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SUMMARY

This paper considers a statistic — recently suggested by Mora — for the deviation of a sample distribution
from a reference distribution which typically arises in anthropometry when using the nutritional indicators
height/age, weight/age or weight/height. The statistic measures the area between curves (ABC) and stands
for the mass of the sample distribution which is not covered by the reference distribution. The paper provides
a statistical framework for the ABC and includes some minor corrections of Mora’s original paper. For the
normal distribution situation with common or different variances, formulae are derived which include
a partition of ABC into parts corresponding to malnourished and well-nourished groups. However, the main
result is a non-parametric generalization of the ABC, motivated by the fact that the nutritional indicators
often have skewed distributions with heavier left tails. Non-parametric statistical inference is provided by
linking the ABC to the Kolmogorov-Smirnov statistic.

1. INTRODUCTION

In most countries in the tropics, although clinical cases of obvious forms of protein calorie
malnutrition (PEM) in children are rare, subclinical forms of PEM are still widespread.!

The most important nutritional problem in the world today is that of protein energy
malnutrition (PEM): it is also the deficiency which, in general, supplementary feeding is
intended to correct.

For this reason it is suggested that the following three measurements are chosen to
evaluate the presence or absence of nutritional impact in programmes aimed at feeding
the vulnerable groups listed . . .: age, weight and height (length supine for all children

< 2 years; height standing for children > 2 years).2

The nutritional status of populations, particularly those of infants and young children, can best be
assessed through anthropometric measurements.> The recommended measurements are weight
and height. Based on an international standard derived from the U.S. National Center for Health
Statistics, Centers for Disease Control, the differences between the observed values in units of
standard deviations (Z-scores) of the reference population might be calculated for weight-for-age
(weight/age), weight-for-height (weight/height) and height-for-age (height/age).

Nutritional anthropometry is a field of growing interest. Thus in the 47th session of the
International Statistical Institute, two contributed papers sessions were devoted to the methodo-
logy for nutritional status surveys in developing countries, with at least four contributions
directly connected to this topic.5-16-17-1?
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Recently Mora® drew attention to the problems arising from conflicting recommendations
about the use of different cut-off points and classification systems. Z-scores are constructed to
measure the nutritional status of a child against a reference group of children supposed to be
healthy and well nourished. Then a certain value is chosen, also called cut-off point, and children
having a Z-score below this cut-off point are considered to be malnourished or undernourished.
The percentage of all children in the study population falling below the cut-off point defines the
prevalence rate of malnourishment.

Different choices of cut-off values are commonly used (— 1-5, — 2, — 3), which makes the
comparison of prevalence estimates difficult. This motivates the search for a measure which is
independent of a cut-off value. However, if one is in a diagnostic situation to identify mal-
nourished children in order to intervene, the selection of a cut-off value cannot be avoided.

In Mora’s paper® a method is proposed to estimate the area between the study population
density and the density of the reference population. He suggests the term standardized prevalence
of malnutrition for this statistic and implies that his approach might be considered to replace the
critical choice of cut-off points for prevalence estimates in cross-sectional population studies. The
interpretation of the area between curves (ABC) as a measure of the deviation of the nutritional
status from the reference population is suggested here and considered to be a helpful tool.
A statistical framework for the ABC will be provided.

2. DEFINING NUTRITIONAL STATUS

2.1. Reference populations

The construction of the Z-scores assumes the availability of so-called reference or standard
populations. A reference population is constructed for statistical comparisons, not as a norm for
desired body growth. Some criteria for a reference population are that it is well organized,
contains detailed information and is internationally available and used. Such a reference popula-
tion is provided by the U.S. National Centre for Health Statistics and can be found, for example,
in Reference 2. Table I and Table II are part of this reference population and are reproduced here
for demonstration purposes. For example, Table I refers to the indicator height/age. Here, for
each age group various statistical measures of the reference population are given. On the right, we
find the median of each age group, as well as median + 1, 2 or 3 SDs. To be more specific, for
a boy of 7 months, we find a reference median of 69-5 cm, and median — 2 SD is 64-1 cm. The left
part of the table contains various percentiles. The computation of Z-scores involving height is
somewhat confused by the fact that the height is measured differently as length (supine length)
and stature (measured standing), and overlapping reference populations do exist. Obviously, both
forms of computation lead to different height/age values. Which one to follow depends on the
form of body height measurement.

Table IT contains analogous statistical measures for the reference population referring to the
indicator weight/height. Note that this reference population does not involve age. In this case, the
grouping variable is body length having an increment of 0-5 cm.

2.2. Construction of Z-scores

Z-scores are constructed to measure the nutritional status of a child against a reference popula-
tion of children. The measurements of the group of children under investigation are related to
those of the reference with the same age and sex to yield a score independent of the child’s age and
sex. Usually, this goal is achieved for sex. With age, one often observes a drop-down effect for the
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Z-scores height/age or weight/age during the first 6 months in data from developing countries.”
Here, children are losing the nutritional status provided at birth within the first half-year of life.
Now the three Z-scores under consideration are defined more precisely. In general,
individual’s value — median value of ref. pop.
standard deviation value of ref. pop. '

Z-score =

Thus

H-my ,  _W-mw , W= mw
SDan ™7 SDwa = ™ SDwm

where H, W and A are the child’s height, weight, and age, respectively; my, is the median height in
the corresponding age and sex group of the reference population; mys, is the median weight in the
corresponding age and sex group of the reference population; mwy is the median weight in the
corresponding height and sex group of the reference population; and SDya, SDwa and SDwu are
the corresponding standard deviations of the reference population. Different standard deviations
are used in the reference population in connection with weight, since its distribution is skewed. To
be more precise, there are two standard deviations, one for values above and one for values below
the median. Suppose a boy is of 64-0 cm height. We find the lower standard deviation in Table II to
be 0-9 kg, whereas the upper standard deviation is 1-2 kg. For the computation of Zwy we have to
take into consideration the actual weight of the boy. If it is above the median of the reference
population, we use 1-2 kg SD; otherwise we use 09 kg SD. This is completely analogous for Zwa.
To demonstrate the computation with actual values, let us further assume the boy is 6 months old
and weighs 5-8 kg. We find the three scores as Zya = — 142, Zywy = — 107 and Zyy = — 0-44.

In the setting of a developing country the age of the child is given by the mother and is very
often imprecise, leading sometimes to a phenomenon called age heaping,® which means that the
2Z-score shows the behaviour of a wave if plotted against age. Therefore a Z-score, such as Zwu,
not involving age is often preferred. Also, the possible error for Zwa when the age is not entirely
correct is usually greater than for Zya. This is because weight increments are greater than height
increments over time inr a preschool child.

ZHA =

2.3. Computational aspects

Itis clear that the calculation of Z-scores for an individual subject needs great care and, if done by
hand, such computations can contain errors. It is therefore advisable whenever possible to use
a computer program. Such software is available either in Epi-Info® in a submodule called
Measure, or in a program specifically developed by Bohning and Schelp?® to compute these
scores and which is available on request.

2.4. The choice of cut-off values

The construction of Z-scores (as well as percentiles and median percentages) is done to achieve
a measure for the nutritional status of a child. Typically, a low Z-score will indicate malnutrition.
The question of a threshold or cut-off value arises and is still under discussion. However, quite
frequently values of Z < — 2 are judged to indicate a certain degree of malnutrition. Thus stunted
children are defined as those with a Zy, < — 2, and wasted children with a Zwy < — 2. Presently
the reasons for stunting are under active discussion, and the former implicit assumption that
Zya represents the nutritional status in the past is no longer internationally accepted; however,
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wasting represents acute malnutrition. Usually, Zy, and Zwy have a low correlation, whereas
Zya and Zy, as well as Zyy and Zy,, are highly correlated.

A statistical way of understanding this choice is as follows. Suppose we want to decide between
two alternative hypotheses: the first (H,) that the child is not malnourished and effectively comes
from the reference population, and the second (H,) that the child is indeed malnourished and
does not come from the reference population.

If H, is true, the Z-score follows a normal distribution with mean 0 and variance 1. Now, think
of the cut-off value as a statistical test (decision for H, if Z-score is below — 2, otherwise decision
for Hy); then the choice of — 2 corresponds to the usual significance level of 2-5 per cent. In other
words, with this choice of cut-off value, we are willing to classify 2-5 per cent of our observations
Jalsely to be malnourished. Of course, one could argue that it might be more appropriate to use
a one-sided significance value of 5 per cent, which leads to a cut-off value of 1-645. In fact, the
latter choice has been supported by Schelp et al.'! indirectly by investigating the relationship of
malnutrition to morbidity (cough, fever, running nose, etc.) in preschool children in a rural area in
north-east Thailand. The optimal cut-off value was found using the maximally selected odds
ratios technique.'? Given a Z-score and a certain value for the cut-off point, the child can be
above or below this value. Also, in terms of morbidity a child is either healthy or sick. This leads
to 2 x 2 table with a certain odds ratio. Now the cut-off value is varied over the possible data
values of Z-scores, and that value is chosen as cut-off where the odds ratio becomes maximal.

3. PARAMETRIC ESTIMATION OF ABC

We consider a nutritional indicator Z and assume that it is normally distributed with mean uand
SD o in the study population and, by construction, with mean zero and SD unity in the reference
population. Let g, be the density of the study population and ¢ the standard normal density of
the reference population. Typically, @, will have its mass to the left of the mass of @, so that there
is some value zo such that @.,(z) > @(2) for z left of z, and Pobs(2) < @(2) for z right of zq. This
implies (Figure 1) that there is a value at z = z, such that

Pows(20) — @(20) = 0. 1)

The area between curves (ABC) is thus defined as the area above ¢ and below Pobs from — 00 to
2o, that is ABC = ®gy,(29) — D(20), where ® and @y, are the cumulative distribution functions of
the reference and study populations. It can be interpreted as the percentage of children or
adolescents that do not fall under the curve of the reference population. Interpretations such as
standardized prevalence as suggested by Mora® can be misleading, in particular, if a parametric
normal assumption is used. In that case (parametric normal) standardized prevalence would be
just a function of the mean, as we will see below, and thus would not provide new information. In
many cases, however, the normal assumption for the study population is too strong, and the ABC
statistic gives additional information about the deviation of the study population from the
reference. Before turning to the more complex non-parametric case in Section 4, let us consider
the simpler parametric normal situation.

3.1. Common variance o2

In this case, a unique value of z, satisfying (1) exists and is independent of the value of & which we
assume to be unity without loss of generality. Obviously z, = /2 is just the arithmetic mean of
the two populations under consideration. Consequently, ABC = Doos(1/2) — P(p/2) =
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Figure 1. Area between curves (ABC)

(/2 — p) — B(p/2) = O(— p/2) — ©(4/2) = 1 — 2®(y/2). This can be estimated by
ABC = 1 — 20(z/2), )

where Z is the mean of a sample from the study population. In Resuit 1 of the Appendix some
facts are summarized which are useful for the statistical inference (P-value, confidence interval).
For example, a large-sample 95 per cent confidence interval for ABC is given by

1 - 20((Z £ 1-96//n)/2),
that is replacing u in 1 — ®(u/2) by its large-sample confidence interval.

3.2. Different variances o2

In this case there are two solutions, as demonstrated in Figure 2, and equation (1) takes the form

éexp{— %(%)} — exp(—$23)=0 0)
or equivalently,
(1 — 6%)z% — 2zou + p* — 26%1In(s) = 0. @
This is a quadratic equation in z, with two solutions,
zo=[pt o /R -0%), R=pu’+20>-1ne). . ®)

If 62> 1, as is the case in Figure 2, then the left zero (the one of interest) is given by
[+ a\/‘.l_i]/(l — 0?) and (5) is always a real root since 2(c? — 1)In(o) is always positive. It
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Figure 2. The role of different standard deviations: two points of intersection, two areas between the curves

should be noted that the left zero does not necessarily lie between the mean of the study
population and the mean of the reference population.

Thus, the ABC is defined as the difference between the area below the density of the study
population and the density of the reference population:

ABC = @y ([t + 0./R1/(1 — 6%)) — ®([p + 0. /R1/(1 - 0?))

= ®([po + /RI/(1 — 0*) — O([k + 0 /RI/(L — 02). ©
This is the formula from which Table 2 in Mora® can be reproduced. The associated formula’
(Reference 6, p. 139) ®([uo + /RI/(1 — %)) + ®([1 — a./R]/(1 — 02)) s evidently incorrect.
The problem remains to find a point estimate of ABC given in (6). This could be accomplished by
simply replacing x and ¢ in (6) by its sample estimates Z and s, where s? is the sample variance. It
should be noted, however, that replacing u in (6) by its large-sample 95 per cent confidence
interval, namely Z + 1:96s/ \/1_1, will not provide a 95 per cent confidence interval for ABC, in full

generality. It might be called a bona fide interval. Before this question is discussed any further,
a different method of inference will be suggested.

3.3. Partitioning the nutritional status

3

Recall the interpretation of the ABC thus far: it is the percentage of those children in the sample
that does not fall under the curve of the reference population. In contrast to the equal variance
case, we have a second area, namely to the right of the second zero. This area could again be
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interpreted as a percentage of children which does not fall under the reference density curve.
However, these children would be described as well nourished.

In such circumstances it might be consistent to consider a partition of ABC on the following
basis. Thus we calculate ABC for the malnourished and well nourished as

ABCpeiow = ®([p0 + /R1/(1 — 6?)) — O([1 + 0./RI/(1 — 62))

ABCpore = O([1 — 6 /R]/(1 — 6%)) — ®([ s — \/R1/(1 — 62)),
and finally _
ABCovenll = ABCbelow - ABCnbove' (7)

The meanings of these measures are clear from Figure 2, in which ABC,.,ow = 24-8 per cent,
ABC,pove = 9-2 per cent and ABC,,e,an = 15-6 per cent. The first number is reported in Reference
6 (Table 2, p. 138) as the percentage of malnourished children. In our view, only ABC,,crann = 156
per cent can have this interpretation, leading to quite different numerical estimates. Again, we
would stress that this partition will apply only rarely in practical situations and is therefore
a theoretical rather than a practical difficulty.

Of more importance is that one might be tempted to ask: how realistic is this case that the
standard deviation of the anthropometric indicator deviates drastically from 1? Our own
experience supports the fact that the observational density deviates more in the direction of
non-symmetry.

4. NON-PARAMETRIC ESTIMATION OF ABC

Typically, the empirical distributions of anthropometric indicators such as Z,, or Zyy have
heavier left tails. In contrast, the parametric normal density estimator distributes the mass equally
under each tail of the distribution, thus providing a biased estimate of ABC.

4.1. Non-parametric formulation

With this motivation in mind, we consider a non-parametric formulation of the problem. Suppose
that the density intersecting point z,, the one satisfying (1), is known. Then we could estimate
ABC as F(zo) — ®(zo), where F is the non-parametric estimator of ®,,, namely the empirical
distribution function. The problem is the determination of z,! To solve equation (1) we need to
have a non-parametric estimator of ¢,,,. However, it is not that easy to define the non-parametric
density estimator. One way to approach the problem would be to consider non-parametric
density estimation via kernels'? or semi-parametric density estimation via mixtures of distribu-
tions.'* Instead we will see that it is simpler and more promising to follow a different approach.
We reformulate (1) as

d";[%.(zo) — ®(z0)] =0, ®

or equivalently, ﬁnd'the maximum of
A(2) = Bois(2) — O(2)

with respect to z. But the non-parametric estimator of A = ®,,, — ®is A = F — ®, and ABC is
estimated as the maximum of F — ®! In other words: given a sample z,, . . ., z, of Z-scores of the
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Figure 3. The ABC measure for height/age
study population, we could estimate ABC as
ABC™ = max A(z). )

1<ign

Figure 3 shows the empirical distribution function of height/age for 707 preschool children in
north-east Thailand. As reference distribution we have plotted the standard normal. The third
curve shows the negative difference (implying that the maximum we are searching for is the
minimum in the figure) between these two cumulative distributions. The maximum is attained at
Zo = — 0-69, giving an estimate of ABC"P** = 0-63. The corresponding parametric estimate is 0-59
(assuming common variance) and 0-61 (assuming different variances). Evidently, the two paramet-
ric estimates differ from the non-parametric by 4 per cent and 2 per cent.

4.2. Non-parametric partition of the nutritional status

Clearly, the terms of ABC below, above and overall could be given analogously to Section 3.3.
For example, the existence of a second zero could be detected as a minimum of A. Figure 4 shows
the situation of Figure 2 in terms of F, ® and A. Note again that — A is plotted instead of A
Obviously,

= max A(z)+ min A(z).
1€ign 1<ign

min A(z)
1€ign

ABCzRen, = ABCERx, — ABCHEY, = max A(z) —
1<ign

Again, from our experience in practical cases, such a partition will not be necessary.
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Figure 4. Area between curves: the role of different standard deviations

4.3. Statistical inference for the non-parametric estimator

It turns out to be surprisingly simple to give a confidence interval for the ABC parameter. Let
®,,, denote the cumulative distribution function of the study population. Then we have

max;,|D,(z)| = max;|F(z) — ®ous(2)|- (10)
This is the usual Kolmogorov-Smirnov statistic.!* In addition, (10) can be written as
max,| D,(z)| = max,|F(z) — ®(z) — @oxs(2) — B(2))] = max,|A(2) — AQ@)!. (11)

Thus the distribution of (11) is known as the Kolmogorov—-Smirnov distribution. This implies not
only that ABC"* is a consistent and unbiased estimator of ABC, but also that a (1 — @)
confidence band for A(z) can be found as A(z) + d,, and in particular we find that the (1 — o)
confidence interval for ABC""" as

ABC™" + d,, (12)

where d, is the (1 — a) percentile of the Kolmogorov-Smirnov distribution. These results are
derived in detail in Result 2 in the Appendix.

5. APPLICATION

We are interested in estimating the prevalence of stunting (Zy.) and wasting (Zw;,) in preschool
children in a region in north-east Thailand. The data stem from an intervention project aimed to
improve the nutritional status of all preschool children up to 60 months of age out of six villages
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in the north-east of Thailand. Anthropometric measurements were taken from 707 children every
three months over a period of three years and their Z-scores computed. The following data set
describes the situation at baseline. For Zy, we find the following descriptive statistics and
estimates for ABC (only one stationarity point of A corresponding to a maximum);

ABC(stunting) = max; A(z;) = A(zo) = 063, zo = — 069

95% CI ABC(stunting) + d, = [0-58, 0-68]

parametric common variance 0-59{0-58, 0-62]
parametric different variance 0-61

ABC(wasting) = max; A(z;) = A(zo) = 032, zo = — 0-32
95% CI ABC(wasting) + d, = [0-27, 0-37]

parametric common variance 0-26[0-23, 0-29]
parametric different variance 0-30.

It can be seen that there is a drastic difference between the parametric ABC estimate of wasting
when a common variance is assumed. The difference from the non-parametric ABC estimate is
less strong if a different variance is allowed. To judge the possible deviations it might be valuable
to mention the corresponding points in Mora.® He was obviously aware of the issue, since he
writes: ‘The frequent skewness in the distributions observed in developing countries may intro-
duce some underestimation in the calculations; however, exact estimations applying our method
to actual data from nutrition surveys in developing countries showed that the magnitude of the
error is negligible (under 10 per cent of the total prevalence) (p. 139). What is remarkable is not
the fact that there is a bias up to 10 per cent if a parametric normal is assumed (which is also
supported by the study above) but rather the opinion that a bias up to 10 per cent is negligible.
Mora continues: ‘Although adjusting for skewness in prevalence estimates is theoretically feasible,
for practical purposes this would be an unnecessary sophistication.’ It should be pointed out that
our non-parametric approach is a simple alternative as well as having the statistical advantages of
being always unbiased and providing a valid confidence interval.

6. DISCUSSION

This paper has provided a statistical concept for the area between the density curve of a sample
from the study population and the reference population. Statistical inference is provided for both
the parametric normal and the non-parametric situation. The question arises as to how much the
parametric and non-parametric approaches differ. To answer this, let us assume that 95 per cent
of our study population follows a normal distribution with mean — 1-5 and variance 1, and 5 per
cent of the population is ‘contaminated’ by a normal distribution with mean — 4-5 and variance
1. This subpopulation could be thought of as a group of children suffering severe malnourish-
ment. In other words we are assuming that the study population follows a mixture of two
normals:

0950(x + 1-5) + 0:05¢(x + 4'5). (13)
If the reference population is again the normal with mean 0 and variance 1 there is a population
ABC of 0-558 at zo = — 0-78. In the parametric normal case with common variance it is falsely

assumed that the data are coming from a normal with variance 1 and mean 0-95 x (— 1-5) + 0-05
x(—45)= —165. From FigureS it is clear that the corresponding ABC is
larger than the true ABC, leading to an overestimation. In the parametric normal case with
different variances it is falsely assumed that the data are coming from a normal, again with
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mean — 1-65 but with overdispersed variance 1 + 0-95(1-65 — 1-5) + 0-05(1:65 — 4:5)% = 1-43.
From Figure 6 it becomes clear that this time there will be an underestimation bias. A simu-
lation demonstrates this point. If a sample of size 10,000 is taken from the mixture (13)
there is a non-parametric estimate ABC = 0-556 at z, = — 0766 with confidence interval
(0-542, 0-569) which is already quite close to the true ABC. For the parametric with common
variance unity an overestimating ABC = 0-587 with confidence interval (0-582, 0-593) can be
observed, and for the different variance situation there is an underestimating ABC = 0-548
with bona fide confidence interval (0-541, 0-554). It should be noted that in both parametric cases
the confidence intervals do not cover the true ABC of 0-558.

Sometimes samples from different populations have to be compared in their deviation from the
same population. Then the two-sample Kolmogorov-Smirnov test could be used to test whether
the two samples have the same ABC parameter.

Also, there is the possibility of applying this approach to other problems. It is a widely accepted
technique in medicine and epidemiology to use a cut-off value to detect individuals at risk.
Typical examples would be blood pressure, cholesterine level, intraocular pressure and blood
glucosis. In many situations one is interested in giving a prevalence estimate of the people
suffering from high blood pressure, having a high cholesterine level etc. If a reference population
is available, the above technique can be applied similarly.

APPENDIX

Result 1
Here we summarize a helpful distributional property of (2). Under the assumptions of Section 3.1
the following statements hold:

(@) The cumulative distribution function of ABC is

Dapc(x) = 1 — B/ (M) {207 [(1 — x)/2] — u}).

(b) The P-value of ABC, namely Pry, {ABC > abc}, is given as ®(,/(n) {20~ 1 [(1 — abc)/21}),
where abc is the observed value of ABC, and we are testing H,: ABC = 0 against H o
ABC > 0.

(c) Let z+ t,/z/\/; ~denote the usual (1 —a«) confidence interval for u. Then

1-20[zF t,, /\/;1)/ 2] is a (1 — a) confidence interval for ABC. Note that the signs are
reversed in the ABC confidence interval estimator.

Proof
To prove (a) and (b):

Pr{ABC < x} = Pr{l — 20(3/2) < x} = Pr{l > X< @(5/2)} = Pr {(D“ (1 = ") < 5/2}

e (7)< ol (57)-4)
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To prove (c) we note the equivalence of the following statements:

E—tya/ NS USE+tga//n
O((Z — t2//M/2) < /2 < O(E + t2//W)/2)

1-20(z - t,/z/\/'_l)/Z) 2ABC>1-20((z + t,,z/ﬁ)/2)
This completes the proof. []

Result 2

Let A(z) = ®,,(z) — O(2) and let A(z) = F(2) — ®(2) be its pointwise estimate. Also, let d, denote
the 1 — o fractile of the Kolmogorov—Smirnov distribution, for example d, = ®gs'(1 — o), where
(s is the cumulative distribution function of the Kolmogorov-Smirnov statistic. Then

(@) A = F — @ estimates A unbiasedly and consistently.

(b) ABC™* = max, A(z,) is a consistent estimate of ABC.

(©) F(z) — ®(2) £ d, is a (1 — o) confidence band for @y,(z) — P(2).

(d) ABC™" + d, =max,A(z) +d, is a (1—a) confidence interval for ABC=
max, @, (z) — B(2).

Proof
The following three statements are equivalent and hold with probability 11—
max,|F(z) — ©(2) — (Pon(2) — ®(2))| < d;
== —d, < F(z) — ©(2) — (@ops(z) — P(2)) < d, forall z
<==F(2) — O(z) — d, < Qops(2) — P(2) < F(z) — ®(2) + d, for all z.
The last statement holds for all z, and thus it is true also for the maximum:
max,[F(2) — @(z) — d,] < max,[@ous(z) — P(2)] < max,[F(2) — O(2) + do]. a
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