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ABSTRACT
The Conway–Maxwell–Poisson estimator is considered in this paper as the
population sizeestimator. Thebenefit of using theConway–Maxwell–Poisson
distribution is that it includes the Bernoulli, the Geometric and the Poisson
distributions as special cases and, furthermore, allows for heterogeneity.
Little emphasis is oftenplacedon the variability associatedwith thepopula-
tion size estimate. This paper provides a deep and extensive comparison of
bootstrap methods in the capture–recapture setting. It deals with the clas-
sical bootstrap approach using the true population size, the true bootstrap,
and the classical bootstrap using the observed sample size, the reduced
bootstrap. Furthermore, the imputed bootstrap, as well as approximating
forms in terms of standard errors and confidence intervals for the popu-
lation size, under the Conway–Maxwell–Poisson distribution, have been
investigated and discussed. These methods are illustrated in a simulation
study and in benchmark real data examples.
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1. Introduction

It has been recognized that in capture–recapture (CR) experiments heterogeneity may influence cap-
ture probabilities, and failure to acknowledge this may lead to biased estimates of the unknown
population size. References [1–4] show that the ignorance of heterogeneity effect yields a negatively
biased estimation of the population size. Similarly, references [5–7] acknowledge the underestimation
of sample size by the occurrence of unmodelled heterogeneity of capture probabilities.

InCR analyses, one of themost used approaches to dealwith heterogeneity is themixedmodel, that
assumes that some components of the capture probabilities arise from a mixing distribution [8–10].
Other examples are given by finite mixture models [11,12].

In this paper we aim to investigate uncertainty in a simple and powerful CR estimator, namely
the Conway–Maxwell–Poisson (CMP) estimator, able to capture different levels of heterogeneity
adaptively. This is a challenge faced by existingCR estimators. TheCMPestimator can capture power-
law behaviour, excessive zeros or high skewness of the underlying distribution without the need for
an additional mixture component.

The motivation behind considering the CMP estimator stems from the role recently played by
the CMP distribution [13] and its extensions [14–17]. The estimation and inference for param-
eters of a CMP distribution have been investigated in a small number of studies [18,19]. The
CMP distribution is a two-parameter generalized form of the Poisson distribution. It includes
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as special submodels important distributions (i.e. the Poisson, the Bernoulli and geometric
distributions) and generalizes the Poisson distribution allowing for overdispersion as well as
underdispersion.

Model parameters are estimated through weighted least squares (WLS), based on a graphical
device, namely the ratio-plot [20]. The ratio-plot is a graphical method for identifying the form of the
heterogeneity distribution in CR data. In particular, it assesses if the homogeneous Poisson is appro-
priate or whether (or not) heterogeneity arises in the observed data. Here, we go beyond its useful
descriptive nature and use the ratio-plot to obtain the estimate of CMP parameters, and accordingly
of the population size.

An overlooked issue in general CR analyses is the quantification of uncertainty surrounding
the estimates of the unknown population size. An estimation of the population size can be accu-
rate and precise, but if the associated estimation of variance is poor, then coverage by the 95%
confidence interval may falsely indicate poor estimation by the point estimator, that is, the point
estimator may result in a poor coverage rate. Focusing on the CMP estimator, we attempt here to
investigate bootstrap methods as a robust and general approach to estimate variances and confi-
dence intervals. Various bootstrap methods have been considered to estimate uncertainty in CR
analyses with respect to other estimators [21–23]; however, bootstrap results in a variance estimate
which is likely to be smaller than the true variance, because it conditions on being observed [24].
In addition to bootstrap methods, we examine a variance approximation method that could be of
practical use. Indeed, although bootstraps are useful in CR analyses since they provide omnibus tools
for variance and confidence interval estimation, for the CMP estimator, the approximated variance
may give accurate estimates and reduce the required computational burden. Here, we attempt to
compare the performance of different bootstrap methods (namely, the true, reduced and imputed
bootstrap methods) and an approximation-based approach in terms of variance estimation and con-
fidence intervals in CR count data where data are generated under a CMP distribution or from a
model outside the CMP family. Together these methods encompass the various variance estimation
proposals.

A large-scale simulation study is provided. Several data generation schemes are considered. We
focus on comparing different methods to assess uncertainty about population size estimates. An
approximated variance specification is compared with different bootstrap approaches in terms of
recovering the true variability in the estimates as well as looking at 95% coverage probabilities. A
complete investigation of these methods is provided on simulated data varying the sample size and
the heterogeneity in the data. To provide evidence of what might happen in the analyses of real data,
we provide further numerical examples based on well-known benchmark datasets. We discuss the
implications of using different uncertainty assessment methods and the flexibility of the CMP-based
estimator to address several data features.

The outline of the paper is as follows. In Section 2, we introduce the CMP estimator, along
with the ratio-plot and the computational aspects of the adopted regression-based algorithm. In
Section 3, we provide details on variance estimation. An approximated variance is analytically
computed and bootstrap methods are introduced and implementation details are discussed. The
performance of several model specifications under different data generation schemes by means of
a simulation study is provided in Section 4. In Section 5, we present several real-data analyses. In
Section 6, we point out some remarks, along with drawbacks that may arise by adopting the proposed
methodology.

2. The CMP estimator for heterogeneous CRdata

2.1. Preliminaries

CR analyses are based on the repeated sampling from a population and, consequently, on the use
of recapture information to infer the number of uncaptured units, for a general introduction to CR
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data modelling see e.g. [25]. In the following, we consider a closed population, that is, the unknown
population size, say N, is assumed to be constant (with no births/deaths during sampling stages),
misclassification is not allowed and all units act independently.

Formally, let Xi, i = 1, . . . ,N denote the number of times unit i is captured over the m sampling
occasions, and let px = Pr(Xi = x). Also let fx denote the frequency of units captured exactly x times,
x = 0, 1, . . . ,m, wherem is the largest observed count. As Xi = 0 is not observed, the corresponding
f0 is unknown and might be replaced by its expected value Np0. Nevertheless, p0 is usually unknown
too and has to be estimated. As Xi takes only non-negative integer values, a count data model may
represent a natural starting point.

2.2. The CMP distribution

In modelling count data, the CMP distribution has recently played an important role. The CMP
probability distribution function, CMP(λ, ν), has the form [13]

px = λx

(x!)ν
1

z(λ, ν)
, x = 0, 1, 2, . . . ; λ > 0; ν ≥ 0,

where the normalizing constant

z(λ, ν) =
∞∑
j=0

λj

(j!)ν
,

is a generalization of well-known infinite sums.
The CMP distribution contains some well-known discrete distributions:

• for ν = 1, z(λ, ν) = eλ, and the CMP distribution simply reduces to the ordinary Poisson(λ);
• for ν → ∞, z(λ, ν) → 1 + λ, and the CMP distribution approaches the Bernoulli with parameter

λ(1 + λ)−1;
• for ν = 0 and 0 < λ < 1, z(λ, ν) is a geometric sum

z(λ, ν) =
∞∑
j=0

λj = 1
1 − λ

,

and, accordingly, the CMP distribution reduces to the geometric distribution px = λx(1 − λ);
• for ν = 0 and λ ≥ 1, z(λ, ν) does not converge, leading to an undefined distribution.

In general, of course, the normalizing constant z(λ, ν) does not permit such a neat, closed-
form expression. Asymptotic results are, however, available. Gillispie and Green [19] prove that, for
fixed ν,

z(λ, ν) ∼ exp(νλ1/ν)

λ(v−1)/2ν(2π)(ν−1)/2√ν
(1 + O(λ−1/ν)),

as λ → ∞, confirming the conjecture made by [13].
To complete the description on the CMP distribution, let us specify CMP moments. There are

no simple closed form linking the parameters to moments, but some recurrence relations and
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approximations are provided by using an asymptotic approximation of z(λ, ν) (see e.g. [13,26])

E(X) ≈ λ1/ν + 1
2ν

− 1
2
,

V(X) ≈ 1
ν
λ1/ν .

It is evident that both E(X) and Var(X) are increasing functions of λ but decrease with respect
to ν.

2.3. Estimating the CMP parameters

The likelihood function for a set of n independent and identically distributed observations is

L(· | λ, ν) = λ
∑n

i=1 xi exp

{
−ν

n∑
i=1

log xi!

}
z−n(λ, ν).

As widely discussed in [13], parameters estimates can be obtained by maximizing the likelihood
function performing constrained numerical maximization techniques. Nevertheless, computational
issues may arise as the maximization procedure involves the infinite sum z(λ, ν). Furthermore, in CR
studies, the zero counts are truncated and, hence, the sample frequencies arise from a zero-truncated
distribution. Thus, a zero-truncated CMP distribution should be considered and this may further
complicate model inference.

To avoid numerical issues, we estimate model parameters by combining a simple graphical tech-
nique, that is, the ratio-plot [20], with a computationally efficient least squaresmethod. The proposed
method is based on ratios of successive probability counts

rx = (x + 1)
px+1

px
,

which is a function of the observed count x. Bearing in mind that the ratio rx for the truncated and
the untruncated distribution is identical as

rx = (x + 1)
px+1

px
= (x + 1)

px+1/(1 − p0)
px/(1 − p0)

,

the ratio for the CMP distribution is

rx = (x + 1)
px+1

px
= (x + 1)

λx+1

{(x+1)!}ν
1

z(λ,ν)

λx

(x!)ν
1

z(λ,ν)

= λ(x + 1)1−ν , (1)

and does not depend on the complex normalizing constant z(λ, ν). Let us consider the ratio on the
log scale, we achieve a linear model

log{rx} = log
{
(x + 1)

px+1

px

}
= log{λ(x + 1)1−ν}

= log λ + (1 − ν) log(x + 1) = β0 + β1 log(x + 1). (2)

From (2), we have that λ = exp(β0) and ν = 1 − β1; however, due to ν ≥ 0 (or, equivalently,
1 − ν ≤ 1), we must constrain β1 ≤ 1. Similarly, λ > 0 implies β0 ∈ (−∞,+∞). Furthermore, two
basic assumptions of ordinary regression models are violated here. First, the variance of the depen-
dent variable is not constant. The second deviation from ordinary regression assumptions is the fact
that the ‘observations’ are not independent.
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All these issues are relevant and should be accounted for. Thus, we address them by using WLS
techniques to estimate the regression parameters β0 and β1. These are obtained as(

β̂0
β̂1

)
= (X′WX)−1X′WY, (3)

where Y = (log r1, log r2, . . . , log rm−1)
′ , X is he design matrix containing the regression functions

of the model andW is a diagonal matrix containing the estimated inverse variances of Y1, . . . ,Ym−1,
i.e.

W =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
f1

+ 1
f2

0 · · · 0

0
1
f2

+ 1
f3

· · · 0

...
...

...
...

0 0 0
1

fm−1
+ 1

fm

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

−1

.

Here,m is the largest count observed.
Accordingly, the estimator based on the CMP distribution of target population size can be readily

achieved as (see e.g. [27])

N̂CMP = n + f̂0 = n + f1 exp(−β̂0),

where β̂0 is got from the weighted least square method.

3. Variance estimation

While the WLS algorithm provides an efficient means of parameter estimation in the CR modelling
context, the default output does not provide estimates of the uncertainty associated with the param-
eter estimates. Several approaches have been considered to facilitate the provision of standard errors
within this context [21–23].

3.1. Approaches based upon resample techniques

Examples of variance estimation based on bootstrap methods have been proposed in the literature
[22,23,28], but never fully investigated. However, all the existing works look at resampling techniques
as a promising and useful alternatives to provide standard errors in the CR framework. In the fol-
lowing, bootstrap methods to obtain an estimate of the variance associated with the population size
estimate are described. Bootstrap methods are straightforward to implement, regardless of the model
under consideration. Here, we consider the True Bootstrap (TB), the Imputed Boostrap (IB) and
the RB. In our setting, the algorithm for TB, IB and RB variance estimation techniques proceeds as
follows

(i) Estimate N̂CMP as described in Section 2. This provides an estimate of f0, f̂0.
(ii) Form R samples comprising of observations from the original data as follows:

• Let p̂TB = {f0/N, f1/N, . . . , fm/N}. The TB can be applied for estimating variance of inter-
ested population size estimator only if the population size is known. Accordingly, under the
TB approach, each of the RTB samples contains N observations drawn from a Multinomial
distributions with parameters N and p̂TB.

• Let p̂IB = {f̂0/N̂CMP, f1/N̂CMP, . . . , fm/N̂CMP}. Under the IB approach, each of the RIB sam-
ples contains N̂CMP observations drawn from a Multinomial distributions with parameters
N̂CMP and p̂IB.
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• Let p̂RB = {f1/n, f2/n, . . . , fm/n}. Under the RB approach, each of the RRB samples contains n
observations, where the observations are sampled with replacement from the observed data.

(iii) For each sample, estimate N̂CMP, under the CMP model. In the case of the TB, it means that the
true f0 is ignored.

(iv) Estimate the variance of N̂CMP on R bootstrapped samples
• The TB estimate of the variance of N̂CMP is equal to

σ 2
TB = 1

R − 1

R∑
r=1

(N̂CMP,r − ¯̂NCMP,TB))
2,

where ¯̂NCMP,TB is the TB sample mean.
• The IB estimate of the variance of N̂CMP is equal to

σ 2
IB = 1

R − 1

R∑
r=1

(N̂CMP,r − ¯̂NCMP,IB)
2,

where ¯̂NCMP,IB is the IB sample mean.
• The RB estimate of the variance of N̂CMP is equal to

σ 2
RB = 1

R − 1

R∑
r=1

(N̂CMP,r − ¯̂NCMP,RB)
2,

where ¯̂NCMP,RB is the RB sample mean.

3.2. An approximation-based approach

Another benefit of the ratio regression approach is that variance estimators for f0 can easily be devel-
oped as variance estimators for the estimated regression coefficients are easily available. Let N̂ be the
population size estimator, the variance of N̂CMP = n + f1 e−β̂0 arise from two sources; these are influ-
enced by the random variable n and the estimator f̂0. Therefore a simple formula for the variance of
the population size estimator is given as

Var(N̂) = Varn{E(N̂ | n} + En{Var(N̂ | n)}.

We apply a technique for computing moments usually referred to as conditioning (see e.g. [29])
to population size estimation. The technique provides a simple formula for variance computation of
population size which can be applied to a general estimator. According to the conditional technique,
we have

Var(f1 e−β̂0) = Varf1{E(f1 e−β̂0) | f1} + Ef1{Var(f1 e−β̂0) | f1}.
and thus

Varf1{E(f1 e−β̂0) | f1} ≈ Var(f1 e−β̂0) = (e−β̂0)2Var(f1)

= (e−β̂0)2Np1(1 − p1) = (e−β̂0)2f1
(
1 − f1

N

)
.

Using the delta method, we achieve that Var(e−β̂0) = (e−β̂0)2Var(β̂0). Hence Ef1{Var(f1 e−β̂0) |
f1} ≈ f 21 (e−β̂0)2Var(β̂0), where Var(β̂0) comes from the linear regression process. The approximated
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expression for the variance of the CMP estimator N̂CMP is given as

V̂ar(N̂CMP) = nf1 e−β̂0

n + f1 e−β̂0
+ (e−β̂0)2f1

(
1 − f1

N

)
+ f 21 (e−β̂0)2Var(β̂0).

As 1 − f1/N ≤ 1, a conservative asymptotic variance estimate of N̂CMP is obtained as

σ̂ 2
CMP = V̂ar(N̂CMP) = nf1 e−β̂0

n + f1 e−β̂0
+ (e−β̂0)2f1[1 + f1Var(β̂0)]. (4)

4. Simulation study

To better understand the properties of the methods described above, a simulation study was under-
taken. This section provides a comprehensive assessment of population size variance estimators
performance. We plan the simulation study to cover schemes with different underlying null mod-
els, with varying population size N = 100;250;500;1000;5000;10,000 and levels of heterogeneity. In
detail, we considering the following data generation settings

(i) The CMP distribution: Counts are generated from CMP distribution with parameters

λ ∈ {0.5, 0.8, 1.0},
ν ∈ {0.1, 0.5, 0.8}.

(ii) The Negative Binomial distribution: Counts are generated from a Negative Binomial
distribution

px = �(x + k)
�(x + 1)�(k)

(1 − λ)kλx,

with parameters

λ ∈ {0.2, 0.4, 0.6, 0.8},

dispersion parameters

k ∈ {2, 3, 4},

expected value and variance given respectively by

E(X) = kλ
1 − λ

= μ

and

Var(X) = kλ
(1 − λ)2

= μ + 1
k
μ2.
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(iii) The Generalized Poisson distribution: Counts are generated from a Generalized Poisson
distribution

px = λ(λ + kx)x−1

x!
exp(−(λ + kx)),

where λ > 0 and max(−1,−λ/4) ≤ k ≤ 1. The expected value and variance are given respec-
tively by

E(X) = λ

1 − k
= μ

and

Var(X) = λ

(1 − k)3
= μ

1
(1 − k)2

.

The following parameters are considered to generate counts

λ ∈ {0.8, 1.0, 2.0}

and

k ∈ {−0.1, 0.1, 0.3}.

The setting (i) covers situations where the data are generated from the CMP distribution, with
different levels of heterogeneity/overdispersion, whilst the settings (ii) and (ii) are considered to inves-
tigate what happens if we leave the family. We draw 1000 samples from each null model. Please, the
reader be aware that λ have different meanings for the CMP/GP and NB.

4.1. Bias and variance

Tables 1–3 show the estimator’s behaviour under different settings. We evaluate the performance of
the estimator in terms of relative bias

1
N
[E(N̂) − N]

and relative variance
1
N2 (V̂ar(N̂)).

The estimator performs very well under the CMP(λ, ν) data generation process. In particular,
its behaviour is satisfactory as well as the data show a high degree of heterogeneity, that is, for
ν → 0. As expected, increasing N lead to better estimates in terms of both relative bias and vari-
ance of the estimates. In detail, the CMP estimator shows very good finite sample properties if the
data generation process follows a CMP distribution. As long as the sample size increases, that is,
N → ∞, the bias reduces and the estimate of the population size tends to the true value. In finite
samples, it performs very well in the presence of overdispersion and/or large populations sizes. As
the level of overdispersion reduces, that is, by increasing ν values, the CMP estimator is less accu-
rate and even precision could be poor for small population sizes. Under Negative Binomial data
generation settings, the simulation results show that the CMP-based estimator has small relative
biases and variances if data are generated from a model that does not belong to the CMP family.
A similar behaviour arises under Generalized Poisson data generation process, that is, the pro-
posed estimator is robust against model specification. However, a persistent overestimation occurs
for small population sizes and λ values, that may become an issue as the variance approaches
to zero.
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Table 1. Setting (i): Data are generated according to a CMP(λ, ν) distribution.

λ ν N= 100 N= 250 N= 500 N= 1000 N= 5000 N= 10,000

Relative bias
0.8 0.10 0.0110 0.0056 0.0076 0.0054 0.0020 0.0007

0.50 0.1057 0.0595 0.0501 0.0254 0.0066 0.0034
0.80 0.1726 0.1276 0.0709 0.0357 0.0090 0.0016
1.25 0.5005 0.3084 0.1444 0.0860 0.0163 0.0107

1.0 0.10 0.0095 0.0080 0.0050 0.0016 0.0009 0.0001
0.50 0.0704 0.0459 0.0209 0.0137 0.0020 0.0016
0.80 0.1236 0.0833 0.0467 0.0278 0.0048 0.0032
1.25 0.3433 0.1643 0.0754 0.0402 0.0065 0.0075

1.2 0.10 0.0084 0.0037 0.0013 0.0011 0.0002 0.0001
0.50 0.0442 0.0289 0.0140 0.0068 0.0014 0.0005
0.80 0.1020 0.0461 0.0278 0.0170 0.0026 0.0015
1.25 0.1961 0.1178 0.0573 0.0296 0.0079 0.0015

Relative variance
0.8 0.10 0.0145 0.0062 0.0040 0.0022 0.0005 0.0002

0.50 0.0712 0.0366 0.0194 0.0092 0.0017 0.0009
0.80 0.1450 0.0811 0.0431 0.0207 0.0037 0.0017
1.25 0.3063 0.2198 0.1246 0.0578 0.0093 0.0040

1.0 0.10 0.0050 0.0023 0.0011 0.0006 0.0001 0.0001
0.50 0.0347 0.0181 0.0079 0.0040 0.0008 0.0003
0.80 0.0921 0.0424 0.0201 0.0091 0.0016 0.0008
1.25 0.2572 0.1270 0.0616 0.0239 0.0039 0.0021

1.2 0.10 0.0009 0.0004 0.0002 0.0001 0.0000 0.0000
0.50 0.0207 0.0086 0.0042 0.0017 0.0003 0.0002
0.80 0.0533 0.0212 0.0093 0.0042 0.0007 0.0004
1.25 0.1522 0.0722 0.0302 0.0117 0.0021 0.0009

Note: Relative bias and relative variance of the CMP-based estimator.

Table 2. Setting (ii): Data are generated according to a NB(λ,k) distribution.

k λ N= 100 N= 250 N= 500 N= 1000 N= 5000 N= 10,000

Relative bias
2 0.20 0.1329 0.1303 0.1067 0.1002 0.0997 0.0877

0.40 0.0710 0.0742 0.0700 0.0652 0.0554 0.0534
0.60 0.0481 0.0441 0.0408 0.0360 0.0310 0.0305
0.80 0.0227 0.0185 0.0156 0.0128 0.0121 0.0121

3 0.20 0.1827 0.1399 0.1244 0.1116 0.0784 0.0734
0.40 0.0799 0.0657 0.0546 0.0470 0.0397 0.0397
0.60 0.0363 0.0267 0.0209 0.0212 0.0182 0.0183
0.80 0.0097 0.0066 0.0059 0.0048 0.0044 0.0044

4 0.20 0.1598 0.1473 0.1340 0.1229 0.0842 0.0735
0.40 0.0579 0.0460 0.0368 0.0291 0.0275 0.0269
0.60 0.0172 0.0131 0.0113 0.0103 0.0095 0.0093
0.80 0.0255 0.0031 0.0020 0.0017 0.0014 0.0013

Relative variance
2 0.20 0.1461 0.1065 0.0755 0.0441 0.0146 0.0087

0.40 0.0408 0.0214 0.0127 0.0072 0.0015 0.0007
0.60 0.0095 0.0044 0.0026 0.0011 0.0002 0.0001
0.80 0.0014 0.0005 0.0002 0.0001 0.001 0.0000

3 0.20 0.1454 0.0759 0.0475 0.0333 0.0066 0.0033
0.40 0.0214 0.0109 0.0047 0.0024 0.0004 0.0002
0.60 0.0032 0.0011 0.0005 0.0002 0.001 0.0000
0.80 0.0003 0.0001 0.0001 0.0001 0.0000 0.0000

4 0.20 0.1279 0.0775 0.0514 0.0305 0.0068 0.0033
0.40 0.0102 0.0042 0.0017 0.0009 0.0001 0.0001
0.60 0.0011 0.0003 0.0001 0.0001 0.0001 0.0000
0.80 0.0110 0.0001 0.0001 0.0000 0.0000 0.0000

Note: Relative bias and relative variance of the CMP-based estimator.
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Table 3. Setting (iii): Data are generated according to a GP(λ,k) distribution.

λ k N= 100 N= 250 N= 500 N= 1000 N= 5000 N= 10,000

Relative bias
0.8 −0.1 0.6228 0.2159 0.0168 −0.0746 −0.1314 −0.1358

0.1 0.1698 0.1610 0.1225 0.1088 0.0767 0.0748
0.3 0.0139 0.0301 0.0391 0.0472 0.0578 0.0614

1 −0.1 0.2701 0.0402 −0.0203 −0.0571 −0.0840 −0.0876
0.1 0.1607 0.1160 0.0980 0.0696 0.0594 0.0583
0.3 0.0639 0.0748 0.0732 0.0736 0.0749 0.0745

2 −0.1 0.0292 0.0022 −0.0076 −0.0141 −0.0193 −0.0196
0.1 0.0587 0.0377 0.0276 0.0226 0.0177 0.0175
0.3 0.0750 0.0506 0.0457 0.0435 0.0379 0.0388

Relative variance
0.8 −0.1 0.4131 0.2315 0.0989 0.0338 0.0050 0.0022

0.1 0.1074 0.0712 0.0405 0.0224 0.0044 0.0020
0.3 0.0369 0.0167 0.0092 0.0051 0.0010 0.0005

1 −0.1 0.2234 0.0835 0.0373 0.0160 0.0022 0.0010
0.1 0.0876 0.0443 0.0254 0.0110 0.0022 0.0011
0.3 0.0319 0.0161 0.0088 0.0051 0.0013 0.0007

2 −0.1 0.0151 0.0045 0.0016 0.0008 0.0002 0.0001
0.1 0.0139 0.0046 0.0020 0.0009 0.0002 0.0001
0.3 0.0100 0.0040 0.0021 0.0010 0.0002 0.0001

Note: Relative bias and relative variance of the CMP-based estimator.

4.2. Comparing estimates of uncertainty

Themethods are firstly compared in terms of how well they estimate the true standard error, which is
one of the aims of this research. Let us focus on the (i) setting (see Figure 1), the TB performs very well
and represents the best possible choice for the estimation of sample size standard error. However, in
practice, theTB can be used only if the population size is known. In real data analyses, it is unlikely that
the population size is known and, thus, although the TB is a valid method to estimate uncertainty in
CRdata, an alternative should be considered. TheRB approach tends to persistently underestimate the
uncertainty in the population size estimates. In particular for higher levels of dispersion (i.e. for small
values of ν), such an effect does not disappear neither for very large N. By reducing heterogeneity in
the data, approaching the Poisson distribution, even the RB performs reasonably. Such a behaviour is
somehow expected as the RB approach uses only observed frequencies, ignoring the zero-truncation
in the data. The IB represents a valid and practical alternative to the TB approach. The IB approach
performs similarly as the TB and is valuable as it relies on available observations and an estimate of
the population size.

All bootstrap methods may require a considerable amount of time, as a huge number (1000 in our
case) of bootstrapped samples is required to get reliable uncertainty estimates. Thus, a more straight-
forward and less computational-intensive approach could be pursued. The approximated formulation
proposed in Section 3.1 can be an easily computable alternative to bootstrap approaches. As expected,
the approximated variance performs very well as the population size increases. However, for small
sample sizes, it performs poorly. This is in line with the idea that the approximation is asymptotically
valid. A further drawback of the use of such an approximation is revealed by our simulation study,
for weak overdispersion cases the approximation does not have a satisfactory behaviour and even the
RB approach performs better as the data approaches the Poisson distribution. Similar conclusions
can be drawn even under the Negative Binomial and Generalized Poisson data generation settings
(see Figures 2–4). The formula-based approximation tends to overestimate the true standard error
for small population sizes, whilst provides reasonable estimates as the population sizes and λ values
increase. The TB approach is still the best one, followed by the IB that is confirmed to be the one to
use in practice.
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Figure 1. Setting (i): Data are generated according to aCMP(λ, ν) distribution. Ratio of bootstrapped/approximated standard errors
over the Monte Carlo standard errors.

4.3. Comparing confidence intervals

We then used the approximation-based and bootstrap methods to derive 95% quantile confidence
intervals for each data set. Using these intervals, we ascertained the coverage proportions for each of
the methods. These results shed light on the confidence we can put on the obtained estimates and the
related uncertainty. Confidence intervals are computed in different ways. A common procedure is to
approximate 95% confidence interval for the true population size by the N̂ ∓ z0.975σ̂CMP, where σ̂CMP
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Figure 2. Setting (i): Data are generated according to a CMP(λ;ν) distribution Coverage probabilities.

is the estimated standard error in (4). This is referred to as a symmetric confidence interval (SYM).
However, the construction of the symmetric confidence intervals is based on the large-sample nor-
mality for population size estimators. Several drawbacks for this method have been highlighted in
[30]: the sampling distribution could be skewed, the lower bound of the resulting interval may be less
than the number of units captured, the coverage probabilities may be unsatisfactory. To overcome
these issues, coverage of the Burnham confidence interval (BH) (n + (N̂ − n)/c; n + (N̂ − n)c),
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Figure 3. Setting (ii): Data are generated according to a NB(λ;k) distribution. Ratio of bootstrapped/approximated standard errors
over the Monte Carlo standard errors.

where

c = exp

⎧⎨⎩z0.975
[
log

(
1 + σ̂ 2

CMP

(N̂ − n)2

)]1/2⎫⎬⎭ ,

is also evaluated [10,31]. We further suggest to look at intervals obtained by using a log-
transformation of N̂. From the log-normal distribution, it follows that log N̂ has mean logN − 1

2
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Figure 4. Setting (ii): Data are generated according to a NB(λ; k) distribution. Coverage probabilities.

log(1 + σ 2
CMP/N

2) and variance log(1 + σ 2
CMP/N

2). Plugging in estimates for σ 2
CMP andN leads to a

confidence interval for logN (LOG) given by

log N̂ + 1
2
log(1 + σ̂ 2

CMP/N̂
2) ∓ z0.975

√
log(1 + σ̂ 2

CMP/N̂2).

Taking the anti-logs provides the final formof the confidence interval forN [32]. Other approaches
can be pursued to get confidence intervals [30].

For the bootstrap methods, considering all estimates N̂b, b = 1, . . . ,B from B bootstrapped sam-
ples results in an empirical distribution around the true value. From this distribution we can compute
the standard error σ̂ of the parameter by taking the sample standard deviation of the resulting dis-
tribution. The approximate 95% confidence interval of the population size N̂ can be obtained using
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Figure 5. Setting (iii): Data are generated according to a GP(λ;k) distribution. Ratio of bootstrapped/approximated standard errors
over the Monte Carlo standard errors.

the percentile method as follows: order N̂b from the smallest to largest, and denote the ordered list
by N̂(b); the approximate 95% confidence limits are then given by N̂(B+1)∗0.025 and N̂(B+1)∗0.975, both
rounded to the nearest integer value.

Overall, we compare six methods to get confidence intervals of the CMP estimator. Results are
summarized in Figures 5, 3 and 6 for the three considered settings, respectively. Under the CMP data
generation process, approximationmethods provide coverages close to the nominal 95%value for ν =
0.1, that is, high level of overdispersion; whilst the RB suffers in providing reasonable coverage results.
Therefore, if the dispersion parameter approaches zero and population sizes are moderate or large,
we suggest to construct confidence interval by any of the approximation-based approaches because
they are easy to compute and do not require any computational-intensive methods. Interestingly,
reducing the level of overdispersion, all approximation-based methods tend to be inappropriate, as
under-coverage occurs. Thus, resampling approaches should be preferred in these situations, and the
IB approach should be used in practice. Under the Negative Binomial and Generalized Poisson data
generation processes, the IB, SYM and LOGmethods to build confidence intervals perform similarly.
The RB approach should be avoided inmost situations, having the worst performance. All considered
approaches provide poor coverage as the population size increases. This is mainly due to the very
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Figure 6. Setting (iii): Data are generated according to a GP distribution. Coverage probabilities.

small estimated variances under these settings that lead to narrow confidence intervals centred to a
slightly biased estimate of the true sample size.

5. Real data examples

In the following we estimate population sizes through the CMP estimator so far considered in four
well-known benchmark datasets. Data are provided in Table 4. Graphical data inspections through
the (log) ratio-plot are provided in Figure 7. In two cases (the Golf-tees and the Taxicabs data) we
know the true population size and, accordingly, the TB approach can be also considered. We would
like to provide more insights on the uncertainty of the estimates in real data applications, focusing on
implications of using different method to estimate such an uncertainty. Population size estimates and

Table 4. Data used in the empirical analyses.

Name Source f0 f1 f2 f3 f4 f5 f6 f7 f8

Golf-tees Borchers et al. [33] 88 46 28 21 13 23 14 6 11
Taxicabs A Carothers [34] 137 142 81 49 7 3 1
Hares Otis et al. [5] n.a. 25 22 13 5 1 2
Cholera Mao and Lindsay [37] n.a 32 16 6 1
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Figure 7. Real data analysis: Ratio-plots. (a) Golf-tees data, (b) Taxicabs data, (c) Hares data (all), (d) Hares data (reduced) and (e)
Cholera data.

confidence intervals are reported in Table 5, along with CMP parameters estimate. Table 6 compares
the observed and the estimated frequencies under different distributional assumptions.

5.1. Golf-tees data

We consider the dataset described by [33] involving golf tees. A total of eight individuals recorded the
location of the golf tees that they observed in a survey region of 1680m2 , either exposed above the
surrounding grass, or partly hidden by it, independent of each other. Each individual was essentially
regarded as a capture event. The tees differed with respect to size, colour and visibility, so that there
is some heterogeneity within the population being observed. A total of 162 groups of tees were found
and f0 = 88 group of tees were missed. The observed distribution refers to the count of times each
group of tees has been found by eight independent observers.

The ratio-plot in Figure 7(a) suggests for heterogeneity, and, accordingly, we expect that the CMP
estimator would perform well. The CMP estimator leads to N̂ = 223, with λ̂ = 0.77 and ν̂ = 0, that
is, a Geometric distribution results from parameters estimation. The formula-based variance approx-
imation is larger than those from bootstrap methods, in line with the simulation results for small λ
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Table 5. Population size estimation and uncertainty assessment in real data examples.

Standard error estimation 95% Confidence Intervals

Name N N̂ Approx. σTB σIB σRB Approx. TB IB RB

Golf-tees 250 223 33.09 15.11 14.41 11.16 (159–288)(a) (193–252) (196–253) (203–247)
(λ = 0.77, ν = 0) (168–298)(b)

(169–301)(c)

Taxicabs A 420 428 91.28 65.75 65.85 64.12 (250–607)(a) (348–600) (348–600) (353–597)
(λ = 0.98, ν = 0.69) (284–648)(b)

(290–662)(c)

Hares (all data) n.a. 86 12.01 n.a. 15.10 14.43 (66–113)(a) n.a. (68–126) (71–125)
(λ = 1.43, ν = 0.77) (66–113)(b)

(66–114)(c)

Hares (reduced data) n.a. 78 4.58 n.a. 14.08 13.50 (70–87)(a) n.a. (66–121) (69–121)
(λ = 2.16, ν = 1.25) (68–126)(b)

(71–125)(c)

Cholera n.a. 87 7.59 n.a. 11.90 11.89 (73–102)(a) n.a. (67–114) (67–114)
(λ = 1.01, ν = 1) (73–103)(b)

(74–104)(c)

Note: (a) : Symmetric confidence interval , (b) : Burnham confidence interval and (c) : Logarithm transformation confidence interval

Table 6. Data used in the empirical analyses: observed and estimated recapture frequencies.

Name Model f1 f2 f3 f4 f5 f6 f7 f8 χ2

Golf-tees Observed 46 28 21 13 23 14 6 11
Fitted (Poisson) 22 35 37 30 120 11 5 2 86.10
Fitted (CMP) 38 29 22 17 13 10 8 6 16.66
Fitted (GP) 29 34 31 24 17 11 7 4 34.62

Taxicabs A Observed 142 81 49 7 3 1
Fitted (Poisson) 140 89 38 12 3 1 6.02
Fitted (CMP) 139 84 39 15 5 1 7.80
Fitted (GP) 105 109 54 13 1 0 27.46

Hares (all data) Observed 25 22 13 5 1 2
Fitted (Poisson) 25 22 13 6 2 1 1.67
Fitted (CMP) 25 21 13 8 3 1 2.55
Fitted (GP) 27 21 12 5 2 1 0.78

Hares (reduced data) Observed 25 22 13 5 1
Fitted (Poisson) 26 21 12 5 2 0.67
Fitted (CMP) 25 23 12 5 2 0.13
Fitted (GP) 28 22 11 4 1 0.94

Cholera Observed 32 16 6 1
Fitted (Poisson) 32 16 5 1 0.2
Fitted (CMP) 32 16 5 1 0.2
Fitted (GP) 36 13 4 1 2.14

and ν values. This leads to wider, and still plausible, confidence intervals; whilst the RB confidence
interval does not cover the true sample size. Small differences in confidence interval computation,
that is, symmetric, Burnham and log-transformed, are also observed.

5.2. Taxicabs data in Edinburgh

A further example of overdisperved count data is given by the Taxicabs data (see Figure 7(b)).
Carothers [34] reported that 420 taxi cabs were registered in Edinburgh, Scotland during his
mark-recapture study. This closed population was sampled for 10 consecutive days with observa-
tion points and times varied among days. Sighting a cab was considered a ‘capture’. No taxis were
observed on more than six occasions. These data have been analysed many times in the literature
using different estimators (e.g. [5,30]). The performance of the CMP estimator is remarkably good
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(N̂ = 428), compared to other estimators. In all cases the true N is contained within the confidence
intervals, no matter what procedure has been used to obtain them.

5.3. Snowshoe hare data

The snowshoe hare data have been analysed in [35,36]. From a graphical inspection through the
ratio-plot (see Figure 7(c)), it is clear that the two animals caught on all occasions create some
overdispersionwith respect to the Poisson distribution. Therefore, theCMPestimator could be a good
candidate to estimate the unknown population size. Parameter estimates are ν̂ = 0.77, with λ̂ = 1.43
and the resulting estimated population size is N̂ = 86, slightly higher than the one estimated in [36].
If we remove the 2 hares caught 6 times (see Figure 7(c)), as [35], the situation changes considerably
and underdispersion is estimated (λ̂ = 2.16; ν̂ = 1.25), with N̂ = 78. However, the CMP estimator
results to be flexible enough to capture even underdispersion.

Similarly, confidence intervals reflect the effect of the 2 hares caught at all occasions, whichwe have
discussed above. They are very large if the complete data are considered, and much smaller if those
two hares are left out of the analysis as unrepresentative of the unobserved part of the population.
Bootstrap intervals are larger than those obtained by approximating the variance of the sample size
estimator, in line with the simulation results. The Burnham- and the log-transformed-based intervals
are more in line with the bootstrap ones, confirming that under the underdispersion case, assuming
a symmetric confidence interval may lead to unreliable inference.

5.4. Cholera data

The example stems from [37] and has been discussed previously by others. A cholera epidemic
affected a village in India. For the cholera epidemic data, evidence has been provided for the Poisson
distribution, confirmed by looking at the ratio-plot in Figure 7(e) which displays a horizontal line.
Indeed, the CMP estimator approaches the Poisson distribution, as ν̂ = 1, that is, the proposed esti-
mator can be used even if homogeneity is ensured. This is also confirmed by the formal chi-squared
test indicated that the cholera data follow homogeneity of a zero-truncated Poisson distribution with
p-value of .85. Under the homogeneity assumption, all formula-based confidence intervals behave
similarly, whilst bootstrapped ones are wider and no differences are obtained between IB and RB
confidence intervals.

6. Conclusions

Although CR methods are widely used approaches to estimate unknown population size, especially
through the use of Rcapture or mra packages in R or of the recap module in STATA, little atten-
tion had previously been paid to the investigation of the uncertainty surrounding population size
estimates.

Here, we provided several insights on the behaviour of bootstrap methods for variance estima-
tion. Although some studies have already considered bootstrap methods to estimate uncertainty in
the population size estimation, methods have not been compared through simulations and their
behaviour was not study in depth. Here, three bootstrap methods have been considered: the TB, the
RB, and the imputed bootstrap. What works and what does not? It is very clear that the RB does not
work, in the sense that it does underestimate the true variance. This is independent of the fact that
the model holds or not. This result indicates that current practice (using RB method in CR) should
be discontinued.

The TB works, if the model holds or not, but it cannot be used in practice. This leaves the imputed
bootstrap which seems to work like the TB but only if the model is valid. Hence it behaves similar to
the parametric bootstrap. The results are encouraging to investigate the imputed bootstrap in further
CR models and truncated data modelling.
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Results are consistent with the work of [21] that shows confidence intervals obtained by bootstrap
methods can be more accurate than those found analytically, using asymptotic approximations, for
both Bailey’s and Chapman’s nearly unbiased estimators.
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