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Outline

purpose of the talk

present and discuss a graphical device for investigating a
distributional structure

areas involved

» graphical statistics
» robust statistics
» capture-recapture in life science applications
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Introduction and Case Studies

The idea of capture-recapture

» objective is to determine the size N of an elusive target
population
» some mechanism (life trapping, register, surveillance system)
identifies a unit repeatingly
> this repeated identification (recapturing) works either
> in time
> in clusters
» in space
» there is a count X informing about the number of
identifications of each unit in the target population
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Introduction and Case Studies

sample
available: sample

X1, Xo, ... XN
also the frequencies
fo = frequency of units captured zero times
fi = frequency of units captured exactly 1 times
f> = frequency of units captured exactly 2 times
f. = frequency of units captured exactly x times

fn = frequency of units captured exactly m times
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Introduction and Case Studies

problem
if X; = 0 unit is not observed leading to a reduced observable

sample
X1, Xa, .. Xn

where — w.l.g. — we assume that
XI‘H-I = Xn+2 = ... = XN = O

hence
fo = N — n is unknown
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Introduction and Case Studies

Grizzly bears in the Yellowstone ecosystem




Introduction and Case Studies

A case study for illustration

grizzly bears in the Yellowstone ecosystem

Boyce et al. (2001) and Keating et al. (2002) recorded the
sighting frequencies of female grizzly bears with cubs-of-the-year in
the Yellowstone ecosystem; the data for three different
observational periods are provided in the table below:

Table: Female Grizzly Bears in the Yellowstone ecosystem

Year | 1 fh K fo f5 fo fr | n

1996 |15 10 2 1 O O O |28
1997 |13 7 4 1 3 0 1129
1998 |11 13 5 1 1 O 2|33
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Introduction and Case Studies

Hser’s Data on Estimating Hidden Intravenous Drug
Users in Los Angeles 1989

» intravenous drug users in L.A. county were entered into the
California Drug Abuse Data System (CAL-DADS)

» the data below refer to the frequency distribution of the
episode count per drug user in 1989

the frequency distribution of the episode count per drug user for

the year 1989:

fo fi f f3 fa fs fo
- 11,982 3,803 1,959 1,002 575 340
f fg fo fio fu1 fo2 n

214 90 72

36 21 14 | 20,198
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Introduction and Case Studies

Del Rio Vilas’s Data on Estimating Hidden Scrapie in
Great Britain 2005

> sheep is kept in holdings in Great Britain (and elsewhere)

» the occurrence of scrapie is monitored in the Compulsory
Scrapie Flocks Scheme (CSFS) summarizing abbatoir survey,
stock survey and the statutory reporting of clinical cases

» CSFS established since 2004

the frequency distribution of the scrapie count within each
holding for the year 2005:

fo h Hh B fa f5 fo fr fo| n
- 8 15 7 5 2 1 2 2118
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Introduction and Case Studies

Finding errors in software

Table: Illustration with Case Data from Software Inspection (Wohlin

et al. 1995)
Reviewers
Error i || R1 | R2 | ... | R22 || Marginal Y;
1 1 0 1 2
2 1 1 0 4
3 0 0 1 2
4 0 0 0 0
5 0 1 0 1
38 1 1 0 7
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Introduction and Case Studies

Hidden errors in software

Table: Zero-truncated count distribution of software errors

fo A Hh K fa & fo fr B fo fio
- 5 1 5 1 3 2 0 5 4 2

fu fio f3 ha fs fie fir fis fio fo | n
3 1 0 2 0 1 0 0 0 1 |36
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Introduction and Case Studies

a problem from text analysis

» given published text, how many words does an author know,
but not use?

» can be approached as a capture—recapture problem
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Introduction and Case Studies

Biomeirika (1976), 63, 3, pp. 43547 435
With 3 tezt-figures
Printed in Great Britain

Estimating the number of unseen species: How many

words did Shakespeare know?

By BRADLEY EFRON axp RONALD THISTED
Dep: ¢ of istics, Stanford University, California

SumMpMARY
Shak wrote 31534 di words, of which 14378 appear only once, 4343 twice,
ete. The question considered is how many words he knew but did not use. A parametric
empirical Bayes model due to Fisher and a nonpa.rametnc model due to Good & Toulmin
are examined. The latter theory is d using linear p thods. We
conclude that the models are equivalent to supposing that Sh&kespeam knew at least
35000 more words.

Some key words: Empirical Bayes; Euler ion; Linear ing; Negative binomial;
Vocabulary.

1. INTRODUOTION
Estimating the number of unseen species is a familiar problem in ecological studies. In
this paper the unseen species are words Shakespeare knew but did not use. Shakespeare’s
known works comprise 884647 total words, of which 14376 are types appearing just one
time, 4343 are types appearing twice, etc. These counts are based on Spevack’s (1968)
concordance and on the summary appearing in an unpublished report by J. Gani &
1. Saunders. Table 1 izes Shakesp ’s word type counts, where 7, is the number

Je B10°s|euinolpioyxojawiolq//:dny woly papeojumoq
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Introduction and Case Studies

report ol the same title, avallable Irom the authors on request.

Table 1. Shakespeare’s word type freq

Row

x 1 2 3 4 b5 (] 7 8 9 10 total
0+ 14376 4343 2202 1483 1043 837 638 519 430 384 28305
10+ 308 259 242 223 187 181 179 130 127 128 1961
204+ 104 105 29 112 23 74 83 76 72 63 881
30+ 73 47 56 58 53 45 34 49 45 52 513
40+ 49 41 30 35 37 21 41 30 28 19 331
50+ 25 19 28 27 31 19 19 22 23 14 227
60+ 30 19 21 18 15 10 15 14 11 16 169
70+ 13 12 10 16 18 11 8 15 12 1 122
80+ 13 12 11 8 10 11 7 12 9 8 101
80+ 4 7 [} 7 10 10 15 7 7 5 78

Entry z is n,, the number of word types used exaotly = times. There are 848 word typee which appear
more than 100 times, for & total of 31534 word types.

2. THE BASIO MODEL

We use the species trapping terminology of Fisher’s paper. Suppose that there exist §
species and that after trapping for one unit of time we have captured z, members of species s.
Of course we only observe those values z, which are greater than zero. The basic distribu-
tional assumption is that members of each species & enter the trap according to a Poisson
process, the proceass for species g having expectation A, per unit time, so that z, has a Poisson
distribution of mean A, (s = 1, ..., 8). Most of the calculations in this paper do not require
the 9 individual Poisson processes to be independent of one another. Whenever indepen-
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Introduction and Case Studies

How many words did Shakespeare know?

» Efron and Thisted (1987, Biometrika): How many words did
Shakespeare know, but not use?

» important question in text analysis and estimation of language
knowledge

fo A fa fs fa fs o fr .| n
- 14376 4,343 2,292 1463 1,043 837 638 .. | 31534
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Introduction and Case Studies

Application Areas

Epidemiology and Medicine
Biology and Agriculture

Social Science and Criminology
Research on Terrorism

Systems Engineering

vV V.V v VvV Y

Text and Language Analysis
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Introduction and Case Studies

Assumptions

crucial

» closed population

» no deaths
» no births
> no migration

» independence between subjects
» no dependence between different subjects
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Introduction and Case Studies

Assumptions

less crucial

» independence between captures

> lists or sources identify independently
> repeated identification occurs independently

» homogeneity of capture probability

» different members of population are equally likely to be
captured
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Introduction and Case Studies

ways to a solution: modelling repeated capturing

po =  probability for never capturing the unit
p1 = probability for capturing the unit 1 time
p> =  probability for capturing the unit 2 times

in general

px = px(A) = probability for capturing the unit x times
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Introduction and Case Studies

the idea for a solution
use a model for py, = p()\) such as the Poisson

Px = exp(—A)N\*/x
estimate A by some method to yield X, and, since
E(n) = N(1 - po)
we get

n n

N = — = <
1—po(A)  1—exp(=A)
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

a good estimator under homogeneity:

write
po = exp(=X) = eXp(A_)\)A = E?;()
which can be estimated by
/N _f
po = S/iN -3

where S = 0fy + 1f + ... + mf,, which is always known, leading to

~ n

Np=—"—
T71-%/S

the Good-Turing estimate of N (Good 1953)
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

Diagnostic Device for Homogeneity: The Ratio Plot

Poisson homogeneity can be supported by means of the
ratio plot
(x + 1)px+1

Px

X — ry =

for a Poisson
Px = exp(—A)N*/x!

so the ratio

rx — (X+ 1)pX+1 — )\
Px

is a horizontal line
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Ratio Plot for Poisson Homogeneity

the ratio plot

(x + 1)px+1
pX

can be estimated by the empirical ratio plot

X — ry =

~ (X + 1)fx+1

X —= =
f

which should show a specific pattern: a horizontal line
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

Ratio plot in reality

» we look at two examples:
» Grizzle bears in the Yellowstone eco system
» hidden scrapie in Great Britain 2002, 2003, 2004
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

Grizzly bears in the Yellowstone ecosystem

Variable ™
| | e rx@ose)
14 = 1 x (1997)
o 1x(1998)
124
104
o
.§ 84
64
L 4
44
2 : ! °
0 ] *
1 2 3 4 5
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

Scrapie in Great Britain based upon the SND

124
Variable ]
104 * X (2002)
= 1_x(2003)
* 1 x(2004)
* m
* °
° [ ]
2 6
o
4 * ]
24 : * °
1 4 u
04 *
1 2 3 4 5 6
X
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

~

Effects of heterogeneity on the Turing estimator N

Table: Simulation using X ~ (1 — a)Po(0.5) + aPo(u) for N = 1000
and o = 0.2; replication size 1000

contamination

m 0.5 1 2 3 9
E(N) |1002.7 938.61 776.54 694.70 579.17
Var(N) | 85.3 6347 3821 2831 18.39
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Decontaminated Turing Estimator

po = exp(—\) = eXp(;)\)A = EI&)

we had estimated by

A

fi/N

po = =<
S/N S

where S = 0fy + 11 + ... + mfy, which will be too large if there

are contaminations and

~ n
Np=—"
T=1-%/S

will be biased (much too small)
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Decontaminated Turing Estimator

exp(=MA _ p

Po = exp(=A) = == = £5;

we had estimated by

A/N _ /N
0 — F 7 T ——
S/N  E(X)
use robust estimators for E(X) = \:

N, — 2B 2pp _
> A1 A

v
>

2643f _ 2pp43p3 _

2= THth p1tp2
. _ 2h+3h+41f 2pr+3p3+4ps
> — =
A3 fith+th pitpatps A
>
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Decontaminated Turing Estimator
then use J\; instead of S/N

. _f/N A/N
RZSIN ~ 5,
replace
leading to
N = %
1—(f/N)/A
N — fl/j\] =n

so that the decontaminated Turing estimator arises

NDT = n—i—ﬂ/&-
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Decontaminated Turing Estimator
the decontaminated Turing estimator

Npr =n+ A/}

robust
> A =2 = Npr =n+f/(2L/H) = n+f7/(26h) =
N¢(Chao)
S 2643f R f(fith)
> Ao =gt — Npr = n+ S
>
) A (Aot fn 1)
26+3h+...mfy _ 1+ h 1
> A= e o = e e i
efficient
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

The Decontaminated Turing Estimator
the general question remains for

NDT = n—i—fl/j\j

> which \;?

» again the ratio plot can help!

32/51



The Ratio Plot Under Homogeneity and the Decontaminated Tui

Grizzly bears in the Yellowstone ecosystem

Variable ™
| | e rx@ose)
14 = 1 x (1997)
o 1x(1998)
124
104
o
.§ 84
64
L 4
44
2 : ! °
0 ] *
1 2 3 4 5
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

measuring goodness-of-fit

k+1

Z nkPo+ X, )\k)] (1)

I'IkPO+ X, )\k)

where
> Poi(x;\) = Po(x; \)/[Po(1; A) + ... + Po(k + 1; \)]
» and ny = A + ... + fk+1.
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The Ratio Plot Under Homogeneity and the Decontaminated Tui

choosing k in the female Grizzle Bears data

Table: Estimates of the number of Female Grizzly Bears in the
Yellowstone ecosystem for 1997 for different values of the robustified
Turing estimate

x2(k) p-value | Ao N
0.000 1.000 | 1.08 41.1
0.241  0.623 | 1.30 39.0
0.264 0.876 | 1.25 39.4
7.627 0.054 | 1.80 36.2
10.473 0.033 |1.61 37.1

gl A W N R X
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The Ratio Plot and Structured Heterogeneity

Structured Heterogeneity

frequently, a certain structure for the heterogeneity distribution can
be identified by means of the ratio plot

(x + 1)1
fy

X —

showing a specific pattern: a straight line
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The Ratio Plot and Structured Heterogeneity

Drug Use California

ratio
i
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The Ratio Plot and Structured Heterogeneity

Scrapie

14 °

12

104

ratio
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The Ratio Plot and Structured Heterogeneity

Shakespeare

180

160 i

140

120 .

100+

ratio

80+
60+
40+

204

T
0 20 40 60 80 100
count
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The Ratio Plot and Structured Heterogeneity

Structured Heterogeneity

if
X (X + 1)px+1
Px
with - N
Px = / M}\(t)dt
0 x|

is a straight line

» what does it tell us about A(t)?
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The Ratio Plot and Structured Heterogeneity

structured heterogeneity: Gamma-—density
suppose A(t) = #th~Texp(—t/0)/T (k) is the [-density with
parameters # and k; then

Mk + x)

- I’(x+1)r(k)pk(1 a2

px = /000 exp(—t)t*/xI\(t)dt

the negative binomial density with event parameter p = ﬁle and

shape parameter k
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The Ratio Plot and Structured Heterogeneity

structured heterogeneity: Gamma-—density
suppose A(t) is the '-density with parameters p and k; then

(X + 1)px+l

— (x+K)(1 - p)
Px
the straight line with slope (1 — p) and intercept k(1 — p)

» this indicates that it is reasonable to assume a
Gamma-distribution for the heterogeneity distribution of the
Poisson parameter
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The Ratio Plot and Structured Heterogeneity

structured heterogeneity: the NB
under the negative binomial

B Mk + x) N
P = Fle D0 1)r(k)p"(l - p)

we are interested in pg = p¥ and have that
> p1 = kp*(1 - p)
— klz=p
> E(X) = k=
hence B
P _ kp*(1 — p) _ okt
(X) kP

po = p* and £
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The Ratio Plot and Structured Heterogeneity

structured heterogeneity: the NB

pp kp*(1—p) _ pkt

k
= d =
po = p" an E(X) klgp

and, finally,

k

n=(e0)”

this leads to the generalised Turing estimator

Ner = ke
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The Ratio Plot and Structured Heterogeneity

estimating k with a regression approach:
since for a NB

X — (x +1)pxt1

s =(1-p)(x+k)=(1-p)k+(1-p)x = a+px
X
it seems reasonable to explore the regression model

(x +1)fq1

=a+ [Bx+e
fi

using weights inversely related to the variance of %) and

the estimate for k is obtained from k = (1 — p)k/(1 —Xp) =a/f

k=a/b
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Some Applications

Example with N known: Golf Tees Study

» 250 clusters of golf tees
were placed

> in an area of 1,680 m?

> surveyed by students of
the University of St.
Andrews

» details are as follows:

Statistics for Biology and Health

Estimating

Animal
Abundance
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Some Applications

Key idea: choose the most likely value as the estimate, given
what was observed.

Key notation:

population size (abundance)
estimator of population size

number of animals detected (sample size)
i probability of detecting an animal

2.1 An example problem

It is often easier to understand how abundance estimation methods worl
if we can check our estimates against the true population after estimating
abundance, to see how well we did. This is impractical with real popula
tions, so we will be using examples with artificial populations for illustra
tion.

One such population, used repeatedly in this book, is the one introducec
in Chapter 1. The data are actually from independent surveys by eigh

2.1 An example problem 1

Figure 2.1. Example data, detected animals. Each dot represents a detected ani
mal within the survey region. In all, n = 162 animals were detected.

different observers of a population of 250 groups (760 individuals) of gol
tees, not plants, contrary to what we said in Chapter 1. The tees, of tw:
colours, were placed in groups of between 1 and 8 in a survey region o
1,680 m?, either exposed above the surrounding grass, o at least partl
hidden by it. They were surveyed by the 1999 statistics honours class a
the University of St Andrews,! Scotland, so while golf tees are clearly no
animals (or plants), the survey was real, not simulated. Wo treat cach grouy

olf tees as a single “animal”, with size equal to the number of tees it
the group: yellow tees are “male", green are “female”; tees exposed abow
the surrounding grass are classified as exposed (“exposure=1”), others a:
unexposed (“exposure=0").

Other populations presented later in the book were generated with the 1
library WiSP and only ever existed inside a computer. In all cases, we refer
to them as animal pcpulamuns, and to their members as animals.

Figure 2.1 shows tho locations of the animals detected by at least onc
observer on a survey of our first example population. A total of n = 165
animals were seen, but an unknown number were missed. We would like tc
use what was seen to answer the question: How many animals are there?

We are grateful to Miguel Bernal for making these data available to us. Th
colected by him ae par ofa Mastersprojec at the Universiy of St Andrews. 5t Androm:
is known as “the home of golf”, 5o tees seemed an appropriate target object.
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Some Applications

Example with N known

Table: The Golf Tees data of Borchers, Buckland and Zucchini
(2002): true number N of golf tees is 250

fi | 46
| 28
| 21
fa | 13
fs | 23
fo | 14
7| 6

fg | 11
n | 162
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Some Applications

Ratio Plot for Golf Tees Data
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Some Applications

Results of Estimation: True N = 250

estimator | value
k 1.07

Nt 177
Ner 224
N¢ 200
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Some Applications

related and recent papers

» Rocchetti, |., Bunge, J., Bohning, D. (2011). Population size
estimation based upon ratios of recapture probabilities.
Annals of Applied Statistics 5, 1512-1533.

» Bohning, D., Baksh, M.F., Lerdsuwansri, R., Gallagher, J.
(2011). Use of the ratio plot in capture—recapture estimation.
Journal of Computational and Graphical Statistics (in press).

» Rocchetti, |., Alfo, M., Béhning, D. (2011). A regression-type
estimator for beta-binomial capture-recapture data.
Biostatistics (submitted).
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