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Abstract. In this paper the situation of extra population heterogeneity in the stan-
dardized mortality ratio is discussed from the point-of-view of an analysis of variance.
First, some simple non-iterative ways are provided to estimate the variance of the
heterogeneity distribution without estimating the heterogeneity distribution itself.
Next, a wider class of linear unbiased estimators is introduced and their properties
investigated. Consistency is shown for a wide sub-class of estimators charactererized
by the fact that the associated linear weights are within some positive, finite bounds.
Furthermore, it is shown that an efficient estimator is often provided when the weights
are proportional to the expected counts.

Key words and phrases: Population heterogeneity, random effects model, moment
estimator, variance separation, standardized mortality ratio.

1. Introduction

In a variety of biometric applications the situation of extra-population heterogene-
ity occurs. This is particularly the case if a good reason exists to model the variable
of interest Y through a density of parametric form p(y | #) with a scalar parameter 6.
For a given subpopulation, the density p(y | #) might be most suitable, but the value
of 8 cannot cover the whole population of interest. In such situations we speak of extra
heterogeneity, which might be caused by unobserved covariates or clustered observations,
such as herd clustering when estimating animal infection rates. An introductory discus-
sion can be found in Aitkin et al. ((1990), p. 213) and the references given there; see also
the review of Pendergast et al. ((1996), p. 106). A discussion on extra-binomial variation
(i.e. extra-population heterogeneity if p(y | 6) is the binomial) can be found in Williams
(1982) and Collet ((1991), p. 192). In this paper, it is understood that extra-population
heterogeneity, or in short, population heterogeneity, refers to a situation when the pa-
rameter of interest, 8, varies in the population and sampling has not taken this into
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account (e.g. it has not been observed from which subpopulation (defined by the values
of #) the datum is coming from). As will be clear from equation (1.1) below, inference
is affected by the occurrence of extra-population heterogeneity. For example, variances
of estimators of interest are often greatly increased, leading to wider confidence inter-
vals as compared to conventional ones. To adjust these variances the estimation of the
variance of the distribution associated with the extra-heterogeneity is required. The
main objective of this paper is to present a moment estimator for the heterogeneity vari-
ance in a simple manner. To be more precise, if 6 varies in itself with distribution G
and associated density g(¢), the (unconditional) marginal density of Y can be given as
fly) = [op(y | 0)g(9)db. Of interest is the separation of the (unconditional) variance of
Y (e.g. variance of Y with respect to f(y)) into two terms:

(L1) Var(v) = [ Va(v | 0)g(6)ab + [ () - v o(0)ds

where p(0) is the E(Y | 8) and py = [yf(y)dy is the marginal mean of Y. Note that
py = Eg(p(8)). Note that we can also write (1.1) briefly as

Var(¥) = Eg(0%(0)) + Vara (4(0))

In the sequel we will also denote Varg(u(8)) by 72. Thus, in such instances, it can be said
that (1.1) is a partitioning of the variance due to the variation in the subpopulation with
parameter value 8 (and then averaged over 6) and due to the variance in the heterogeneity
distribution G of §. Also, (1.1) can be taken as an analysis-of-variance partition with
a latent factor with distribution G. We have to distinguish carefully between three
distributional schemes when computing moments. For example, Var(Y') refers to the
unconditional or marginal variance and is computed using the marginal density f(y),
Var(Y | ) is the conditional variance and is computed using the conditional density
p(y | 0), and Varg(u(6)) refers to the distribution G of §. The intention is to find
an estimate of 72 without implying knowledge or estimating the latent heterogeneity
distribution G. The idea is very simple: we write (1.1) as

(1.2) Varg (u(9)) = 7§ = Var(Y) — Eg(0*(6))

and replace Var(Y) and Eg(0%(6)) on the right hand side of (1.2) with their respective
sample estimates and obtain an estimate for 72. In the succeeding text, we will use u
as the mean of § and 72 for its variance.

Ezample (Poisson). Let Y1,Ys,...,YnN be a random sample of Poisson counts, e.g.
p(y | ) = exp(—0)6¥/y!. Then, d%(0) = 6, Eg(c%(0)) = Eg(d) = p = E(Y) and
7% = 72. Note that Var(Y) can simply be estimated by $2 = 315 Siv, (¥; — ¥)? and
p by Y. Therefore, according to (1.2), an estimator of 72 is provided as 2 =82_7.
This quantity has also been referred to as a measure of Poisson overdispersion (Béhning
1994). Note, that E(r2) = 2.

Ezample (Binomial). Let Y3,Y2,...,YnN be a random sample of Binomial counts,
eg ply | 0) = (5)0°(1 - 6)("~¥). Then, u(f) = nd and ¢%(6) = nd(1 — 6). Also, 73
= n272. Tt follows that Eg(nd) = nu, Eg(c%(0)) = nEg(0 — %) = n(u — Eg(6?))
= n(p — 72 — p?). Since Var(¥;) = Eg(02(8)) + 72 = nu(l — p) + n(n — 1)72, we
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find 72 = n(nl_l) [Var(Y;) — nu(l — p)], for i = 1,...,N. We can use the estimator,
72 = 7{(53—’17 ~[X@ - X)/(n - 1), with 8% = x1 SN | (¥; — ¥)2. This estimator has

a bias equal to Var(Y;)/[n?(n — 1)N] which is practically negligible even for moderate
values of n. For example, if n = 10 and N = 10, then the bias of 72 ig equal to 1/9000
of the variance of Y;.

The idea to construct a simple moment estimator using equation (1.2) can be found
in various instances in the literature including Marshall (1991) and Martuzzi and Elliot
(1996). The latter considered the case that p(y | 6) is the binomial. However, the way
this moment estimator is constructed is not unique. In this paper, we try to develop a
more general framework for these kinds of estimators.

In the next section, we will consider a generalization of this idea to the standardized
mortality ratio. In Section 3, we will discuss a more general class of linear unbiased
estimators of the heterogeneity variance and provide a closed form expression for its
variance. This enables us to provide a closed form expression for the efficient estimator.
In Section 4, we will provide simple conditions for consistency. Section 5 considers esti-
mating simultaneously the mean and variance of the heterogneity distribution. Section
6 .ends the paper with a discussion of the results.

2. The standardized mortality ratio

We consider a special but important case. Let Y1,Ys,..., Yy be a sample of counts
which can be thought of as a sequence of mortality or morbidity cases. For each Y; there
exists a connected non-random number e;, for ¢ = 1,..., N, which is interpreted as an
expected number of counts and usually calculated on the basis of an external reference
population. With the help of these numbers one can define the standardized mortality
ratio as SMR; = Y;/e; and its expected value E(SMR; | 6;) = 6;, for i = 1,...,N.
Frequently, this sample is coming from N geographic regions or areas. Therefore, this
situation is closely related to the so-called field of disease mapping. For an introduction
to this field see Bohning (2000) or Lawson et al. (1999).

Furthermore, conditionally on the value of 8, a Poisson distribution is assumed for
Y | 6: p(y; | 0,e;) = exp(—0e;)(e;)¥ /y;!. For this case, the partition of variance (1.1)
takes the form

(2.1) Var(Y;) = Eg(02(8)) + Varg(ui(8)) = e;Eq(8) + €2 Varg ()
= e;i+ 6?7’2.

At this point it is important to understand the consequences of the occurrence of
Y:
heterogeneity. Suppose p is estimated using the conventional estimator i = ET

2
Then, we have that Var(i) = ”El_ +T2Z§i£’)~2, so that, depending on the value of 72,

1
its variance might be largely increased. Note also that conventional confidence intervals
use the variance formula Var(i) = uzl—e, which might be too small if heterogeneity is

present.
We write (2.1) as E(Y; — e;u)? = e;u + €272 which draws attention to the variate

W; = (Y’;e’:f;efﬁ Since Var(Y;) = E(Y; — e;u)? we note that it follows from (2.1)

(2.2) EW;) =12
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First, to estimate 72, we can replace Var(Y;) by its ‘estimate’ (¥; — e;)? and solve for
72 and then average over i:

(23) - Z<Y ~ e/l - u; -
Second, in (2.1), we can divide first by e; and then average over ¢ and solve for 72:
iy (Y — esp)?fei =

Z?—Ll €

Third, we can also first average over i in (2.1), and then solve for 72:

N N
(2 5) 7:3 — Zi:l(Y;; - eiﬂ‘)2 - #Zi:l €;
. ~ .
2z e?

Note that all three estimators are identical if the e;’s are all equal (e.g. if e; = e; for all
1,7 =1,...,N). We note in passing that all three estimators are unbiased. In fact, they
are special cases of a more general class of linear unbiased estimators of 72:

(2.4) 2=

N
iz Wi
(2.6) T(W,a) = __z__ﬁ_i_’
i=1 i
for any non-random, non-negative numbers ay, ag,...,an. It is easy to verify that for

a; = 1/N the estimator T(W, o) = 7'12, for a; = e; the estimator T(VV, a) = 72, and
for o; = €? the estimator T(W,a) = 72 is provided. The estimator 72 associated with

= 1/N is mentioned in Bohning (2000). The estimator 7'2 associated with a; = e; is
suggested by Marshall (1991).

The estimator T'(W, o) considered so far requires the knowledge of the overall-mean

u. This assumption is satisfied, if the SM R;s are mdzrectly standardized implying that

.Y/ > e=1

2.1 FEzample 1: Hepatitis B in Berlin

To illustrate the estimators, we consider two examples. Table 1 gives the cbserved
and expected Hepatitis B cases in the 23 city regions of Berlin for the year 1995. Here,
we find that Y, ¥;/ ", e; = 1.019. A conventional x*-test for homogeneity is given by
x? = Y, (Y; — pei)?/(pes). If p is replaced with g = 37, Y;/ 3", e; = 1.019, we will get

x? = 193.52, which clearly indicates heterogeneity For this illustration, assuming that

p is fixed, the following values for 77 can be achieved: 0.5205(j = 1), 0.4810(j = 2),
0.4226(j = 3). This indicates rather high heterogeneity since Var(.S'M R) g 2
(SMR; — SMR)? = 0.6234. The situation is illustrated in Fig. 1 (using 77 to construct
the confidence interval adjusting for heterogeneity). Note that using the “right” estimate
of variance leads to an increased length in confidence interval for p using 14+1.96+/Var(j)
for the construction of a 95%-confidence interval where fi corresponds to the pooled
estimator.
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Table 1. Observed and expected Hepatitis B cases in the 23 city regions of Berlin (1995).

Area i Y; e; Areai Y; e;
1 29 10.7121 13 15 8.3969
2 26 17.9929 143 11 15.6438
3 54 18.1699 15 11  11.8289
4 30 19.2110 16 2 9.9513
5 16 21.9611 17 2 10.8313
6 15 14.6268 18 9 18.3404
7 6 9.6220 19 2 5.1758
8 35 17.2671 20 3  10.9543
9 17 18.8230 21 11 20.0121
10 7 18.2705 22 5 13.8389
11 43 32.1823 23 2 12.7996

12 17 24.5929 - - -

Source: Berlin Census Bureau
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Fig. 1. SMR estimates of Hepatitis B in 23 Berlin city areas with pointwise 95%-confidence intervals.

2.2 Fzample 2: Perinatal mortality in the North-West Thames Health Region

As another realistic data set the small area data of Martuzzi and Hills (1995) on
perinatal mortality in the North-West Thames Health Region in England based on the
5-year period 1986-1990 is considered. The region consists of 515 small areas. In this

case, »_,Y; = >, e; = 2051. It was found that 7:12 = —0.0272790 which is truncated to
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0, and 7-22 = 0.0167823 as well as 73 =0. 0369576 There is small heterogenelty present

in the data indicated by the ratio ?;’Mrm , where Var(SM R) = 75 Y .(SMR; -
ar

SM R)?, which takes on the values 0, 8 g})gg , g gggg =0,0.0277,0.0611 for the 3 estimators,

respectlvely

3. Efficiency

When investigating the efficiency of the family of estimators T(W, ), we have to
consider its variance:

(3.1) Var(T(W, o)) = 22225 Ver(Wi)

(3 i)

which is completely specified, if Var(W;) is known. It is well-known that the efficient
estimator (i.e. the one with minimum variance in the family T(W, a)) chooses «; pro-
portional to W Consequently, our interest concentrates on Var(W;). We have the

following result.

LEMMA 3.1. Let G be any distribution with finite moments to the power of four.
Then:

Var(W;) = pe]® + (2u2 + 7r2)e; 2 +2(3u® — 7pur? — 3u8)e; ! + 3
+u® — 74 4 672 — 4pp®

with M = Eg(6") forl = 3,4.

PROOF. Note that W; = e; %(Y; —e;u)?—e; ' u, where y is non- random and known.
Congequently we have

(3.2) Var(W;) = e Var{(¥i — e;n)?}
= e [E{(Vi — ein)*} — (E{(Yi — ei)?})?].

Note that for fixed 6; the random variable Y; is distributed according to the Poisson
distribution with parameter 6;e; : Y; | §; ~ Po(6;e;). The moments up to the order of
four for a Poisson distributed variable Y are needed here to use (3.2). These can be
easily derived by the factorial moments. In Haight ((1967), p. 5-6) the moments are
given up to the order of ten. In our application it follows

E(Y; | 6;) =eb;, E(Y?|6;) =eb;+e202, E(Y?|6;) =eb; +3e262 + 363,

e

E(Y2 | 6;) = e.0; + 7e26? + 6363 + e}6}.

Furthermore, for each 7 the expected value of the SMR, §;, is to be interpreted as a
realisation of the heterogeneity distribution G : ; ~ G. Therefore, we have E(Y}) =
Ec{E{Y}|6;}},1=1,2,3,4. From this fact, the moments of ¥; up to the power of four
follow using the notation ,u(l) =Eg(6"), u= u(l) 72 = Varg(8) = u® —

E(Y) =eip, E(Y?)=eip+ef(p’+17%),
E(Yz3) =e;u+ 36?(;1,2 + 7-2) + egu(3),
E(Y2) = eip+Te2(u? +12) + 6e3 ) + efp®.
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Consequently, we have:
(3:3) E{(Y; = eip)?} = e+ €272,
(3.4) E{(Y: — eip)*} = E(Y;! — de;uY? + 6ep2Y7 — 4e3p°Y; + ef )
= eip+ e2(3u% + 772) + 62 (u® — 2ur? — k%)
+ef (b — 4up® + 6p77% + 3u).

From (3.2), (3.3) and (3.4), we obtain the expression for Var(W;) stated above. This
ends the proof.

As a consequence from the expression for the variance of W; derived above, it follows,
that for large e;, Var(W;) behaves like a linear function in ] '. To see this, note that

7]
5T Var(W;) = 3ue; 2 +2(2p% + 77 e + 64 — 14p7? — 643
k3
Consequently, we have
7]
5-T Var(W;) — 2(3u® — 7ur® —3u%) for ¢! - 0.

T

This fact implies that, if we consider any fixed set of moments (y,72,u(®, ) and
Var(W;) as a function in e;, then Var(W;) increases approximately linearly with e;* for
large e;. This result can be summarized in the following corollary.

COROLLARY 3.1.
Var(W;) =~ e;'  for large e;.

A further demonstration of this efficiency result is given below.

Lemma, 3.1 above provides a closed form expression for the variance of W;. However,
this variance involves the first 4 moments of G, which are usually unknown. Therefore,
it is not possible to give a closed form solution for the efficient estimator. Corollary
3.1 provides support that—for large e;—72 should be close to the efficient estimator.
However, largeness is a vague term and it might be valuable to investigate the efficiency
of these estimators for real non-random data sets {e;}. Now, given any distribution G we
are able to compare any linear unbiased estimator to the efficient estimator avoiding any
kind of simulation approach. Below, we compare the three estimators %j?, for j =1,2,3
to the efficient estimator, where the e;’s stem from the two data sets of Example 1 and
Example 2, respectively. We choose as heterogeneity distribution G two cases, namely

0.5 1.5 0.8 0.9 1.1 1.2 : 01 o Ok 1
Gy =105 0.5) and Gy = (0‘2 0.3 0.3 0.2). Here, the notation G = (pi p:) indicates

a discrete probability distribution G giving weights py,...,pr to a finite number & of
mass points 01, ...,0, respectively. Then, the variance of W; is computed for each
i,i = 1,..., N leading to optimal weights o; = Var(W;)~!. These optimal weights are
compared with the weights used by the three estimators, namely 1/N, e;, and e? by
means of scatterplots a; versus 1/ Var(W;). The closer this relationship is to a straight
line with positive slope, the closer is the associated estimator to the efficient one. The
results are provided in Fig. 2 and Fig. 3. There is some evidence that 77 is often close
to the efficient estimator, since the relationship between the optimal weights and the
weights used by this estimator (e;) appear to be the most linear. This provides some
evidence for using 73.
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4. Consistency

We are interested in the asymptotic behavior of the estimator T(W,«). For this
purpose we require the following two conditions:

(A1) There exists the moment to the power of four for the heterogeneity distribution
G:u® < 0. ‘
(A2) There exist constants 0 < a < A < 00,0 < ¢ such that

a<o <A e<e forall i

THEOREM 4.1. Let (Al) and (A2) be fulfilled. Then:
N N
Tn(W,a) = (Z aiWi> / (Z ai> — T2almost surely,
=1 i=1
in other words, the estimator Ty(W, @) is strongly consistent.

Proor. We have that

(4.1) E(W;) =72
and under (A1)
(4.2) Var(W;) = pe;® + (2u® + 77%)e; % + 2(3u® — 7ur? — 3u®)e;t

+3pt 4 p@ — 7t 6ur? — 4.

With (A2) it follows, that there exists a finite constant W in such a way, that we

have
(4.3) Var(W;) <W  for all 1.

To obtain W, we have to replace e, by el in (4.2) for I = 1,2,3. Let us define the
following double sequence of random variables:

v ._ N i
AR

N .
7=1 a]

W, for N=12,..., i=1,...,N. Note, that

N
1
(4.4) 5 S VI = Tn(W, ).

i=1

For the variables Vz-(N) we have that

(4.5) VI(N), ey VIE,N) are independent for all N,
E(Vi(N)) =N (1\?—1> 72 and with this
ijl &
N
(4.6) Y EW®™) =N,
=1
&5

2
Var(V™) = N? ( ) Var(W;).

N
Zj:l aj
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Consequently, there exists a finite constant, say, W = (A%/a?)W, such that Var(V(N)) <
W foralli=1,...,N and all N > 1. With this, it follows that
N (N) N 2
Var (V ) 1 1
. lim E ——Lt<W 1 E - = E =W
(4.7) Jm 2. WNl_Igo 2 3 Wi=1 3 w 5

According to the strong law of large numbers by Kolmogorov, it follows from (4.5) and
(4.7)

N N

1 N 1 N

N X;Vz( ) _ i ZIE(V%( )} = 0 almost surely.
- 2=

Because of (4.4) and (4.6) this is equivalent to T (W, &) — 72 almost surely.

As a consequence we note that 7:22 and 7:32

positive bounds e, E such that 0 < e < e; < F for all i. For 77 consistency follows from

the fact that in this case we have V(N) W; as well as (4.3), leading to the inequality
(4.7) with W instead of W.

are strongly consistent, if there exist

5. Estimating heterogeneity mean and variance simultaneously

In many situations, however, it is not appropriate to assume that p is known. There-
fore, we have to replace u in W; by some estimate fi leading to

(Yz - eiﬂ)2 — Eéilh

B)
€

(5.1) W) =

Although only linear unbiased estimators 2 might be considered for u, Wi(ii) is not
necessarily unbiased for 72. This fact will cause a bias in T (W (jz),a). The bias will
depend on the form of T(W (i), ) as well as on fi itself. Typically, two mean estima-
tors are considered: the arithmetic mean f; = —11\7 > Yi/e; and the pooled mean fio =

ZE : : In Bohning (2000), the estimators

N
(5.2) (A;) = N 1 {Z(Y eilts)*/e; } "A‘J%Zé
i=1 *

for j = 1,2 were considered. It was shown that 7‘1 2(f1) is unbiased whereas 7‘1 2(fig) is
biased. This property (unbiasedness) might be one reason to consider 7'1 2(f1) at all. For
the Hepatitis B data of Berlin we find the results as given in Table 2.

In the light of Section 3, attention is given to the estimator 7:22(ﬂj) for j =1,2. It
is possible to provide exact expressions for their biases.

Table 2. Estimates of the mean and variance of the SMRs and 1:12 for Hepatitis B cases in the
23 city regions of Berlin (1995).

Estimator i Var(SMRs) 'rAf 7:12 /Var(SMRs)
simple mean  0.9751 0.6214 0.5489 0.883
pooled mean  1.0188 0.6234 0.5470 0.877
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N N ~
3 g (Yi—eifi;)? fei—p; N
e
=1

(53) E(}(in)) = (1 - —) (

- 2
(5.4 B ) = (1- et ) 7 - -i-l—u-

i €i

for i =1,2. Then:

=)’

THEOREM 5.1. Let T}’(pj) =

The proof of this theorem is straightforward.

5.1 Perinatal mortality in the North-West Thames Health Region
For the data of Example 2, the followmg values of the biasing constants have been

found: (1 — %) 0.998058, (1 — ﬁ) 0.997376, and (75, & — 2\:1-) =

€

—0.000206377, = = (0.000487571. This example illustrates that the amount of bias

involved in expressions (5.3) or (5.4) respectively might be very small.
6. Discussion

The results of this paper can be used for several applications. It was mentioned
earlier that the crude SM R has several disadvantages including some instability problems
for small sample size applications (Lawson et al. (1999)). Typical examples are disease
mapping and meta-analysis (Béhning (2000)). In these cases, it is more appropriate

to use an empirical Bayes estimate of the SMR. Often this takes the form i—'ﬁr’l‘;/f;
It can be shown that this is the linear Bayes estimator with respect to the euclidean
loss function and it is also the posterior mean if the prior is assumed to be a Gamma,
distribution (and Y; ~ Po(fe;)) (For details see Bohning (2000)). Clearly, u and 72 need
to be replaced by estimates and those that are proposed in this paper might be used for
this purpose.

The advantage of the proposed estimators lies in their simple and non-iterative na-
ture. Nevertheless, it should be pointed out that there are many other estimators leading
to iterative solutions. One should mention the moment-estimators suggested by Breslow
(1984) and Clayton and Kaldor (1987), or the pseudo-maximum-likelihood estimator
suggested by Pocock et al. (1981), and Breslow (1984). These estimators have been
well motivated when they were suggested, and they might be superior in their efficiency
to the estimators proposed here. However, a thorough investigation and comparison of
these estimators, either in terms of comparing these iterative estimators to each other,
or comparing the iterative estimators to the non-iterative estimators suggested here, has
not been done yet and is expected to be dealt with in future research.
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