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Statistical methodology for estimating the
mean difference in a meta-analysis
without study-specific variance
information
Patarawan Sangnawakij,a Dankmar Böhning,b*†

Stephen Adams,c Michael Stantonc and Heinz Hollingd

Statistical inference for analyzing the results from several independent studies on the same quantity of interest has
been investigated frequently in recent decades. Typically, any meta-analytic inference requires that the quantity
of interest is available from each study together with an estimate of its variability. The current work is motivated
by a meta-analysis on comparing two treatments (thoracoscopic and open) of congenital lung malformations in
young children. Quantities of interest include continuous end-points such as length of operation or number of
chest tube days. As studies only report mean values (and no standard errors or confidence intervals), the question
arises how meta-analytic inference can be developed. We suggest two methods to estimate study-specific variances
in such a meta-analysis, where only sample means and sample sizes are available in the treatment arms. A general
likelihood ratio test is derived for testing equality of variances in two groups. By means of simulation studies,
the bias and estimated standard error of the overall mean difference from both methodologies are evaluated
and compared with two existing approaches: complete study analysis only and partial variance information. The
performance of the test is evaluated in terms of type I error. Additionally, we illustrate these methods in the meta-
analysis on comparing thoracoscopic and open surgery for congenital lung malformations and in a meta-analysis
on the change in renal function after kidney donation. Copyright © 2017 John Wiley & Sons, Ltd.
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1. Introduction and motivating case study

Meta-analysis is a statistical methodology for the analysis and integration of results from individual,
independent studies. In recent decades, meta-analysis developed a crucial role in many fields of science
such as medicine and pharmacy, health science, psychology and social science [1–4]. Any meta-analytic
inference, as developed so far, requires as minimal information that the quantity of interest is available
from each study together with an estimate of its variability. The sample variance information is used to
compute the weights of the effect size in each study for achieving the overall estimate [5, 6]. A problem
in a meta-analysis of continuous outcomes occurs when incomplete variability measures are not reported
or are missing sample variances. In recent years, several approaches to impute variance estimates when
lacking those variances for some studies have been considered ([7–9]). For example, Philbrook et al.
[7] compared changes in renal function after living kidney donation using meta-analysis based on four
imputation methods, reported p-values in primary studies, reported non-parametric summaries in pri-
mary studies, correlation values and multiple imputation, for imputing missing change sample variances.
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Table I. Total number of complications in open
vs. thoracoscopic surgery.

Thoracoscopy Open Total

Complications 53 87 140
At risk 352 420 772

Chowdhry et al. [9] considered a meta-analysis for the difference in means where sample variances are
missing for some studies. They used a multiple imputation method employing gamma meta-regression
to impute the missing variances. However, meta-analysis, which has only the information of the quantity
of interest (with no information on within-study variability for all studies), has not yet been consid-
ered as previous work relies on the fact that variance information is available at least for some studies.
The question arises how meta-analytic inference can be developed. This is the situation we are dealing
with here.

The current work is motivated by difficulties encountered in performing a meta-analysis of two treat-
ments (thoracoscopic and open resections) of asymptomatic lung malformations in young children.
Congenital lung malformations are seen on routine antenatal scans of 1 in 2500 live born children, and
there is controversy regarding their management [10]. The majority of children’s surgeons elect to oper-
ate on infants with lesions even if they have not caused any symptoms, because of concern about potential
for infection, or the purported small risk of developing a cancer in the abnormal piece of lung later in
life [11]. Because the late 1990s, there has been a trend towards surgeons performing these operations
using a minimally invasive approach (key-hole surgery) called thoracoscopy [12]. Thoracoscopy involves
making several small incisions in the chest through which a fibre-optic camera and operating instruments
can be passed, in this manner lesions can be removed with minimal scarring. In contrast, the traditional
operation would be performed through a thoracotomy which is a single, large incision on the side of the
chest wide enough to see the lung and its attachments. The aim of the operation regardless of the approach
(thoracoscopic or open) is to remove the lung lesion including any lung directly involved with it. This
often entails removing one of the lobes of the affected lung.

It is currently unclear whether thoracoscopy is associated with an increased risk of operative com-
plications or not. There have been no published reports of mortality secondary to this operation for
asymptomatic cases in the past 10 years, although a recent study described a near-death [13]. Other
outcomes that are relevant include wound infection, chest infection, bleeding, injury to the trachea (wind-
pipe), prolonged air leak into the space around the lung or development of new air leak subsequent to
the operation. When the operation is commenced with thoracoscopy and changed to an open technique
during the procedure, this is referred to as an open conversion. Typically, studies into this type of surgery
report basic demographic details of the study population, conversion rate and complications (Table I). If
the interest is in the number of complications as primary endpoint, a standard meta-analysis using count
modelling can be performed [14]. In more detail, using a mixed Poisson regression [2, 5, 15] with log-
size-at-risk as offset and study as random effect, the results show that total number of complications in
thoracoscopic has a significantly decreased risk ratio (0.69) in favour of the thoracoscopic surgery with
a p-value of 0.04. Note that the Mantel–Haenszel estimator of the risk ratio [6] with 0.68 is very close to
the mixed Poisson model-based estimator. This beneficial aspect of thoracoscopy raises interest in also
investigating other clinical endpoints that are of quantitative nature. In contrast to the number of compli-
cations where the count structure carries intrinsic information on its variance, this is not that case when we
turn to quantitative outcomes where a second independent variance parameter describes the variability.
This leads to the problem we would like to address here.

In a meta-analysis [15–17] of 38 studies investigating the performance of open and thoracoscopic
surgery, studies report a variety of outcomes including the length of operation, the number of days that
drains are left in the chest and number of days in hospital, age and weight of child. As a typical example,
available information on mean age of patient (months) is shown in Table II for the two surgical procedures
in the 38 studies. Unfortunately the reports in the surgical literature are heterogeneous in the specific type
of data presented and generally refer to small patient populations. Quite often papers will present out-
comes either for a thoracoscopic series only or an entirely open surgery group only, with no control group
for comparison. In order to assess whether the thoracoscopic approach is as safe as the open approach
and indeed whether there are benefits to performing this type of surgery using available data, statisti-
cal analysis has to be developed to perform a meta-analysis of the data without using reported measures
of variance. Hence, we are interested in estimating the mean difference in a meta-analysis when only
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Table II. The mean age of child and sample size from thoracoscopic and open operations.

Thoracoscopic Open

Study n mean age n mean age

Vu 2008 12 6.7 24 3.7
Diamond 2007 12 7.18 24 7.56
Reismann 2012 14 4.8 8 3.5
Kunisaki 2014 49 18 13 1
Lau 2013 39 10.4 28 11.7
Rahman 2009 14 10 14 7
Cho 2012 7 21 27 100
Tolg 2005 5 94 4 39
Jesch 2005 5 0.79 — —
de Lagausie 2005 8 10 — —
Tanaka 2013 12 65.6 — —
Rothenberg 2008 97 45.6 — —
Rothenberg 2011 75 4.1 — —
Seong 2013 50 38.4 — —
Kaneko 2010 7 0.9 — —
Muller 2012 12 12 — —
Sundararajan 2007 20 19 — —
Tarrado 2010 6 8.5 — —
Truitt 2006 12 10.3 — —
Zeidan 2009 6 5 — —
Cano 2006 6 10 — —
Boubnova 2011 30 3.94 — —
Tsai 2008 — — 105 2.5
Calvert 2007 — — 16 80
Raychaudhuri 2011 — — 14 8.3
Nagata 2009 — — 5 4.5
Sueyoshi 2008 — — 8 0.52
Chow 2007 — — 6 3.66
Aziz 2004 (Asymp, elective or < 6m) — — 6 5
Aziz 2004 (Asymp init but symp > 6mo) — — 3 8
Aziz 2004 (Asymp, elective or > 6m) — — 9 3
Ferreira 2010 — — 35 17
Fascetti-Leon 2013 26 — 28 —
Fievet 2012 9 — 2 —
Albanese 2007 144 — — —
Johnson 2011 15 — — —
Laje 2015 100 1.7 188 1.8
Kulaylat 2015 112 15.6 146 18

sample means and sample sizes of the two groups to be compared are available, but the estimated
variances are not. Furthermore, it is possible that population variances between the two groups are homo-
geneous; however, they might not be identical. Therefore, in this paper, two approaches are considered in
order to estimate the overall mean difference in a meta-analysis. A general likelihood ratio test statistic
is also derived for testing the equality of variances of the two groups. In any of the two approaches, we
assume equality of variances across studies. This seems to be a strong assumption but also reasonable as
surgeries take place under fairly standard conditions.

The rest of the paper is organized as follows. In Section 2, we consider the estimator of variance for
the equal variance case. This allows variance estimators to be derived for the individual studies involved
in the meta-analysis. Under equal variances, the overall mean difference is presented with its associated
standard error. In Section 3, we focus on estimation parameters under unequal population variances.
Again, variance estimates for the individual studies are developed. Then, the overall mean difference
with its associated standard error is derived. A likelihood ratio test for test of equality of variances is
introduced in Section 4. Section 5 presents the results of simulation work with focus on mean difference
with respect to bias, standard error, coverage probability and expected length. Type I error probability is
used to investigate the likelihood ratio test. In Section 6, all estimators are illustrated in two case studies
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of comparing open versus thoracoscopic surgery (highlighting the benefits of the latter) and the change in
renal function after kidney donation. The paper ends with Section 7 containing discussion and concluding
remarks which sets the approach in perspective.

2. Methodology I: estimation of the mean difference for equal variances

We consider k independent studies with only sample means and sample sizes in the treatment group (T)

and in the comparison or control group (C) available, respectively, X̄T
i , X̄C

i , nT
i and nC

i , where X̄T
i =

∑nT
i

j=1

XT
ij∕nT

i and X̄C
i =

∑nC
i

j=1 XC
ij ∕nC

i . Only X̄T
i and X̄C

i are observed, but not the within-study values XT
ij and XC

ij

for i = 1, 2,… , k and j = 1, 2,… , ni. In addition, no estimate of variances of X̄T
i and X̄C

i is available.
Here, we are interested in developing statistical inference for the mean difference between two groups as
the effect size. The mean difference of the study i is given by

Di = X̄T
i − X̄C

i . (1)

Assume that XT
ij and XC

ij are independent and normally distributed with means 𝜇T and 𝜇C, respectively,

and identical variance 𝜎2 across groups and studies. Thus, it follows that X̄T
i and X̄C

i are independent
and normally distributed with means 𝜇T and 𝜇C, and variances 𝜎2∕nT

i and 𝜎2∕nC
i , respectively. These

assumptions lead to the distribution of Di, being also normal with mean 𝜇 = 𝜇T − 𝜇C and variance 𝜎2wi,
where wi = 1∕nT

i + 1∕nC
i is non-random. In general, 𝜇 and 𝜎2 are unknown parameters and need to

be estimated.

2.1. Maximum likelihood estimation

Under the normal distribution for the effect size Di as mentioned before, the likelihood function of 𝜇 and
𝜎2 is given by

L(𝜇, 𝜎2;Di) =
k∏

i=1

1√
2𝜋𝜎2wi

exp

{
−

(Di − 𝜇)2

2𝜎2wi

}
with associated log-likelihood function

log L(𝜇, 𝜎2;Di) = −
k∑

i=1

(Di − 𝜇)2

2𝜎2wi

−
k log(2𝜋𝜎2)

2
− log

k∏
i=1

√
wi. (2)

Taking partial derivatives of (2) with respect to 𝜇 and 𝜎2, respectively, we yield the maximum likelihood
estimators

�̂�ML =
∑k

i=1 Di∕wi∑k
i=1 1∕wi

and �̂�2
ML = 1

k

k∑
i=1

(Di − �̂�ML)2

wi
. (3)

Furthermore, it is important to investigate the precision of these estimators. We find the variance of
estimators in (3) as follows:

Var(�̂�ML) =
𝜎2∑k

i=1 1∕wi

and Var(�̂�2
ML) =

2(k − 1)𝜎4

k2
,

with details given in appendix A as Theorem 1. We also note that �̂�ML given earlier is an unbiased esti-
mator of 𝜇, while �̂�2

ML is an asymptotically unbiased estimator of 𝜎2. Both estimators are consistent. The
details of proof are given in appendix B as Theorem 2–3.

In this study, the effect size is the mean difference. Hence, we are now able to provide an estimate of
the variance of Di as

V̂ar(Di) = �̂�2
MLwi. (4)

This allows meta-analytic inference as we have now for each study an effect size estimator with associated
estimated variance. This can been seen for mean age in Figure 1.
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Figure 1. Forest plot for the difference in mean age by Methodology I. [Colour figure can be viewed at
wileyonlinelibrary.com]

2.2. Estimation of the overall mean difference

Typically in meta-analysis, summary measures are developed as weighted average of the study-specific
outcome measures, here Di. We first consider the weight of the effect size in the study i, which is computed
as the inverse of variance of its effect size [6]. For combining the mean difference, each study’s mean
difference is given weight

vi =
1∕(�̂�2

MLwi)∑k
i=1 1∕(�̂�2

MLwi)
=

1∕wi∑k
i=1 1∕wi

.

Note that vi only depends on the the sample sizes of the individual studies and is non-random. It follows
that the estimator of the overall mean difference is given by

Doverall =
k∑

i=1

Divi, (5)

where Di is the mean difference of the study i as defined in (1). Note that Doverall coincides with �̂�ML the
maximum likelihood estimator as developed in (3).

Moreover, the (1 − 𝛼)100% confidence interval for the overall mean difference can be calculated by

Doverall ± Z𝛼∕2ŜE(Doverall), (6)

where Z𝛼∕2 is (𝛼∕2)100th percentile of the standard normal distribution and ŜE(Doverall) = �̂�ML∕√∑k
i=1 1∕wi is the estimated standard deviation of the overall mean difference. The estimate of the overall

mean difference for age together with a 95% confidence interval can be found as the last row in Figure 1.
Additionally, statistical inference for the mean difference is usually used to compare the effect size

between two treatment groups. Thus, test of equality of mean is constructed. Under the null hypothesis
H0 ∶ 𝜉 = 0, where 𝜉 is the population mean difference between the treatment and control groups, the test
statistic is defined as

Zoverall =
Doverall√

�̂�2
ML∕

∑k
i=1 1∕wi

, (7)

where Zoverall has the standard normal distribution. Note that the null hypothesis is rejected, if|Zoverall| > Z𝛼∕2.
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3. Methodology II: estimation of mean difference for unequal variances

The variances in the two groups of interest might no be equal. Therefore, in this section, the mean
difference in meta-analysis is considered again, but we allow unequal variances for the two groups.

Assume that XT
ij and XC

ij for i = 1, 2,… , k and j = 1, 2,… , ni are independent and normally distributed

with means 𝜇T and 𝜇C and unknown variances 𝜎2T
and 𝜎2C

, respectively. The sample means X̄T
i and X̄C

i
are observed, and are also independent and normally distributed with means 𝜇T and 𝜇C, and variances
𝜎2T∕nT

i and 𝜎2C∕nC
i . Because 𝜎2T

and 𝜎2C
are unknown, we need to estimate them, and this is considered

in the following.

3.1. Maximum likelihood estimation

We first consider the maximum likelihood estimator for parameters in the treatment group. Under the
normal distribution, the log-likelihood function of 𝜇T and 𝜎2T

is given by

log L(𝜇T , 𝜎2T ; X̄T
i ) = −

k∑
i=1

(X̄T
i − 𝜇T )2

2𝜎2T wT
i

−
k log(2𝜋𝜎2T )

2
− log

k∏
i=1

√
wT

i , (8)

where wT
i = 1∕nT

i . Then taking partial derivatives of (8) with respect to 𝜇T and 𝜎2T
, respectively, the

estimators for 𝜇T and 𝜎2T
are

�̂�T
ML =

∑k
i=1 X̄T

i ∕wT
i∑k

i=1 1∕wT
i

and �̂�2T
ML = 1

k

k∑
i=1

(X̄T
i − �̂�T

ML)
2

wT
i

. (9)

Because the estimators in (9) are of simple nature, the variance estimates are easily derived as

Var(�̂�T
ML) =

𝜎2T∑k
i=1 1∕wT

i

and Var(�̂�2T

ML) =
2(k − 1)𝜎4T

k2
.

Similarly, we derive the maximum likelihood estimators for 𝜇C and 𝜎2C
of the control group. The

estimators are given by

�̂�C
ML =

∑k
i=1 X̄C

i ∕wC
i∑k

i=1 1∕wC
i

and �̂�2C

ML = 1
k

k∑
i=1

(X̄C
i − �̂�C

ML)
2

wC
i

, (10)

where wC
i = 1∕nC

i . Note that the maximum likelihood estimators given in (9) and (10) are consistent.
The estimated means �̂�T and �̂�C are unbiased estimators for 𝜇T and 𝜇C, respectively. Furthermore, the
estimated variances �̂�2T

ML and �̂�2C

ML are asymptotically unbiased estimators for 𝜎2T
and 𝜎2C

, respectively.
Hence, the estimated variance of the mean difference of the study i in this case is given as

V̂ar(Di) = �̂�2T

MLwT
i + �̂�2C

MLwC
i . (11)

The associated forest plot of Di∕
√

�̂�2T

MLwT
i + �̂�2C

MLwC
i for our case study is presented in Figure 2.

3.2. Estimation of the overall mean difference

Like in the previous section, the weight of effect size of each study is considered in order to estimate the
overall effect size. Here, the individual mean differences are weighted as

v∗i =
1∕(�̂�2T

MLwT
i + �̂�2C

MLwC
i )∑k

i=1 1∕(�̂�2T

MLwT
i + �̂�2C

MLwC
i )
.

Note that these weights involve the two variance estimates of the two groups and, hence, are random. This
is a considerable difference to the previous case of equal variances. Next, we can compute the overall
mean difference as follows:
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Figure 2. Forest plot for the difference in mean age by Methodology II. [Colour figure can be viewed at
wileyonlinelibrary.com]

D∗
overall =

k∑
i=1

Div
∗
i (12)

with the variance

Var(D∗
overall) =

1∑k
i=1 1∕(𝜎2T wT

i + 𝜎2C wC
i )
.

The aforementioned variance is obtained under the assumption that the two sample means are indepen-
dent. Because we have the variances of the effect size estimates, we can now develop a (1 − 𝛼)100%
confidence interval for the overall mean difference. It is given by

D∗
overall ± Z𝛼∕2ŜE(D∗

overall), (13)

where ŜE(D∗
overall) =

√
1∕

∑k
i=1 1∕(�̂�2T

MLwT
i + �̂�2C

MLwC
i ) is the estimated standard deviation for the overall

mean difference.
For hypothesis testing of the difference between two means, H0 ∶ 𝜉 = 0, the test statistic when the

population variances are unequal is

Z∗
overall =

D∗
overall√

1∕
∑k

i=1 1∕(�̂�2T

MLwT
i + �̂�2C

MLwC
i )
, (14)

where Z∗
overall has the standard normal distribution. If |Z∗

overall| > Z𝛼∕2, the null hypothesis is rejected.

4. Test for equality of variances

Evidently, it is of interest if the two variances can be assumed to be equal or not. This can be accomplished
by separately estimating the variances in the two arms and compare the associated likelihoods by means
of a likelihood ratio test. As there is no reason to restrict the comparison with those studies where both
treatment arms have information, we include all available studies.

Suppose, in generality, we have k1 studies in the treatment group and k2 studies in the control group of
the same issue. In each group, there are only sample means and sample sizes. Let X̄T

i ∼ N(𝜇T , 𝜎2T∕nT
i )

for i = 1, 2,… , k1 and X̄C
i ∼ N(𝜇C, 𝜎2C∕nC

i ) for i = 1, 2,… , k2. Also, two sample means X̄T
i and X̄C

i are
independent across groups and studies. We consider a test of the null hypothesis

H0 ∶ 𝜎2T = 𝜎2C
(15)
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against the alternative hypothesis H1 that the variances in the treatment and control groups are unequal. In
order to construct the likelihood ratio test, the procedure is as follows. From the joint probability density
function of X̄T

i and X̄C
i , the log-likelihood function of 𝜃 = (𝜇T , 𝜇C, 𝜎2T

, 𝜎2C ) is

log L(𝜃; X̄T
i , X̄

C
i ) = − 1

2

[
1
𝜎2T

k1∑
i=1

(
X̄T

i − 𝜇T√
wT

i

)2

+ 1
𝜎2C

k2∑
i=1

(
X̄C

i − 𝜇C√
wC

i

)2]

−
k1 log 𝜎2T

2
−

k2 log 𝜎2C

2
+ constant.

Then, the general likelihood ratio statistic for testing H0 versus H1 is defined by

Λ = (k1 + k2) log �̂�2
0 − k1 log �̂�2T

ML − k2 log �̂�2C

ML, (16)

where �̂�2
0 = (k1�̂�

2T

ML + k2�̂�
2C

ML)∕(k1 + k2) is the maximum likelihood estimator for the pool variance 𝜎2
0

under H0, and �̂�2T

ML and �̂�2C

ML are the likelihood estimators for 𝜎2T

ML and 𝜎2C

ML obtained from (9) and (10),
respectively. The details of the proof are presented in appendix C as Theorem 4. Under the null hypoth-
esis, Λ has an approximate chi-square distributed with one degree of freedom as the null-hypothesis lies
entirely in the interior of the alternative hypothesis. Therefore, the test rejects H0 if Λ > 𝜒2

𝛼,(1).

5. Simulation studies

Simulation studies are conducted to evaluate the proposed estimators for the mean difference in meta-
analysis and the test for equality of variances using the R statistical language [18]. We simulated the data
from a normal distribution under a variety of parameter constellations of mean and variance. The number
of studies was varied as k = 10, 30, 50 and 100. The weight of each study, wi for i = 1, 2,… , k, was
simulated as uniform(0.02,0.20) in order to produce a reasonable sample size of each study. The setting
of the simulation can be distinguished in three cases as follows:

• In the simulation study for Methodology I, the data for the mean difference Di were generated as
independent and identically distributed with N(𝜇, 𝜎2wi), where 𝜇 = 0 and 2, and 𝜎2 = 2, 4 and 9.

• In the simulation study for Methodology II, we generated the data for the means X̄T
i and X̄C

i from
N(𝜇T , 𝜎2T

wT
i ) and N(𝜇C, 𝜎2C

wC
i ), respectively, where (𝜇T , 𝜇C) = (0,0) and (4,2), and (𝜎2T

, 𝜎2C )
= (1,2), (1,4) and (2,9). The mean difference was obtained as Di = X̄T

i − X̄C
i .

• In the simulation study for the likelihood ratio test, we simulated the means of two treatment groups
from the normal distributions as in the second simulation case. The parameters were set to be
(𝜇T , 𝜇C) = (0,0) and (4,2), and (𝜎2T

, 𝜎2C ) = (𝜎2, 𝜎2) =(2,2), (4,4) and (9,9).

The number of replications was set as 10 000 for each simulation constellation. Bias, estimated stan-
dard error, coverage probability and expected length of the estimators for the mean difference were
calculated by

Bias(�̂�) = Ê(�̂�) − 𝜃 = 1
10, 000

10,000∑
i=1

�̂�i − 𝜃,

SE(�̂�) =

√√√√ 1
10, 000

10,000∑
i=1

(�̂�i − Ê(�̂�))2,

CP = c(L ⩽ 𝜃 ⩽ U)
10, 000

,

and

EL =
∑10,000

i=1 (Ui − Li)
10, 000

,

respectively, where �̂� is the mean difference for parameter 𝜃 and c(L ⩽ 𝜃 ⩽ U) is the number of simulation
runs for 𝜃 that lies within the confidence interval. To consider the performance of the likelihood ratio test,
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Table III. Bias, standard error, coverage probability and expected length of the estimators for
mean difference in the simulation for Methodology I.

Point estimator (Doverall) Interval estimator

k Distribution of Di Bias Standard error Coverage Probability Expected length

10 N(0, 2wi) 0.0013 0.1302 0.9138 0.4837
N(0, 4wi) 0.0001 0.1641 0.9088 0.6050
N(0, 9wi) −0.0036 0.2534 0.9142 0.9418
N(2, 2wi) 0.0008 0.1202 0.9094 0.4439
N(2, 4wi) −0.0021 0.1869 0.9069 0.6847
N(2, 9wi) −0.0012 0.2358 0.9063 0.8658

30 N(0, 2wi) 0.0006 0.0724 0.9464 0.2860
N(0, 4wi) −0.0016 0.0992 0.9403 0.3859
N(0, 9wi) −0.0004 0.1460 0.9415 0.5734
N(2, 2wi) −0.0007 0.0762 0.9423 0.2962
N(2, 4wi) −0.0008 0.1056 0.9428 0.4119
N(2, 9wi) 0.0030 0.1546 0.9428 0.6043

50 N(0, 2wi) 0.0005 0.0550 0.9474 0.2155
N(0, 4wi) 0.0018 0.0834 0.9509 0.3344
N(0, 9wi) 0.0015 0.1075 0.9466 0.4249
N(2, 2wi) 0.0005 0.0503 0.9516 0.2008
N(2, 4wi) 0.0007 0.0822 0.9492 0.3264
N(2, 9wi) 0.0002 0.1231 0.9456 0.4802

100 N(0, 2wi) −0.0003 0.0388 0.9499 0.1541
N(0, 4wi) 0.0011 0.0543 0.9509 0.2175
N(0, 9wi) −0.0003 0.0883 0.9496 0.3474
N(2, 2wi) 0.0000 0.0390 0.9542 0.1557
N(2, 4wi) 0.0009 0.0559 0.9505 0.2217
N(2, 9wi) 0.0007 0.0867 0.9512 0.3488

the type I error probability was used. It was estimated as the proportion of times that H0 ∶ 𝜎2T = 𝜎2C
is

rejected under the assumption that variances between the two treatment groups are equal. Here, the target
significant level 𝛼 was fixed at 0.05. The major findings of the simulation studies can be summarized
as follows:

• Table III and Table IV show the performance of the proposed estimators and the confidence intervals
for the mean difference from Methodology I and Methodology II, respectively. The results indicate
that the bias of estimators tends to be small in general. This means that values of the proposed
estimators Doverall and D∗

overall are very close to the population mean difference. These two estimators
have small standard errors, where values of standard error tend to decrease if the number of the study
(k) increases.

• For a small number of studies (k ⩽ 30), the coverage probabilities of the proposed confidence inter-
vals for the mean difference shown in equations (5) and (13) are less than the nominal coverage
level of 0.95. However, if k increases, the coverage probabilities maintain the target and tend to be
greater than 0.95.

• Figure 3 presents type I error probabilities for the general likelihood ratio test. The results show
that values of type I error are slightly larger than the target significant level of 0.05 for k = 10. If k
increases, type I error probabilities become close to 0.05.

In summary, if the number of studies is at least moderately large, the performance of the proposed
estimators Doverall and D∗

overall, and corresponding confidence intervals are reasonably well. Moreover,
type I error probability of the likelihood ratio test is close to the target significant level.

Additionally, two existing approaches (see also [19,20]) are used to compare with the method proposed
here. We consider three types of scenarios: the within-study variances are available for all studies, the
within-study variances are available for some of the studies, and no variance information is available
for all studies (our case). For Scenario 1, the number of studies is reduced if there is missing variance
information. Thus, only complete studies are used in the analysis. This is done in practice for complete
case analysis. The overall mean difference of this scenario can be computed using a meta-analysis based
on the conventional fixed effect model, as the sample means and sample variances of the two treatment

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1395–1413
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Table IV. Bias, standard error, coverage probability and expected length of the estimators for
mean difference in the simulation for Methodology II.

Point estimator (D∗
overall) Interval estimator

k Distribution of Di Bias Standard error Coverage Probability Expected length

10 N(0,wT
i + 2wC

i ) −0.0024 0.1814 0.9187 0.6696

N(0,wT
i + 4wC

i ) −0.0004 0.2010 0.9285 0.7563

N(0, 2wT
i + 9wC

i ) −0.0015 0.3455 0.9218 1.2930

N(2,wT
i + 2wC

i ) 0.0006 0.1771 0.9258 0.6590

N(2,wT
i + 4wC

i ) 0.0025 0.2391 0.9210 0.8792

N(2, 2wT
i + 9wC

i ) 0.0010 0.3472 0.9173 1.2855

30 N(0,wT
i + 2wC

i ) −0.0015 0.1010 0.9453 0.3943

N(0,wT
i + 4wC

i ) −0.0017 0.1243 0.9476 0.4872

N(0, 2wT
i + 9wC

i ) 0.0041 0.1732 0.9450 0.6711

N(2,wT
i + 2wC

i ) −0.0014 0.0961 0.9457 0.3777

N(2,wT
i + 4wC

i ) −0.0016 0.1131 0.9473 0.4449

N(2, 2wT
i + 9wC

i ) −0.0014 0.1851 0.9460 0.7266

50 N(0,wT
i + 2wC

i ) −0.0011 0.0787 0.9501 0.3092

N(0,wT
i + 4wC

i ) 0.0003 0.0979 0.9500 0.3875

N(0, 2wT
i + 9wC

i ) 0.0005 0.1437 0.9496 0.5676

N(2,wT
i + 2wC

i ) −0.0003 0.0730 0.9502 0.2874

N(2,wT
i + 4wC

i ) 0.0017 0.0971 0.9528 0.3851

N(2, 2wT
i + 9wC

i ) −0.0014 0.1425 0.9476 0.5630

100 N(0,wT
i + 2wC

i ) 0.0002 0.0539 0.9491 0.2132

N(0,wT
i + 4wC

i ) 0.0010 0.0651 0.9507 0.2582

N(0, 2wT
i + 9wC

i ) 0.0001 0.0966 0.9529 0.3852

N(2,wT
i + 2wC

i ) −0.0011 0.0536 0.9522 0.2116

N(2,wT
i + 4wC

i ) 0.0007 0.0656 0.9554 0.2652

N(2, 2wT
i + 9wC

i ) −0.0005 0.0960 0.9529 0.3831

Figure 3. Type I error for the general likelihood ratio test in the simulation for various settings of distribution of
Di and number of study (k) AD: Anderson-Darling. [Colour figure can be viewed at wileyonlinelibrary.com]
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Figure 4. Bias of the overall mean difference from Scenarios 1 and 2 with 50% and 75% studies missing variances
and Scenario 3 with no variance information. [Colour figure can be viewed at wileyonlinelibrary.com]

arms in the study i are reported, and the pooled variance estimate can be readily provided as S2
p, i = ((nT

i −1)
S2

i
T + (nC

i − 1)S2
i

C)∕(nT
i + nC

i − 2). We note in passing, that also this setting would allow incorporating
potential heterogeneity by means of the random effects model, but we will not use this here for better
comparability. For the partial information setting in Scenario 2, the Expectation-Maximization (EM)
algorithm [21] is utilized in principle to impute the missing variances. The details of this method are as
follows. In the E-step, the missing variances are imputed as

E(S2
i

T |S2
i

C) =
𝜎2

p
(t)(nT

i + nC
i − 2)

nT
i − 1

−
(nC

i − 1)S2
i

C

nT
i − 1

and

E(S2
i

C|S2
i

T ) =
𝜎2

p
(t)(nT

i + nC
i − 2)

nC
i − 1

−
(nT

i − 1)S2
i

T

nC
i − 1

.

For update on the overall pooled variance 𝜎2
p in the M-step (see also [9]), a weighted average 𝜎2

p
(t+1)

=
∑k

i=1 S2
p,i(n

T
i + nC

i − 2)∕
∑k

i=1(n
T
i + nC

i − 2) of the pooled variances S2
p,i in the i−th trial is determined,

where t is the tth iteration. The iterative procedure is terminated if |𝜎2
p
(t+1) − 𝜎2

p
(t)| < 0.0001. Then, the

overall mean difference is computed using the meta-analysis approach described in the previous scenario.
The simulation studies are performed to evaluate the performance of the overall mean difference under

the three scenarios. We simulated X̄T
i and X̄C

i from N(𝜇T , 𝜎2T
wT

i ) and N(𝜇C, 𝜎2C
wC

i ), respectively, where

(𝜇T , 𝜇C) = (0,0) and (4,2), and (𝜎2T
, 𝜎2C ) = (𝜎2, 𝜎2) =(2,2), (4,4) and (9,9). We then calculated the mean

difference from Di = X̄T
i − X̄C

i . For Scenario 1 and Scenario 2, the variances S2
i

T
and S2

i
C

are generated

from 𝜒2
nT

i −1
𝜎2T∕(nT

i − 1) and 𝜒2
nC

i −1
𝜎2C∕(nC

i − 1), respectively, where 𝜒2 is the quantile of the chi-squared

distribution. The percentage of studies with missing variances was 50% and 75%. Given these scenarios,
the results of the simulation studies were analyzed with respect of bias and standard error. The bias and
estimated standard error of the overall mean difference computed from the three scenarios are shown
in Figures 4 and 5. It can be concluded that the bias of the estimators is close to the population mean
difference for all cases of the studies. The overall mean difference of the proposed method presented in
Scenario 3 provides the standard errors slightly smaller than that of Scenario 2. The estimator derived
from Scenario 1 gives largest variances.

6. Case studies

6.1. Meta-analysis of thoracoscopic and open resections for treating congenital lung malformation

To illustrate the estimators presented in this paper, we use the meta-analytic data on the two surgeries
for treating congenital lung malformation, the thoracoscopic and the open operations, as mentioned in
the beginning section. This data set comprises 38 published reports containing the mean of variables of

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1395–1413
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Figure 5. Standard error of the overall mean difference from Scenarios 1 and 2 with 50% and 75% studies missing
variances and Scenario 3 with no variance information. [Colour figure can be viewed at wileyonlinelibrary.com]

Table V. Test for equality of variances for 𝛼 = 0.05.

Variables k1 k2 Λ

Length of operation (min) 23 13 2.62
Length of stay (days) 25 18 9.17
Number of chest tube days (days) 20 11 3.32
Weight of child (kilograms) 15 8 9.47
Age of child (months) 24 20 0.70

Table VI. Results of the study in the clinical trials between the thoracoscopic and the
open operations.

Overall mean Standard 95% Confidence Test of
Variables difference Error interval equal means

Methodology I:
Length of operation 36.97 9.19 (18.96, 54.99) 4.03
Length of stay −1.38 0.52 (−2.40, −0.37) −2.65
Number of chest tube days −0.79 0.41 (−1.59, 0.02) −1.93
Weight of child 0.40 0.31 (−0.21, 1.01) 1.29
Age of child −1.43 4.83 (−10.89, 8.03) −0.30

Methodology II:
Length of operation 36.75 13.14 (11.00, 62.49) 2.80
Length of stay −1.28 0.90 (−3.05, 0.49) −1.42
Number of chest tube days −0.71 0.71 (−2.10, 0.68) −1.00
Weight of child 0.40 0.75 (−1.07, 1.86) 0.53
Age of child −2.85 8.18 (−18.89, 13.18) −0.35

interest such as length of operation, number of chest tube days, length of stay, age, and weight and the
number of the patients in each study arm. Some of these reports have only information on one arm (see
e.g. Table II).

The test for equal variances presented in Section 4 is conducted prior to further statistical analysis.
The results in Table V show that there are two variables, length of stay and weight of child, for which we
have to reject the null hypothesis of equal variances between the thoracoscopic and the open study arms.

Next, we use the add-on package METAN of the statistical package STATA14TM [22] to estimate
the overall mean difference of variables. The statistics obtained from the Methodology I and the
Methodology II are presented in Table VI. The results indicate that the mean of length of operation in
the thoracoscopic lung resection is longer than the open procedure. Furthermore, there is evidence that
length of stay and number of chest tube days is better for thoracoscopic, significantly so when using
Methodology I, although the likelihood ratio test suggests to use Methodology II for length of stay. In
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Table VII. The mean change in serum creatine after living kidney donation.

Study n mean change in serum creatinine

Johnson et al. 2005 78 23
Mimran et al. 1993 18 28
Sobh et al. 1989 45 27
Kostakis et al. 1997 255 20
Hida et al. 1982 34 29
Rizvi et al. 2005 736 18
Tondo et al. 1998 10 —
Abomelha et al. 1993 70 11
Siebels et al. 2003 122 27
Edgren et al. 1976 46 24
Basseri et al. 1995 87 23
Enger 1973 13 25
Mendoza et al. 1987 152 4
Fourcade et al. 2002 99 23
ter Wee et al. 1994 12 32
O Donnell et al. 1986 33 14
Laskow et al. 1991 48 31
Miller et al. 1985 40 18
Rodriguez et al. 1985 25 —
Marekovic et al. 1992 50 23
Prandini et al. 1987 32 —
Chen et al. 1992 77 23
D Almeida et al. 1996 110 —
Wiesel et al. 1997 67 27
Najarian et al. 1992 51 20
Toronyi et al. 1998 30 —
Schostak et al. 2004 50 —
Haberal et al. 1998 102 5
Friedlander et al. 1988 17 29
Undurraga et al. 1998 74 12
Eberhardi et al. 1997 29 —
Fehman-Ekholm et al. 2001 348 —
Gonzalez et al. 1989 22 15
Dunn et al. 1986 180 15
Beekman et al. 1994 35 24
Goldfarb et al. 2001 70 18
Williams et al. 1986 24 3
Watnick et al. 1988 29 —
Talseth et al. 1986 68 9
Iglesias-Marquez et al. 2001 20 12

Table VIII. Results of the study for changes in renal function after living kidney donation.

Overall mean Standard 95% Confidence Test of
Variables difference error interval equal means

Methodology I:
Glomerular filtration rate (mL/min) −21.42 2.51 (−26.35, −16.50) −8.53
Serum creatinine (𝜇mol/L) 18.21 1.18 (15.89, 20.52) 15.43
Systolic blood pressure (mmHg) 2.65 1.41 (−0.11, 5.42) 1.88
Diastolic blood pressure (mmHg) 3.38 0.73 (1.96, 4.80) 4.63

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1395–1413
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addition, weight and age of child are not different between the two surgeries which implies that these two
covariates will not bias the results for the variables of interest.

Note that the completion of the meta-analysis is straightforward if an estimate for the study-specific
mean difference has been obtained. Forest plots for the mean difference of age using Methodology I and
Methodology II are shown in Figures 1 and 2, respectively.

6.2. Meta-analysis on changes in renal function after living kidney donation

Philbrook et al. [7] presented data that concern changes in continuous outcomes such as glomerular filtra-
tion rate (mL/min per 1.73m2), serum creatinine (𝜇mol/L), systolic blood pressure (mmHg) and diastolic
blood pressure (mmHg) after living kidney donation. For these data, they reported the mean changes
between pre-donation and post-donation (X̄post

i − X̄pre
i ) and sample sizes (npost

i = npre
i = ni = 1∕wi)

for each study, whereas a variance estimate is often not reported (see e.g. Table VII). Instead of work-
ing with pairs of pre-donation and post-donation measurements, we take pairwise differences and base
inference on Di∕

√
�̂�2wi, i = 1, 2,… , k which allows the use of Methodology I for this case study.

The statistics obtained from Methodology I are shown in Table VIII. It can be concluded that glomeru-
lar filtration rate decreases after donation. In contrast, serum creatinine and diastolic blood pressure
increase after donation. These results do not differ from the findings in meta-analysis presented in the
paper of Philbrook et al. [7] which uses various imputation methods to cope with missing standard errors
in the studies. Finally, our method confirms that there is no change between before and after donation in
systolic blood pressure. A forest plot for the change in serum creatinine is shown in Figure 6. We also
report probability plots of the standardized quantity Di∕

√
�̂�2wi, i = 1, 2,… , k, for continuous variables

in this example (Figure 7). The assumption of a homogeneous normal distribution is supported for serum
creatinine, systolic blood pressure, and diastolic blood pressure.

7. Discussion and concluding remarks

Meta-analysis has become a standard instrument in the tool-box for systematically evaluating medical
research. In this paper, we focus on estimating the mean difference as the effect size, where only sample
means and sample sizes are reported for the study arms, but not variance estimates. Two approaches are
introduced depending on whether the variances in the study arms are assumed to be equal or not. The first
approach called Methodology I is the estimation of the overall mean difference when the unknown study
variances are assumed to be equal. We estimate the pooled variance and then derive the estimated variance
of the mean difference in order to provide an overall estimate. The other method called Methodology II
is derived under the assumption that the population variances are unequal. For this method, we separately
estimate variances of two treatment arms. Then, we find the overall mean difference with an associated
variance estimate. Furthermore, a likelihood ratio test is introduced for testing the equality of variances.

Figure 6. Forest plot for the mean change in Serum Creatinine (𝜇mol/L) after living kidney donation. [Colour
figure can be viewed at wileyonlinelibrary.com]
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Figure 7. Probability plot based upon Di∕
√
�̂�2wi for Glomerular filtration rate, Serum creatinine, Systolic blood

pressure and Diastolic blood pressure. [Colour figure can be viewed at wileyonlinelibrary.com]

Figure 8. Probability plot based upon Di∕
√
�̂�2wi for Length of operation, Number of chest tube days, Length of

stay and Weight of child. [Colour figure can be viewed at wileyonlinelibrary.com]

Both developed methodologies build on the assumption of equal variances within arms and across
studies and no heterogeneity between studies. The latter is a serious restriction but unavoidable given the
restricted data available. As we estimate a free variance parameter, we have some freedom in coping with
mild forms of heterogeneity. Recall that in a conventional meta-analysis also, only one variance parameter
is estimated so that the degree of complexity in the variance structure is identical. In Figure 8, we provide
probability plots of the standardized quantity Di∕

√
�̂�2wi, i = 1, 2,… , k, for length of operation, number

of chest tube days, length of stay and weight in the case study underlying this work. There is no evidence
that assumption of a homogeneous normal distribution is violated. Hence, at least for the case study
considered here, the approach seems reasonable.

The performance of the proposed estimators for the difference of means and the test for equality of
variances have been investigated in a simulation. The bias of our estimators appears to be small in all
cases of the study. The proposed estimators have small standard errors, especially for large number of the
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studies. These empirical findings agree with asymptotic results provided in the appendix B. The confi-
dence intervals for the mean difference also provide coverage probabilities close to the nominal coverage
level if number of the studies become large (k > 30). Complete case analysis and imputation approach
for estimating the missing sample variances are not performing as well as the proposed method, in par-
ticular the complete case approach suffers under considerable larger variance. As can be seen, although
all methods provide the overall mean difference very close to the population but the existing approaches
have larger standard errors. For testing of equality of variances, the general likelihood ratio test can con-
trol type I error probability as 0.05 for large number of the studies, which also agrees with the asymptotic
distributional results mentioned in appendix C. As the proposed approach follows a normal distributional
setting, it is easily possible to extend it to include covariate information on study level such as treatment
modification or locality. Finally, we have focussed here on performing fixed effects meta-analysis (esti-
mation of one true effect for all studies) when estimated variances are not available in the studies. In
further research, random effects modelling will be considered to investigate for unobserved heterogeneity
in addition to the before-mentioned inclusion of observed heterogeneity in form of covariate information.

We also mention that R-code for computing the case studies and simulation results as well as more
detailed results from simulation work is available as supplementary material.

Appendix

In the following, we are detailing some inferential properties and results for our meta-analytic setting
which can be achieved, with appropriate modification and adaptation, from general likelihood inference
as provided, for example, in Casella and Berger [23].

Appendix A. Standard errors of estimators

Theorem 1
If Di ∼ N(𝜇, 𝜎2wi) for i = 1, 2,… , k with maximum likelihood estimators of 𝜇 and 𝜎2 as �̂�ML =

∑k
i=1 Di∕wi∑k
i=1 1∕wi

and �̂�2
ML = 1

k

∑k
i=1(Di − �̂�ML)2∕wi, respectively, then the standard errors are

1. SE(�̂�ML) =
√

𝜎2∕
∑k

i=1 1∕wi for �̂�ML

2. SE(�̂�2
ML) =

√
2(k − 1)𝜎4∕k2 for �̂�2

ML.

Proof
For the first part, it is easy to see that

Var(�̂�ML) =
Var(

∑k
i=1 Di∕wi)

(
∑k

i=1 1∕wi)2
= 𝜎2∑k

i=1 1∕wi

,

so it is clear for SE(�̂�ML) =
√

Var(�̂�ML). For the second part, we first consider

k∑
i=1

(Di − 𝜇)2

wi𝜎
2

=
k∑

i=1

(Di − �̂�ML + �̂�ML − 𝜇)2

wi𝜎
2

=
k∑

i=1

(
Di − �̂�ML

𝜎
√

wi

)2

+
k∑

i=1

1
wi

(
�̂�ML − 𝜇

𝜎

)2

.

It can be simply written as

k∑
i=1

(
Di − 𝜇

𝜎
√

wi

)2

=
k∑

i=1

(
Di − �̂�ML

𝜎
√

wi

)2

+
(√∑k

i=1(1∕wi)(�̂�ML − 𝜇)

𝜎

)2

.

Because Di ∼ N(𝜇, 𝜎2wi), the term on the left hand side of the aforementioned equation has a chi-
square distribution with k degrees of freedom. The second term on the right hand side has a chi-square
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distribution with one degree of freedom. Hence, the first term on the right hand side
∑k

i=1

(Di−�̂�ML

𝜎
√

wi

)2
of

the aforementioned equation must be a chi-square with k − 1 degrees of freedom. Therefore, we achieve
that the variance of �̂�2

ML is

Var(�̂�2
ML) =

1
k2

Var

( k∑
i=1

(Di − �̂�ML)2

wi

)
= 2(k − 1)𝜎4

k2
,

which ends the proof.

Appendix B. Properties of estimators

Theorem 2
If Di ∼ N(𝜇, 𝜎2wi) for i = 1, 2,… , k with maximum likelihood estimator of 𝜇 as �̂�ML =

∑k
i=1 Di∕wi∑k
i=1 1∕wi

, then

�̂�ML is unbiased and consistent for 𝜇.

Proof
To prove the unbiasedness of an estimator, we need to show the identity E(�̂�ML) − 𝜇 = 0. Because
E(Di) = 𝜇, it can be seen that E(�̂�ML) = 𝜇. Thus, �̂�ML is an unbiased estimator of 𝜇. To prove
the consistency, the sufficient condition is to show that lim

k→∞
E(�̂�ML) = 𝜇 and lim

k→∞
Var(�̂�ML) = 0. As

Var(�̂�ML) = 𝜎2∕
∑k

i=1 1∕wi, it is easy to see that the sufficient condition of consistency is satisfied.
Therefore, �̂�ML is a consistent estimator of 𝜇.

Theorem 3
If Di ∼ N(𝜇, 𝜎2wi) for i = 1, 2,… , k with the maximum likelihood estimator of 𝜎2 as �̂�2

ML = 1
k

∑k
i=1(Di −

�̂�ML)2∕wi, then �̂�2
ML is asymptotically unbiased and consistent for 𝜎2.

Proof
We find the expectation and variance of �̂�2

ML, respectively, as

E(�̂�2
ML) =

1
k

E

( k∑
i=1

(Di − �̂�ML)2

wi

)
= (k − 1)𝜎2

k

and

Var(�̂�2
ML) =

2(k − 1)𝜎4

k2
.

Here, the bias of �̂�2
ML is −𝜎2∕k. Taking the limit, we have lim

k→∞
E(�̂�2

ML) = 𝜎2 and lim
k→∞

Var(�̂�2
ML) = 0.

Therefore, �̂�2
ML is asymptotically unbiased and consistent for 𝜎2.

Appendix C. General likelihood ratio test

Theorem 4
Suppose that X̄T

i ∼ N(𝜇T , 𝜎2T
wT

i ), where wT
i = 1∕nT

i for i = 1, 2,… , k1 and X̄C
i ∼ N(𝜇C, 𝜎2C

wC
i ),

where wC
i = 1∕nC

i for i = 1, 2,… , k2. The general likelihood ratio test statistic for the null hypothesis

H0 ∶ 𝜎2T = 𝜎2C
versus the alternative hypothesis H1 ∶ 𝜎2T

≠ 𝜎2C
is given by

Λ = (k1 + k2) ln �̂�2
0 − k1 ln �̂�2T

ML − k2 ln �̂�2C

ML.

Proof
Let Ω = {𝜃; −∞ < 𝜇T , 𝜇C < ∞, 𝜎2T

, 𝜎2C
> 0} be the overall parameter space, and 𝜔 = {𝜃; −∞ <

𝜇T , 𝜇C < ∞, 𝜎2T = 𝜎2C = 𝜎2
0 > 0} be the parameter space under H0, where 𝜃 = (𝜇T , 𝜇C, 𝜎2T

, 𝜎2C ).

Copyright © 2017 John Wiley & Sons, Ltd. Statist. Med. 2017, 36 1395–1413

1411



P. SANGNAWAKIJ ET AL.

Because X̄T
i and X̄C

i are independent, the joint probability density function of X̄T
i and X̄C

i is f (X̄T
i , X̄

C
i )

= f (X̄T
i )f (X̄

C
i ). Here, the log-likelihood function of 𝜃 is derived as

log L = − 1
2

[ k1∑
i=1

(
X̄T

i − 𝜇T

𝜎T
√

wT
i

)2

+
k2∑

i=1

(
X̄C

i − 𝜇C

𝜎C
√

wC
i

)2]
−

k1 log 𝜎2T

2
−

k2 log 𝜎2C

2

−
(k1 + k2) log 2𝜋

2
− logΠk1

i=1

√
wT

i − logΠk2

i=1

√
wC

i ,

with the maximum likelihood estimators �̂�T
ML, �̂�C

ML, �̂�2T

ML, and �̂�2C

ML. Next, consider the log-likelihood
function under H0, we have

log L = − 1

2𝜎2
0

[ k1∑
i=1

(
X̄T

i − 𝜇T√
wT

i

)2

+
k2∑

i=1

(
X̄C

i − 𝜇C√
wC

i

)2]
−

(k1 + k2) log 𝜎2
0

2

−
(k1 + k2) log 2𝜋

2
− logΠk1

i=1

√
wT

i − logΠk2

i=1

√
wC

i ,

where the maximum likelihood estimator for 𝜎2
0 is given by �̂�2

0 = (k1�̂�
2T

ML+k2�̂�
2C

ML)∕(k1+k2). The likelihood
ratio test can be obtained from

𝜆 =
sup𝜃∈𝜔 L(𝜃)
sup𝜃∈Ω L(𝜃)

,

[23]. Substituting the maximum likelihood estimators into the likelihood functions, we have

sup
𝜃∈𝜔

=
exp{−(k1 + k2)∕2}

(2𝜋�̂�2
0)(k1+k2)∕2Πk1

i=1

√
wT

i Π
k2

i=1

√
wC

i

and

sup
𝜃∈Ω

=
exp{−(k1 + k2)∕2}

(�̂�2T

ML)k1∕2(�̂�2C

ML)k2∕2(2𝜋)(k1+k2)∕2Πk1

i=1

√
wT

i Π
k2

i=1

√
wC

i

.

Therefore, the likelihood ratio test statistic for testing H0 versus H1 is given by

𝜆 =
(�̂�2T

ML)
k1∕2(�̂�2C

ML)
k2∕2

(�̂�2
0)(k1+k2)∕2

.

It is easy to obtain Λ = −2 log 𝜆, which is the general likelihood ratio test statistic. The test rejects H0 if
Λ > 𝜒2

𝛼,(1). The proof is therefore complete.
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