Ann. Inst. Statist. Math.
Vol. 44, No. 1, 197-200 (1992)

MULTINOMIAL LOGISTIC REGRESSION ALGORITHM* **
DANKMAR BOHNING

Department of Epidemiology, Free University Berlin, Augustastr. 37
1000 Berlin 45, Germany

(Received July 23, 1990; revised October 12, 1990)

Abstract. The lower bound principle (introduced in Bohning and Lindsay
(1988, Ann. Inst. Statist. Math., 40, 641-663), Bohning (1989, Biometrika, 76,
375-383) consists of replacing the second derivative matrix by a global lower
bound in the Loewner ordering. This bound is used in the Newton-Raphson
iteration instead of the Hessian matrix leading to a monotonically converging
sequence of iterates. Here, we apply this principle to the multinomial logistic
regression model, where it becomes specifically attractive.
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1. Introduction

Let L(m) denote the log-likelihood, VL(r) the score vector and V2L(w) the
second derivative matrix at 7 € R,,,. Suppose

(1.1) ViL(r)> B

for all 7 and some negative definite m x m matrix B. Here C > D denotes Loewner
ordering of two matrices and means that C-D is non-negative definite. Consider
the second order Taylor series for the log-likelihood at mg:

, 1
L(m) — L{m) = (7 — mo)TVL(mo) + 5(1r — 7o) TV2L(mo + a(m — mo))(m — 7o)
> (1 — m)TVL(m) + %(w —m0)T B(m — mp)
where we have used (1.1) to achieve the lower bound for L. Maximizing the

right-hand side of the above inequality yields the Lower Bound iterate mpp =
7o — B~V L(mp). We have the following:
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THEOREM 1.1. (Bohning and Lindsay (1988)) (i) (Monotonicity) For the
Lower Bound iterate we have

L(ms) > L(mo) with “>” if mLB # 7o

(ii) (Convergence) Let (m;) be a sequence created by the lower bound algorithm.
If L is bounded above in addition, then

IVE =20

2.  Multinomial logistic regression

We observe vectors Y = (y1,- .- ,yk+1)T, with y; = 0 for all i besides one j
with y; = 1 and corresponding probability p;, implying

n 0

0o .- 0
EY=p, CovY=A,—pp", Ap=]| . X

0 Dk+1

Recall that the multinomial logit-model is given by

k
p; = exp(ﬂ'(i)T:c) / [1 + Eexp(ﬂ(j)ra:)] for i=1,...,k,
i

s
k .
Prt1 =1 / [1 + exp(r? -’D)]
j=1

where z = (z1,... ,Zm)T is the vector of covariates, and 7 is the parameter
vector corresponding to the i-th response category. For reasons of simplicity in
presentation, consider the log-likelihood of just one observation Y:

k+1 k k
log H Py = Z ij(j)Tm —log [1 + Z exp(w(j)Tz)].
=1 =1 =1
Let 7 = (11{1),...,wﬁé),...,ﬂgk),...,wg))T denote the mk-vector of mk pa-

rameters, the upper index going along with the response category, the lower index
with the covariate. We have for the partial derivative

oL - exp(w(h)Tz)
—5 = YnTg — ,
o 0 14+ L), exp(n)7a)

zg = (Yyn — Pn)Tq
with the notation py, = exp(r™” z)/(1 +Z§=1 exp(n)” z)). This yields the score
vector

VL(‘IT) = [(yl —ﬁl)xl?' () (yl -ﬁl)xm, cees (yk _ﬁk)xla sy (yk —ﬁk)xm]T
—(Y-p) ez
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where ® is the Kronecker product A ® B of two arbitrary matrices. The observed
information can be easily computed to be

__®L
awgf")awg")
Snn exp(r®” ) (1 + E;;l exp(ﬂ'(j)Ta:)) — exp(r®) " z) exp(r M z)
= 2
(1 + Z§=1 exp(w(j)T:c))

= (6pnPr — PrPr)Tg Tg,

Tg'Tg

leading to the observed information matrix

p1(1 — pr)zeT  —prpoxxT -+ —pipraaT

27 _ i ) )
—-ViL= : p2(1 — po)aaT
—ﬁkﬁlmT e
= (Ap — pp7) @ 2T

Pr(1 — pr)axT

The proof of the following lemma is straightforward.
LEMMA 2.1. If A < B then for symmetric, nonnegative definite C:
ARC<B®C.
LEMMA 2.2. A, —ppT <[E-117/(k+1)]/2, where 1 is the k-vector of 1’s.
A proof of this lemma is given in the proof of Theorem 5.3 in Bohning and
?llgéi;;,y (1988) or can be constructed from Theorem 2 in Baksalary and Pukelsheim

Taking Lemmas 2.1 and 2.2 together, we get the following main result:

THEOREM 2.1. (a) For the information matriz of one observation we have:

[E-11T/(k+1)] ® zzT.

N =

i(m) = (Ap — pp7) @ 2z <

(b) For the information matriz of a sample of size n we get:

n

. = . 1
com(m) = Y _(Ap, — pip]) @ mall <Y 2B~ 117/(k+1)] @ ma]
i=1

i=1
1 n
=5 E-1T/(k+1)]e® > wa]
=1

= %[E -117/(k+1)]® XTX =: B,
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«T

where X is the n X m design matriz :
T
(¢) B1=2[E-11T/(k+ 1)1 @ (XTX) ! =2[F +11T) @ (XTX)L.
(d) me =m0+ B 1YL (Vi — pi) ® @i

Remark. Since 377" (Ap, — pib]) @ mz] = 11, (Ap, — pib]) @ 37, maw
is not true in general, we would have to invert the (mk)? matrix icom at each step
of the Newton-Raphson iteration. If we have 6 response categories (k = 5) and
m = 10 covariates, then i.om is a 50 x 50 matrix. In contrast, the lower bound
principle needs to invert a 10 x 10 matrix only once. The lower bound algorithm
converges linearly with convergence rate depending on ||E — B~!V2L(#)|. If
# = 0, then the lower bound algorithm converges at least superlinearly. Thus, if
7t is “near” zero, the computational efficiency of the lower bound iteration can be
expected to be better than that of the Newton-Raphson iteration. To evaluate this
point, in Béhning and Lindsay ((1988), Section 5.1) a simulation experiment was
undertaken for binomial logistic regression, that is k = 1. There, the comparison is
essentially between inverting a k X k matrix once (the lower bound algorithm) and
inverting it several times (until a stopping rule is met, for the Newton-Raphson
iteration). In all cases studied there, the computational efficiency of the lower
bound method was better than that of the Newton-Raphson iteration. However,
a downward-tendency was observed when the difference in CPU-time was plotted
against distance of 7 to zero. Thus, it is possible that in extreme cases the Newton-
Raphson algorithm might be more efficient. Here, we are comparing the single
inversion of a k X k matrix (in the lower bound algorithm) with several inversions
of a km x km matrix (in the Newton-Raphson iteration). This feature makes the
lower bound method specifically attractive.
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