1000 1005.01 (30.80) 999.93 (19.00) 1.62
2000 2004.19 (42.24) 2000.31 (26.96) 1.57
5000 5003.76 (66.46) 5001.14 (42.48) 1.56

Experiment 3
1000 930.48 (48.10) 801.42 (19.81) 2.43

model fails to hold or if the considered covariates account only
for part of the heterogeneity, the population size is likely to be
underestimated. This is expressed in the bottom part of Ta-
ble 3 where now both estimators experience underestimation
bias, as expected, but the generalized Chao estimator is expe-
riencing less bias in comparison to the ZTP-based estimator.
This is also quite apparent in Figure 2 where the display is
supplemented by the ZTP-model based population size esti-
mator. Here the ZTP-model based estimators can only slightly
adjust for the unobserved heterogeneity. Note also the higher
value of the ratio in the last column of Table 3, indicating a
deflated standard error of the ZTP-model based population
size estimator.

More recently Cruyff and van der Heijden (2008) suggested
utilizing the truncated negative-binomial model for popula-
tion size estimation. Adapting the notation in Cruyff and
van der Heijden (2008) it is assumed that Yi|zi ∼ NB(μi, θ)
with μi = exp(α + βTzi), where NB stands for the negative-
binomial distribution. Zero-counts are truncated as before
and parameter estimates are found from the zero-truncated
negative-binomial (ZNB) likelihood. We have also compared
the generalized Chao estimator with this approach. Results
are provided in Table 4. Whereas the ZNB-based population
size estimator is unbiased, the ZTP-based estimator underes-
timates considerably. The generalized Chao estimator is mod-
erately underestimating as well, but has reasonable standard
errors in comparison to the ZNB-based estimator. The prob-
lem with the ZNB approach appears to be that the fitting
(with any maximum likelihood algorithm) only works when
the count data follow the negative-binomial model. Outside
this class severe convergence problems due to boundary con-
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Table 4
Comparison of the generalized Chao estimator with the
population size estimator based upon the zero-truncated
Poisson (ZTP) and the zero-truncated negative-binomial
(ZNB) regression model for N = 1000; in experiment 4
simulated counts are Yi|zi ∼ NB(μi, θ) with μi = e0.02zi ,
zi ∼ N(8, 5), and θ = 3; experiment 3 is as described

previously

N G-Chao (SE) ZTP (SE) ZNB (SE)

Experiment 4
200 187.02 (22.29) 167.96 (12.47) 208.80 (46.45)
500 459.40 (31.80) 417.73 (19.22) 504.98 (58.02)

1000 913.06 (43.84) 833.78 (27.09) 1005.80 (78.72)
2000 1819.01 (60.35) 1664.40 (37.55) 2003.66 (107.31)
5000 4542.05 (94.85) 4159.92 (58.87) 5005.08 (168.75)

Experiment 3
1000 930.48 (48.10) 801.42 (19.81) 829.09 (23.92)

ditions can occur which does not really allow complete com-
parisons for the simulation experiments done in section 4.1.
However, fitting of the negative-binomial was possible in ex-
periment 3 and the results are provided in the bottom part
of Table 4. Here we see that the ZNB-based estimator expe-
riences strong underestimation bias, whereas the generalized
Chao estimator remains with its less severe underestimation
bias. Note also in Table 4 that in all cases the generalized
Chao estimator has the smallest mean squared error among
all three model-based estimators considered.

5. Case Study on Completeness of Carcass
Submissions from Farms in Great Britain

Farm animal submissions in England and Wales are made
to Animal Health and Veterinary Laboratories Agency
(AHVLA) regional laboratories from private veterinary sur-
geons (PVS) wanting a post-mortem on a carcass for which
the reason for death cannot be determined, or a sample from
an animal requiring further diagnostic tests. Unless there is a
notifiable disease suspected, it is up to the PVS to decide
whether to submit a sample. The cost of tests and post-
mortems is subsidized by the Department of Food and Rural
Affairs (DEFRA) to encourage submissions so that any new or
emerging disease threats will be identified. Clearly, since not
every farm submits samples to AHVLA, it is of great interest
to determine the completeness of farm submissions. For cat-
tle, in the period 1 January–31 December 2009, there were an
estimated 60,571 farms of which 48,535 had no submissions.
The frequency fy of farms with exactly y submissions (car-
cass submissions) to AHVLA regional laboratories is 48,535
(58,713), 6,340 (1,532), 2,520 (231) , 1,149 (51), 709 (27),
380 (6), 249 (5), 173 (2), 135 (1), 94 (3), 80 (0), 207 (0), for
y = 0, 1, . . . , 11 where f11 refers to the frequency of exactly 11
submissions or more. Note that there are f0 = 48,535 farms
with no submissions at all (58,713 with no carcass submis-
sions). It is known that many farms do not necessarily make
submissions to AHVLA, even where they may have unknown
diseases in their farm, and it is of interest to estimate the fre-
quency of farms that made no submissions but had unknown

disease on their farm. In other words, there are n = 12,036
farms with submission of samples to AHVLA and we are in-
terested in estimating N = n + f̃0, the total number of farms
with unknown disease, namely those which submit and those
which do not.

Logistic regression has previously been applied to the hold-
ings that have submitted samples to AHVLA and a depen-
dence has been found between holding size, holding type and
the distance from an AHVLA regional laboratory on the like-
lihood of a submission (only done on the total submissions
not on any particular disease or syndrome). Distance is likely
to be particularly important for carcass submissions since the
farmer is responsible for delivering the carcass to the regional
laboratory and so the cost and time involved may influence
the decision of whether to submit the carcass. Note that in
the previous analysis the dependent variable is the decision
to submit or not to submit. Here the dependent variable is
the (truncated) number of submissions, given that there is a
submission at all.

In Table 5 a completeness analysis is provided for two count
variables. One is the total number of submissions including
the carcass itself but also other material such as blood sam-
ples. The other count variable is the number of submitted
carcasses. It can be seen that in both cases the size of the
farm (on log-scale) is an important covariate as is the type of
farm (dairy or not). The distance of the farm to the regional
laboratory appears to provide important covariate informa-
tion only for the count of submitted carcasses. The general-
ized Chao estimator is considerably higher in both situations
in comparison to the conventional Chao estimator. For com-
parison we have included the Turing estimator and the pop-
ulation size estimator based upon the zero-truncated Pois-
son regression model as well. The latter two underestimate
strongly with the ZTP-based estimate being able to adjust
for some of the observed heterogeneity. Note that the com-
pleteness of surveillance for the total number of submissions
(12,036/21,657×100%=56%) is more than double than for the
submission of carcasses only (18,58/7,688×100%=24%) which
is in line with expectation since there is a much greater dis-
tance dependent cost for carcass submissions compared with
other types of sample.

6. Discussion

Chao’s estimator is widely accepted in the community because
of its robustness with respect to misspecifications of the Pois-
son model. Nevertheless, if heterogeneity is present, Chao’s
estimator is only a lower bound. This lower bound provides a
less biased estimator in comparison to estimators under homo-
geneity such as the Turing estimator, but it is still biased and
this bias persists asymptotically. Hence, bias reduction meth-
ods such as suggested here by means of utilizing covariate
information are useful. A similar approach was suggested in
Böhning and van der Heijden (2009) for the estimator of Zel-
terman (1988). However, the estimator of Zelterman can expe-
rience extreme forms of overestimation and has less favorable
properties if compared to Chao’s estimator (see also Böhning,
2010). However, whereas it is relatively easy to generalize Zel-
terman’s estimator to covariate information, it was for a con-
siderable time unclear how this could be accomplished for
Chao’s estimator. This article has now filled this gap.
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Table 5
Chao, generalized Chao, Turing, and ZTP estimator for total number of submissions and number of Carcass submissions to

the farm file

Logistic regression analysis total number of submissions
Covariate coef SE-coef. Z p-Value

Log-size 0.33 0.03 12.5 0.00
Type (1=dairy 0=beef) 0.29 0.05 5.55 0.00
Log-distance −0.01 0.04 −0.10 0.92

Estimated farms with carcasses (95% CI):
[based on total number of submissions]

n G-Chao Chao Turing ZTP
12,036 21,657 20,011 15,532 18,346

(20,885, 22,429) (19,993, 20,029) (15,348, 15,716) (17,932, 18,760)

Logistic regression analysis number of carcass submissions
Covariate Coef. SE-coef. Z p-Value
Log-size 0.32 0.08 4.10 0.00
Type (1=dairy, 0=beef) 0.05 0.16 0.38 0.71
Log-distance −0.15 0.09 −1.66 0.09

Estimated farms with carcasses (95% CI):
[based on number of carcass submissions only]

n G-Chao Chao Turing ZTP
1858 7688 6938 5279 6008

(6523, 8853) (6868, 7009) (4645, 5913) (5293, 6723)

Population size estimation with covariate information has
been previously considered by van der Heijden et al. (2003a,b)
using Poisson regression model with only zero counts being
truncated, as was mentioned above. If the model fails to hold
or if the considered covariates account only for part of the het-
erogeneity, the population size is likely to be underestimated.
This has been illustrated in the simulation study but also the
case study on completeness of farm submissions has provided
evidence that the ZTP-model based estimate is too low.

Incorporating covariate information is an important step in
reducing bias in population size estimation of elusive target
populations using truncated count distributions of repeated
identifications. The suggested extension of the Chao estima-
tor for covariate modeling appears to allow bias reduction
of the conventional Chao lower bound estimator to the ex-
tent that it becomes unbiased if all heterogeneity is included
as covariate information. It was also shown for the situation
of stratified heterogeneity (Theorem 3) that the generalized
Chao estimator is always at least as large as the conventional
Chao estimator. This is correct whether the observed hetero-
geneity captures all of the heterogeneity or not. It also seems
to compare favorable to alternative approaches including the
negative-binomial model.

The question arises in which way the proposed approach
generalizes to other capture–recapture situations. For exam-
ple, if the number of sampling occasions T is known it might
be more reasonable to model Xi with a binomial distribu-
tion and include covariate information by means of a gen-
eralized linear model using the logit-link function. However,
the associated binomially truncated binomial likelihood with
involved logit-link does not lead to a simple or well-known
likelihood (though in principle this could be handled numer-
ically as well). It is a rather unique feature (and the main

result of this article) that the binomially truncated Poisson
likelihood with involved log-link becomes identical (up to the
intercept) to a binomial (Bernoulli) likelihood with involved
logit-link. Of course, the posed question becomes more burn-
ing when the number of sampling occasions Ti varies with the
unit i. A practical way to handle this could be to include log Ti

as an offset in the Poisson regression model, or ultimately, in
the logistic regression model.

7. Supplementary Materials

A Web Appendix, which contains the data used in Section 5,
the associated R-code for producing the results in this section
as well as the R-code for running the simulations in Section
4, are available with this paper at the Biometrics website on
the Wiley Online Library.
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