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ABSTRACT

Motivation: The massive data produced by next-generation
sequencing require advanced statistical tools. We address estimating
the total diversity or species richness in a population. To
date, only relatively simple methods have been implemented
in available software. There is a need for software employing
modern, computationally intensive statistical analyses including
error, goodness-of-fit and robustness assessments.
Results: We present CatchAll, a fast, easy-to-use, platform-
independent program that computes maximum likelihood estimates
for finite-mixture models, weighted linear regression-based analyses
and coverage-based non-parametric methods, along with outlier
diagnostics. Given sample ‘frequency count’ data, CatchAll
computes 12 different diversity estimates and applies a model-
selection algorithm. CatchAll also derives discounted diversity
estimates to adjust for possibly uncertain low-frequency counts. It
is accompanied by an Excel-based graphics program.
Availability: Free executable downloads for Linux,
Windows and Mac OS, with manual and source code, at
www.northeastern.edu/catchall.
Contact: jab18@cornell.edu
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1 INTRODUCTION
The field of microbial ecology is bursting with data from next-
generation sequencing, but analysis remains a challenge. Estimating
the diversity of a microbial community is especially important. To
model this statistically, assume that the population can be divided
into a finite number of classes. The simplest definition of diversity is
the number of classes C.Asample drawn from such a population will
typically have repeated observations of the various classes: some
may be observed once only, others twice and so on, while many
classes may not appear in the sample at all. The ‘frequency count’
data is {(i,f (i)),i≥1} where f (i) is the number of sample classes
of size i. For example, the dataset {(1,10),(2,4),(3,2),(7,1)} has
10 ‘singletons’, four ‘doubletons’, ... and one class occurring seven
times in the sample. For bacterial and phage diversity, the counts are
derived from the frequencies of 16S rRNA genes and contig spectra.
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Statistical estimation of diversity, from frequency count data
goes back to 1943 (Bunge and Barger, 2008), but so far only
coverage-based non-parametric methods have been implemented
in widely available software, because they do not require
numerical optimization. We improve upon previous methods by (i)
implementing parametric finite-mixture models and a new weighted
linear regression approach in addition to existing non-parametric
methods; (ii) providing a way to statistically discount large numbers
of potentially artifactual rare species; and (iii) applying our analyses
to highly diverse phage metagenomes.

2 METHODS
We introduce CatchAll version 3.0. [A preliminary version, lacking key
capabilities presented here, was discussed in (Bunge, 2011).] The program
computes 12 different diversity estimates with standard errors and goodness-
of-fit assessments, at every level of outlier deletion. It proposes a best overall
parametric estimate along with a ranked set of alternatives. For cases where
low-frequency counts may be erroneous, CatchAll computes a discounted
estimate by adjusting the highest diversity component of the selected mixture
model. CatchAll is fast, platform-independent, computationally robust,
and has both batch and GUI interfaces. An associated Excel spreadsheet
automatically produces graphical displays.

CatchAll computes three types of analyses. (i) Finite mixture models
(Bunge and Barger, 2008). A convex combination of distributions is fitted
to the observed count data, yielding a diversity estimate, standard error and
goodness-of-fit statistics. Five models are computed: order 0 ≡ Poisson;
orders 1–4 ≡ mixtures of 1–4 geometric distributions. Maximum likelihood
estimation is done via a nested double expectation–maximization (EM)
algorithm. (ii) Weighted linear regression model (Rocchetti et al., 2011).
We fit a linear regression model to (i,r(i) := (i+1)f (i+1)/f (i)). The ratio r
is a linear function of i under the Poisson and negative binomial models, and
can be robust to departures from these. Inherent heteroscedasticity requires
weighted regression. (iii) Coverage-based estimates (Chao and Lee, 1992).
These are based on non-parametric adjustments to the sample coverage ≡ the
proportion of the population represented in the sample. CatchAll computes
Good-Turing and Chao1 as lower bounds; the Abundance-Based Coverage
Estimator (ACE) and its high-diversity variant ACE1; and Chao-Bunge,
which is optimal under the negative binomial model.

Exceptionally abundant classes tend to generate high sample frequencies,
which can lead to poor model fit or unstable estimates. As a check, we
delete every point above some maximum frequency τ; we then compute
every analysis at every τ. For the parametric models, a selection algorithm
combines χ2 goodness-of-fit tests, AIC and other criteria, to select an optimal
model and cutoff τ: essentially the ‘best’ selected model admits the largest
τ while maintaining acceptable AIC- and χ2-based goodness-of-fit. For the
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WLRM, we select between log-transformed and untransformed versions, and
choose maximum feasible τ. For the non-parametric methods, either ACE
or ACE1 is chosen according to the coefficient of variation of the data based
on published criteria, at τ ≤10. (See user manual for full details.) The best
selected analyses, along with close alternatives, and analyses computed at
maximum τ, are presented in the GUI and in a ‘Best Models Analysis’ file.
Complete information is given in ‘Analysis’ and ‘Fits’ files.

Our selection algorithms provide choices within families of models
(parametric, weighted linear regression, coverage-based non-parametric), but
do not address choice between families. The user may regard the selected
results for the parametric, weighted linear regression and non-parametric
methods (‘Best’, ‘WLRM’, and ‘NonP 2’ in Table 1) as comparable grosso
modo, although their underlying statistical assumptions differ considerably.
The final choice of method is at the discretion of the user.

In some cases, the sample low-frequency counts may be questionable; for
instance, when the counts are based on potentially erroneous DNA sequence
matching (Behnke et al., 2011). In order to statistically reduce the importance
of the low-abundance species in such cases, the best fitted mixture model
is computed and its highest diversity component, i.e. the component of the
mixture model representing a smoothed version of a proportion of the lowest
frequency counts, is deleted. This yields a discounted total diversity estimate
(Bunge et al., 2012), which is reported in the GUI and the Best Models
Analysis file.

3 EXAMPLE
Phage diversity analyses represent a new level of population
diversity beyond what is encountered in other areas of microbial
ecology. We illustrate the application of CatchAll to a contig
spectrum from a swine fecal metagenome (Allen et al., 2011).
The contig spectrum was generated using Circonspect via the
CAMERA pipeline (Sun et al., 2011). The complete dataset is
[(1,4736), (2,521), (3,152), (4,69), (5,46), (6,27), (7,21), (8,18),
(9,16), (10,10), (11,9), (12,8), (13,7), (14,6), (15,5), (16,4), (17,4),
(18,3), (19,3), (20,3), (21,3), (22,2), (23,2), (24,3), (25,3), (26,1),
(27,2), (28,1), (29,2), (30,2), (31,1), (32,1), (33,1), (34,1), (35,1),
(36,1), (37,1), (38,1), (39,1), (40,1), (41,1), (42,0), (43,1), (44,0),
(45,1), (46,0), (47,0), (48,0), (49,0), (50,0), (51,0), (52,1)]. CatchAll
output (slightly abbreviated here) as displayed in the GUI screen or
equivalently in the ‘Best Models Analysis’ file is shown in Table 1.

This analysis took 309s in GUI mode on a 3 GHz/8 MB RAM
64 bit notebook PC. Computation time depends on the complexity
(in particular, the smoothness) of the frequency count data not the
original sample size, because the original sequence data are reduced
to frequency counts before analysis.

In this case, the best fitted parametric model and its first two
alternatives (2a and 2b) are the same, and the third alternative (2c)
is very close. The various analyses agree approximately at optimal
τ, with Chao1 serving as a lower bound, while some anomalies are
seen at max τ, as expected; in particular, ACE and ACE1 should
only be used for τ ≤≈10, the value of Non-P τmax is displayed only
for comparative purposes.

CatchAll selects the the log-transformed version of the weighted
linear regression model at τ =5, still agreeing with the other analyses
albeit with a larger SE. This demonstrates the robustness of the
WLRM, since it is theoretically optimal for data with lower diversity
than our phage example.

The best discounted model steps down from a three- to a two-
component mixture, and reduces the estimated total diversity by
97.4%, from 67 792 (SE 8656) to 1727 (SE 221). At present, there
is no formal statistical hypothesis test to select the original versus

Table 1. CatchAll analysis of phage metagenomic diversity data

Obs = 5703 Model τ Est Div SE Lwr CB Upr CB

Best 3Mixed 52 67 792 8656 53 009 87 195
2a 3Mixed 52 67 792 8656 53 009 87 195
2b 3Mixed 52 67 792 8656 53 009 87 195
2c 2Mixed 10 64 683 5473 54 893 76 421
WLRM LogTrans 5 63 103 13 352 42 306 95 718
NonP 1 Chao1 2 27 229 1141 25 106 29 584
NonP 2 ACE1 10 68 790 4620 60 365 78 514
Parm τmax 3Mixed 52 67 792 8656 53 009 87 195
WLRM τmax LogTrans 41 22 107 2535 17 842 27 870
Non-P τmax ACE1 52 422 854 55 507 327 457 546 534
Best Disc 2Mixed 52 1727 221 1410 2305

Obs, observed number of species; Est Div, estimated total diversity; SE, standard error;
Lwr CB, Upr CB, lower and upper 95% confidence bounds (respectively). Best, 2a,
2b, 2c, top four selected parametric models; WLRM, weighted linear regression model;
NonP 1, Chao1; NonP 2, ACE or ACE1 as selected; Parm τmax, WLRM τmax, Non-P
τmax, given models at max τ. See program manual for details.

the discounted models, so the choice depends on the investigator’s
level of confidence in the low-frequency counts. This is a topic of
current research.
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