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SUMMARY

This paper reviews recent developments in the area of computer-assisted analysis of mixture distri-
butions (C.A.MAN). Given a biometric situation of interest in which, under homogeneity assump-
tions, a certain parametric density occurs, such as the Poisson, the binomial, the geometric, the
normal, and so forth, then it is argued that this situation can easily be enlarged to allow a variation
of the scalar parameter in the population. This situation is called unobserved heterogeneity. This
naturally leads to a specific form of nonparametric mixture distribution that can then be assumed
to be the standard model in the biometric application of interest (since it also incorporates the
homogeneous situations as a special case). Besides developments in theory and algorithms, the
work focuses on developments in biometric applications such as meta-analysis, fertility studies,
estimation of prevalence under clustering, and estimation of the distribution function of survival
time under interval censoring. The approach is nonparametric for the mixing distribution, including
leaving the number of components (subpopulations) of the mixing distribution unknown.

1. Introduction

The importance of mixture distributions, their enormous developments, and their frequent applica-
tions over recent years is due to the fact that mixture models offer natural models for unobserved
population heterogeneity. What does this mean? Suppose we are dealing with the case that a one-
parameter density f(z,)) can be assumed for the phenomenon of interest. Here A denotes the
parameter of the population, whereas x is in the sample space X, a subset of the real line. We call
this the homogeneous case. However, this model is often too strict to capture the variation of the
parameter over a diversity of subpopulations. In this case, we have that the population consists of
various subpopulations, denoted by A1, Az, ..., Ag, where k denotes the number (possibly unknown)
of subpopulations. We call this situation the heterogeneous case.

In contrast to the homogenous case, we have the same type of density in each subpopulation
J, but a potentially different parameter: f(x, A;) is the density in subpopulation j. In the sample
Z1,%2,...,Tn, it is not observed from which subpopulation the observations are coming. Therefore,
we speak of unobserved heterogeneity. Let a latent variable Z describe the population member-
ship. Then the joint density f(z,z2) can be written as f(x,z) = f(x/2)f(z) = f(zx,A;)p., where
f(z/z) = f(z,Az) is the density conditionally on membership in subpopulation z. Therefore, the
unconditional density f(z) is the marginal density

k k
f@P)=)_ f@/2f(z) = f(z,2)p), ¢
z=1 =1
where the margin is taken over the latent variable Z. Note that p; is the probability of belonging
to the jth subpopulation having parameter A;. Therefore, the p; have to meet the constraints
p; 2 0,p1 + -+ +pr = 1. Note that (1) is a mixture distribution with kernel f(z,\) and mixing
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distribution P, in which weights p1,...,px are given to parameters Ap,. .., A\x. Estimation is done
conventionally by maximum likelihood; that is, we have to find the P that maximizes the log-
likelihood I(P) = £7_, log f(x;, P). P is called the nonparametric maximum likelihood estimator
(NPMLE) (Laird, 1978). The software package C.A.MAN (Bohning, Schlattmann, and Lindsay,
1992) provides the NPMLE for P, P, giving weight p1,...,5;, to A1,...,A;. Note also that the
number of subpopulations k is unknown and estimated.

Many applications are of the following type: Under standard assumptions, the population is
homogeneous, leading to a simple, one-parameter and natural density. Examples include the bi-
nomial, the Poisson, the geometric, the exponential, and the normal distribution (with additional
variance parameter). If these standard assumptions are violated because of population heterogene-
ity, mixture models can easily capture these additional complexities. Therefore, C.A.MAN offers
most of the conventional densities such as normal (common and known different variances), Pois-
son, Poisson for standardized mortality ratio data, binomial, binomial for rate data, geometric,
and exponential, among others. To demonstrate these ideas, we start with a simple example that
has recently found its entry into the textbook Advanced Methods of Marketing Research (Bagozzi,
1995).

An Introductory Ezxample (Marketing Research)

Data are from a new product and concept test, leading to a variable of interest X = number of
individual packs of hard candy purchased within the past 7 days. Figure 1 shows its distribution.
Frequently, the assumption of a Poisson distribution, e.g., f(z, A) = Po(x, ) = e M\® /x! is done for
count data, assuming homogeneity conditions. The heterogeneity analysis provided by C.A.MAN
delivers a five-component mixture distribution as shown in Figure 2. These components can easily
be interpreted. The two low components correspond to stores with no or almost no sale of the new
product, together about 30% of all stores. There are about 50% with a mean sale of 3 packages,
15% with about 7.5 packages, and 10% with the large number of 13 packages.

Developments in the area of computer-assisted analysis of mixtures have been taking place in
various areas. There have been theoretical developments, algorithmic developments, developments
in direct and indirect applications, the latter meaning developments deviating from the natural
genesis of the mixing distribution as capturing population heterogeneity. In the following, we will
present some of these developments.

2. Some Pieces of Historic Theory

The strong results of nonparametric mixture distributions are based on the fact that the log-
likelihood [ is a concave functional on the set of all discrete probability distributions 2. It is
very important to distinguish between the set of all discrete distributions and the set {j of all
distributions with a fixed number of k support points (subpopulations). The latter set is not
convex. (For details, see Bohning et al., 1992.) The major tool for achieving characterizations and
algorithms is the directional derivative at P in the direction Q for both P and @ in %

(1 — a)P +a(Q)) — (p) _ z": f@:,Q) ~ (@i, P)
a port f(zi, P)

o(P,Q) = lim
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Figure 1. Distribution of sold packages.
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Figure 2. NPMLE of mixing distribution for candy data.

[n particular, for one-point mass @) at A (the vertex of the simplex), the directional derivative is:

N = £, P) _ x f(=i,A)
f(Z',‘,P) - z

The determining part in this directional derivative, namely (1/n) Z7_; f(z;, \)/ f(z;, P), is called
the gradient function and denoted by d(), P). We have the general mixture maximum likelihood
theorem (Lindsay, 1983a,b; Bohning, 1982): (a) P is NPMLE if and only if D 5(A) <0 for all A
or if and only if (1/n) X7, f(a:i,)\)/f(m,-,ﬁ) < 1for all A; (b) Dy (A) = 0 for all support points A
of P.

Second, the concept of the directional derivative is important in developing reliable converging
algorithms (for a review, see Bohning, 1995). Historically, the vertex direction method (VDM) is
of interest. In this method, convex combinations (1 — a)P + aQ) are considered, for which the
log-likelihood increase (as a function of the step length a and the vertex direction @)} I((1-a)P+
a@)) — l(P) is desired to be made as large as possible. A first-order approximation aDp()) of this
difference leads to the maximization of Dp()) in A. Having found a vertex direction with maximum
increase, one can choose a monotone or optimal step length « to achieve an update (1—a)P+aQ\y.

The VDM is usually slow in its convergence behavior. A faster method (also now used as the
standard method in C.A.MAN) is the vertex exchange method (VEM). The basic idea here is
to exchange good vertex directions against bad ones already in support of the current mixing
distribution. The VEM is defined by P+ aP(A\*){Q) — Qx~}, where P(\*) is the weight of the bad
support point A* and a in [0, 1] is a step length. Good and bad support points are identified again
by means of the directional derivative. Again, one tries to optimize the gain in the log-likelihood
(P + aP(A*){Q» — Qx+}) — I(P). Now, consider a first-order approximation of this difference:
aP(A*){Dp()) — Dp(A\*)}. Clearly, this is maximized if Dp()\) is maximized in A and Dp(\*) is
minimized in the support of P. Choosing an optimal or monotonic step length completes the VEM.
(For details or different methods, see Bohning (1989, 1995) or Lesperance and Kalbfleisch (1992).)

For the practical realization in C.A.MAN, we recall that the goal is to maximize [(P) in the sim-
plex Q of all probability distributions P on parameter space . We call the solution of this problem
the fully iterated nonparametric maximum likelihood estimator, and this solution is achieved in
C.A.MAN in two phases (in which phase II is new). In phase I, an approximating grid A1,...,Az
(L < 50} is chosen and !(P) is maximized in the simplex Qggrip of all probability distributions
P on grid {\1,...,Ar} with one of the algorithms described above. For example, we can choose
the observed data values as an approximating grid. In the introductory example, L = 21 different
values of sold number of packages were observed: {A1,..., A} = {0,1,2,...,20}. As potential
choice of initial weights, the observed relative frequencies or uniform weights p;, = 1/21 could be
used.

In phase II, all grid points that are left with positive weights as a result of the optimization
process in phase I are used as initial values for the EM algorithm (Dempster, Laird, and Rubin,
1977) to produce the fully iterated NPMLE.

Dp(V) = 8(P,Qy) = 3 L2
i=1
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Dp(V) = 8(P,Qy) = 3 L2
i=1
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Introductory Example Continued (Marketing Research)

In the following, some of the results that can be achieved with C.A.MAN are described. If in phase
I all the observed data points are used as an approximating grid, seven points with positive support
are identified, namely 0, 1, 3, 4, 7, 8, and 13. In phase II, these seven parameter values are used
as initial values of the EM algorithm (along with the associated weights iterated in phase I). From
these initial values, five components are estimated using the EM iteration (after collapsing equal
components). Figure 3 shows that the iterated solution is indeed the NPMLE.

3. Meta-Analysis

Meta-analysis can be defined as the quantitative analysis of a variety of single-study results with
the intention of an integrative presentation. Often in epidemiology or clinical trials, we have as a
measure of interest the odds ratio ¥ or, equivalently, the log(odds ratio) A = log(¥). Then the
following situation forms the basis for any meta-analysis. We have n independent studies (cohort
case—control) with estimates )\1, /\n, from which a pooled estimate Apool =w i+ +wnin
is computed. The weights w; are frequently chosen proportional to 1 /var()\]). There exists an
extensive debate on the pros and cons of meta-analysis (see the review article of Dickersin and
Berlin, 1992). Besides many arguments in favour of meta-analysis, most importanly it seems that
it is becoming more and more part of the scientific method to provide evidence in favour or against
a certain hypothesis or argument.

Ezample 1. As one example, consider the meta-analysis provided by Sillero-Arenas et al. (1992)
on the relationship of hormone replacement therapy and the occurrence of breast cancer. Figure 4
presents the effect estimates with pointwise 95% confidence intervals for 36 studies (case—control
and cohort). One question of debate in meta-analyis is whether individual study estimates of effect
can be validly pooled into a common estimate of effect. This is conveniently put as the question
of homogeneity or heterogeneity of study results. Homogeneity is conventionally investigated by
diagnostic tests such as the x2-t%t of homogeneity. If there is evidence for heterogeneity, then the
problem remains on how to proceed. The mixture approach provides an elegant solution for this
problem in that it models the heterogeneity distribution in a nonparametric way.

The underlying assumption in most forms of meta-analysis—expressed also graphically in Figure
4—is that of a normal distribution for the effect estimate \; ~ N(xs, a,-2 ), with a,-2 = var(j\,) Note
that it is important to allow for different variances because the samples sizes will differ from study
to study. In the simplest case of homogeneity (A\; = A2 = --- = Ay, = A), the MLE of A corresponds
to the pooled estimator. If the population is heterogeneous, we must assume the existence of
subpopulations with parameter A; receiving weight p; for the jth subpopulation. Consequently,

the density of ); corresponding to (1) is
k L
Z; 1@ \)ps = - 2; $((z = Ay)/o3)p;. )
i= i=

Here, ¢ is the standard normal density. Note also that k& is not assumed to be known.

0.99
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Figure 3. Gradient function at fully iterated NPMLE for introductory example.
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Figure 4. Effect estimates of 36 studies on relationship of hormone replacement therapy and
breast cancer.

Ezample 1 (continued). We demonstrate the application of C.A.MAN to meta-analysis with the
data of example 1. In phase I (with an approximating grid consisting of the observed study values),
two components are found to receive positive weight, namely A\; = —0.008333 (p; = 0.2893) and
A2 = 0.83334 (p2 = 0.7107). This approximating solution is improved in phase II, leading to just
one support point A = 0.046702 (weight 1), leading to an odds ratio of ¥ = e* = 1.0478. Here
the NPMLE coincides with the conventional pooled estimator Xpool. We can conclude from this
analysis that there is no evidence for unobserved heterogeneity. An example providing evidence for
heterogeneity is a meta-analysis on oral contraception in relation to breast cancer (Malone et al.,
1993).

4. Modelling Heterogeneity in Fecundability Studies

In fecundability studies (see Ridout and Morgan, 1991), the situation is as follows. If X represents
the cycle number in which pregnancy is reached, then X follows the geometric distribution with
density f(z,A) = (1-A)*7!A, for z = 1,2,3,.... The parameter A is called the fertility parameter.
In these studies, we have to cope with the problem of censoring, that is, no pregnancy occurs during
the study period. If « denotes the last observed cycle, we ask for the probability that pregnancy
occurs in some later cycle, that is,

_\yw-1 T _ vy _ _ - 1\
Pr{X>x}—y_;+1(1 AVTIa=A(1-2) y;(l WY =21 =075 ( Y =(1-X7"

Therefore, f(z,2,A) = (1 — A\)® if = is censored (z = 1) or f(z,2,A) = (1 — N)* !\ if z is not
censored (z = 0). In other words,

fl@,z,0) = (1 -XN"1 - )‘)(z—l)(l—z),\(1_.z). )

To demonstrate the modelling we look at a data set originally discussed by Weinberg and Gladen
(1986) and later by Ridout and Morgan (1991). (See Table 1, part a.) Of the total of 486 couples,
12 remain unpregnant at the end of the study period. The MLE is, in this case, 1 / X = 3.455, with
a log-likelihood of —1336.26.

If we allow for heterogeneity corresponding to (1), we achieve the nonparametric geometric
mixture

ok
f(@,2,P) = f(z,2,2)p;. “)
=1
Fitting model (4) with C.A.MAN provides a two-component structure for heterogeneity (k = 2),

namely A; = 1 (receiving weight 0.0418) and A2 = 3.6324 (receiving weight 0.9582). Basically, the
result is that we have a homogeneous population of couples (the likehood-ratio test is borderline
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Table 1
Observed cycles to pregnancy

(a) Data (nonsmokers) according to Weinberg and Gladen (1986)
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 >12
No. of preg-
nancies 198 107 55 38 18 22 7 9 5 3 6 6 12
(b) Data (contraceptive pill users) according to Harlap and Baras (1984)
Cycle 1 2 3 4 5 6 7 8 9 10 11 12 >12

No. of preg-
nancies 383 267 209 8 49 122 23 30 14 11 2 43 35

if the NPMLE is compared to the homogenous MLE). However, there is some inflation of couples
with success in the first cycle (4%). A second group of 1274 couples is presented in Table 1,
part b). They have in common that the women were using the contraceptive pill before trying to
become pregnant. It turns out that _this population is more heterogenous than the one considered
before. The homogeneity MLE is 1/ = 3.5, with a log-likelihood of —2635.939. Analyzing potential
heterogeneity with C.A.MAN suggests that the population can be partitioned into two equally sized
subpopulations with parameters 1/A; = 2.4 and 1/X2 = 4.8. In addition, the difference in the twc
likelihoods of about 10 supports the notion that we are dealing with a heterogenous population
(for details on the likelihood ratio test in mixture models, see Bohning et al. (1994), McLachlan
(1992), Feng and McCulloch (1996)).

5. Estimation of a Prevalence Rate

In prevalence studies, the parameter of interest is usually the prevalence rate A, a number between
0 and 1 that, if multiplied with 100, can be interpreted as the percentage of infected humans or
animals. The prevalence rate is again usually determined by choosing a sample size N from which
the number of infected = out of N is counted, leading to an estimate X = z/N for the prevalence
rate. It follows from the conventional formulas that the variance of this estimate \ is given by
var(A) = A(1 — A)/N, which again can be estimated by z/N?(1 — z/N).

In the veterinary sciences, as an example, however, this procedure is often not completely ad-
equate because the animal population occurs in herds. The effect of this is called the clustering
effect. Sampling takes this into account by sampling from m herds or farms with potentially dif-
ferent sample sizes N;, i = 1,...,m. The number of infected animals is denoted by x; for herd or
farmi=1,...,m.

It is common practice in epidemiology to use the pooled estimator ;\pool =(z1+ - +zm)/(N1+

- + Nm) as an estimate of the common prevalence rate A. The variance of )\pool is readily
prov1ded as var(Apool) =((1=XNAN1+ -+ + (1 = A)ANm)(N1 + -+ + N)? = (1 - A)A/N, with
N = N1 + -+ + Nm. Note that this variance is the identical formula. for the variance as in the
unstratified sampling.

Problems occur if the clustering effect cannot be ignored, that is, if a common prevalence rate
cannot be assumed. If instead a hetefogeneous herd population with possible different prevalence
parameters is more likely to be the case, then it can be shown that the variance of :\pool is inflated
by a term corresponding to the variance of the popula.tlon prevalence rate p (Boéhning and Sarol,
unpublished manuscript). This variance is denoted by 72. In formula form,

var(Xpoot) = A1 = A)/N + 72[N1(N1 — 1) + - - - + N (Nim — 1)]/N2.

Here, ) is the overall prevalence rate (the mean of the population prevalence rates) and 72 the
variance of the population prevalence rate () is the expected value and 72 is the variance with
respect to P). The above formula demonstrates clearly that, if population heterogenelty is lgnored
the variance of the prevalence estimator is underestimated by the term 72(N? + ... + N2,)/N2.
Also, if there is population homogeneity (r = 0), both approaches and formulas coincide. To
demonstrate these ideas, we look at a data set on herd infection with trypanosomosis discussed
in Bohning and Greiner (unpublished manuscript). The data were collected in Mukono County,
which is located in the southeastern part of Uganda and covers an area of approximately 200 km?.
The data (listed in Table 2) stem from a cross-sectional pilot study launched and accomplished
in June/July 1994 for a project on trypanocide resistance in the peri-urban dairy production near
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Table 2
Number of cattle infected with Trypanosoma spp., sample size and infection rate for 50
dairy farms in Mukono County, Uganda (data from June 1994, total sample size 487)

Farm Cases Sample size Infection rate Farm  Cases Sample size Infection rate

1 4 9 0.44 26 1 7 0.14
2 0 5 0.00 27 1 3 0.33
3 3 9 0.33 28 1 11 0.9
4 14 32 0.44 29 1 3 0.33
5 2 17 0.12 30 1 3 0.33
6 0 3 0.00 31 1 9 0.11
7 1 4 0.25 32 4 9 0.44
8 3 17 0.18 33 0 9 0.00
9 0 7 0.00 34 0 7 0.00
10 0 15 0.00 35 3 19 0.16
11 0 8 0.00 36 1 13 0.8
12 0 12 0.00 37 0 12 0.00
13 0 9 0.00 38 5 18 0.28
14 0 16 0.00 39 2 11 0.18
15 6 16 0.38 40 0 12 0.00
16 2 5 0.40 41 0 2 0.00
17 0 9 0.00 42 2 7 0.29
18 0 6 0.00 43 2 7 0.29
19 2 8 0.25 4 4 10 0.40
20 0 6 0.00 45 3 10 0.30
21 0 3 0.00 46 1 3 0.33
22 1 7 0.14 47 1 15 0.7
23 1 8 0.13 48 0 6 0.00
24 0 10 0.00 49 1 6 0.17
25 12 28 0.43 50 1 6 0.17

Kampala. The sampling frame consisted of 187 dairy farms existing in the region (information from
a census taken in April 1994) from which 50 farms were selected at random using random number
tables, stratified for 3 categories of herd size: small (1-10 cattle), medium (11-30), and large (more
than 30). A total of 487 cattle was sampled on the identified farms.

Frequently, population heterogeneity is so striking that simple graphical methods are already
successful, as in this case. It is evident from a histogram of the rate data that present in the distri-
bution is not one center but about three, one at 0, the second at 0.15, and the third at 0.35. This
indicates the presence of population heterogeneity due to clustering. Estimation of heterogeneity
can be done again with C.A.MAN. The mixture model corresponding to (1) is

k
f(zi7Ni7P) =Zf(x1,7N‘L7AJ)p]’ (5)

=1

with the binomial mixture kernel f(z, N, ) = (1: ) A%(1— A)N~=, The heterogeneity analysis with
C.A.MAN results in three subpopulations: 17% of the herds are infection free, 48% have an in-
fection rate of 12%, and 36% of the herds show an infection rate of 32%. From this heterogeneity
distribution, mean and variances can easily be calculated, leading to

A=Apr+3op2 +Aaps and #2 =p1(A1 — X%) + p2(Bz — A7) + pa(Rs — A7)
It turns out for this data set that incorporating the heterogeneity leads to a variance for the pooled
estimator Apool = (21 + -+ +x)/(N1+ - -+ Ny), about twice as large as the variance in the case
where homogeneity is assumed. The difference between the approaches is visualized in Figure 5.

Note that the left confidence interval uses the variance formula var(j\pool) = A(1 — A)/N, whereas
the right uses var(Ayoo1) = M1 — A)/N + 72[N1 (N1 — 1) + - -+ + N (Nm — 1)]/N2.
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Figure 5. Estimation of prevalence rate with 95% CI (a) under assumption of homogeneity and
(b) incorporating heterogeneity.

6. Interval-Censored Data

In this kind of mixture application, the mixture does not come in as an unobserved heterogeneity
distribution; it occurs as a specific side condition. To demonstrate the details, let T be the time
until a certain event occurs and Pr(T < t) = F(t) its distribution function. T is allowed to be
interval censored, e.g., T € (L, R}; that is, it is only known that the event has occurred between
time L and time R. This situation occurs, for example, in repeated testing for occult events (as in
tumor genesis). The contribution of the ith interval (L;, R;] to the likelihood is Pr{T; € (L;, R;]} =
Pr{L; < T; £ R;} = F(R;) — F(L;). Let sg,...,8m be the uniquely ordered different values of
{L1,...,Ln,Ry,...,Rn}. The contribution to the likelihood of any interval, for example (s4, 57|,
can be written uniquely as the sum of all contributions to the likelihood of neigbouring intervals.
To demonstrate, F(R;) — F(L;) = F(s7) — F(s4) = 0x (F(sg) —F(s7))+1 x (F(s7) — F(s¢)) +1x
(F(se) — F(s5)) +1x (F(s5) — F(s4)) +0 x (F(s4) — F(s3)) + 0 X (F(s3) — F(s2)) + 0 x (F(s2) -
F(s1)) + 0 x (F(s1) — F(s0)), with F(sp) = 0. In general, any interval (L;, R;] can be written in
the form “

F(Ri) - F(Li) = ) ai;[F(s;) = F(s5-1)],

=1
with F(sg) =0 and
o= {(1) if (sj-1,85] € (Ls, Ri]

otherwise.

This leads to the following full likelihood:

[P - FEa) =[] Y eislFls) = Flsj—1)) = [T D eusps
=1

i=1j=1 i=1j=1

or log-likelihood I(p) = i, log(E]L; ai;p;), where p; = F(s;)— F(s;-1). Note that p; > 0 for all
j=1,...,mandpi+:-- +pm = 1. Thus, the NPMLE p is maximizing l(p) = Z7..; log(X7%; ci;p;)
under the restrictions p; > 0 for all j = 1,...,m and p; + p2 + -+ + pm = 1. This likelihood is
easily identified as a mixture likelihood, though here mixing is not on densities but on indicator
functions. (For details, see Béhning, Schlattmann, and Dietz (1996) and Gentleman and Geyer
(1994).)

Final ezample. To give a final example, suppose n = 6 intervals have been observed (L;, R;] :
(0,1], (1,3], (1,3], (0,2], (0,2], (2,3]. The different observation times are m + 1 = 4,s; : 0,1,2,3.
Thus, we have m = 3 neighboring intervals (s;,s;4+1] : (0,1],(1,2], (2, 3]. The matrix of indicator
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values is
1 00
011
011
A= (ag5) = 1100
1 10
0 01
leading to the likelihood
1p1 + Op2 + Op3 4
x Op1 + 1p2 + 1ps3 p2+p3
X Op1 + 1p2 + 1p3 p2+p3
X 1p1 + 1p2 + Op3 p1+p2
X 1p1 + 1p2 + Op3 p1+p2
x Op1 + Op2 + 1p3 P3

=p1(p2 + p3)2(p1 + p2)’p3
C.A.MAN finds the NPMLE in this case to be p; = 1/3,p2 = 1/3,p3 = 1/3.

Discussion

We have demonstrated the use of mixture models in various application areas and pointed out
various developments in the area of computer-assisted analysis of mixtures.

Meta-analysis and heterogeneity. The problem of heterogeneity is frequently debated in the area
of meta-analysis. Conventionally, a x2-test for heterogeneity is suggested. However, it remains
frequently unclear how to proceed if this test is significant (Dickersin and Berlin, 1992). One
approach, suggested by DerSimonian and Laird (1986), corrects the weights in the pooling process
using variances increased by the amount of estimated variance due to population heterogeneity.
(See also Biggerstaff and Tweedie (1997) for a review.) However, it does not provide an estimate
of the heterogeneity distribution itself. The mixture approach offers a constructive solution in that
an estimation of heterogeneity is provided. It is also possible to classify studies into the various
subpopulations using the maximum posterior distribution as a classification rule.

Disease mapping. Disease mapping can be defined as a method for displaying the spatial distri-
bution of disease occurrence, the most prominent forms being the variety of existing cancer atlases.
A conventional biometric method used frequently to construct disease atlases (for example, see
Cartwright et al., 1990) is based on the SMR (standardized mortality ratio) = O/E, where O
is the observed number of death cases and F is the expected number of death cases for a given
region. E is computed on the basis of an external standard population. Then it is conventionally
assumed that, in area i, the observed number of deaths O; follows a Poisson distribution with
parameter AE;: f(z;,A) = Po(0;, AE;) = exp(—AE;)(AE;)° /o;!. Here, z; = o; /E; is the observed
SMR, whereas A is the theoretical SMR. The conventional display is based on a classification using
the P-value under the homogeneous Poisson distribution, where ) is either set to 1 (no increased
risk) or replaced by the MLE under homogeneity

n n
i=3"o; / Y E.
i=1 i=1
Another classical method uses the percentiles as a basis for classification. These conventional meth-
ods have been criticized by various authors, including Schlattmann and Béhning (1993), because
they can lead to various artifacts in the disease map. Also, crude rate estimators have been criti-
cized for some time in connection with disease mapping for their lack of stability (see Clayton and
Kaldor, 1987). Stabilized estimators, usually in the context of empirical Bayes estimation, have been
proposed and used. However, the use of the nonparametric estimator of the underlying heterogene-
ity as the basis for the construction of the map appears to be of recent novelty. In recent years, a
WINDOWS program by the name DISMAP has been developed out of C.A.MAN (Schlattmann
and Bohning, 1993), solely for the purpose of disease mapping. A detailed introduction to disease
mapping based on mixtures can be found in Schlattmann, Dietz, and Bohning (1996).

Likelihood ratio test and number of components. Although the nonparametric estimation of the
heterogeneity distribution provides an estimate of the number of components itself, it is sometimes
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requested to use the likelihood ratio test for testing whether a reduced number of components is
likewise sufficient. It is well known (Titterington, Smith, and Makov, 1985; McLachlan and Basford,
1988) that conventional asymptotic results for the null distribution of the likelihood ratio statistic
do not hold since the null hypothesis lies on the boundary of the alternative hypothesis. In some
cases, theoretical results are available (Bohning et al., 1994), but in other cases, simulation results
must be used. In general, a parametric bootstrap procedure can be used (McLachlan, 1992), and it
was pointed out recently that this approach leads to valid statistical inference (Feng and McCulloch,
1996).

Interval censoring. In this contribution, emphasis was put on direct applications of mixture mod-
elling, in which the mixture distribution arises as the natural model for (latent) population hetero-
geneity. The problem of finding the nonparametric maximum likelihood estimate for the distribution
function of a survival time under interval censoring is an example of indirect application of mixture
modelling, where mixing is on indicator variables instead of densities.

Covariates. Currently, there is no option for handling covariates in C.A.MAN. Although some
variables considered here are inherently adjusted for covariates (such as the standardized mortality
ratio), analysis of additional covariates is often desirable. Mixture modelling with covariates leads
to the area of mixed generalized linear models. One of the authors has developed a variety of macros
in GLIM that allow the fitting of mixed generalized linear models when the number of components
is fixed in advance (see Dietz, 1992; Dietz and Béhning, 1996). If the number of components is
estimated itself, a class of nonparametric mixed generalized linear models will emerge, which we
will consider in forthcoming work.

Availability. The package C.A.MAN is available from the authors free of charge. It may be down
loaded from the website www.medizin.fu-berlin/sozmed/caman.html.
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RESUME

Cet article passe en revue des développements récents dan le domaine de Panalyse assistée par
ordinateur de mélanges de distributions (C.A. MAN). Etant donnée une situation biométrique
d’intérét dans laquelle, sous des suppositions d’homogénéité, une densité paramétrique donnée est
constatée telles la Poisson, la binomiale, la géométrique, la normale, . .. alors ils est avancé que cette
situation peut étre aisément généralisée de fagon & prendre en compte une variation du parametre
d’échelle dans la population. Cette situation est appelée “hétérogénéité non observée.” Ceci conduit
naturellement & une forme spécifique de la distribution de mélange non paramétrique qui peut étre
considérée comme étant le modele standard de Papplication biométrique d’intérét (des lors qu’il
inclus aussi le cas d’homogénéité comme un cas particulier). En plus des développements théoriques
et algorithmiques le travail met en avant des développements d’applications biométriques, comme
par exemple les meta-analyses, les études de fertilité, les estimations de prévalence sous clusters,
et I'estimation de la distribution de fonction de survie avec censure par intervalle. L’approche est
non paramétrique pour la distribution mixte, allant jusqu’a laisser le nombre de composants (sous
populations) de la distribution mixte non spécifié.
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