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ABSTRACT. Two simple and frequently used capture–recapture estimates of the population size
are compared: Chao’s lower-bound estimate and Zelterman’s estimate allowing for contaminated
distributions. In the Poisson case it is shown that if there are only counts of ones and twos, the
estimator of Zelterman is always bounded above by Chao’s estimator. If counts larger than two
exist, the estimator of Zelterman is becoming larger than that of Chao’s, if only the ratio of the
frequencies of counts of twos and ones is small enough. A similar analysis is provided for the binomial
case. For a two-component mixture of Poisson distributions the asymptotic bias of both estimators
is derived and it is shown that the Zelterman estimator can experience large overestimation bias. A
modified Zelterman estimator is suggested and also the bias-corrected version of Chao’s estimator
is considered. All four estimators are compared in a simulation study.
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1. Introduction

The size N of an elusive population of interest must often be determined. Elusive populations
occur, for example, in public health and medicine, agriculture and veterinary science, soft-
ware engineering, illegal behaviour research, in the ecological sciences and in many other
fields (Bishop et al., 1975; Wilson & Collins, 1992; Bunge & Fitzpatrick, 1993; Pledger, 2000,
2005; Chao et al., 2001; Hay & Smit, 2003; Roberts & Brewer, 2006). All of these situations
fall under the following setting. We assume that the population is closed (no birth, death or
migration), and that there is an endogenous mechanism such as a register, a diagnostic device,
a set of reviewers or a trapping system, which identifies independently n units from the
population of size N in a fixed observational period. Frequently, the identifying system
produces a count xi > 0 of how often the unit i has been identified, where i =1, . . ., n, and
xi =0 remains unobserved by the system for i =n+1, . . ., N . Hence we can think of our
sample x1, . . ., xn, xn+1, .., xN as consisting of the observed, zero-truncated part x1, . . ., xn and
an unobserved part of unknown size N − n consisting only of zero counts. Interest is in
producing an estimate of N on the basis of the available sample x1, . . ., xn and some obser-
vational model p(x |�) for count X =x. A typical example for p(x |�) is the Poisson p(x |�)=
Po(x |�)= exp (−�)�x/x! or the binomial. However, it is more realistic to assume population
heterogeneity for the distribution p(x |�) of counts of identifications X ∈{0, 1, 2, . . ., }, which
allows a distribution on the parameter � in the population of interest:

px =
∞∫

0

p(x |�)f (�) d�,

with unspecified mixing density f (�) and a mixture kernel p(x |�) which needs to be specified,
often it is the Poisson or binomial. Clearly, if f (�) were known then also p0 =∫ ∞

0 p(0 |�)f (�) d�
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were known, and N could be estimated by means of the Horvitz–Thompson estimator
N̂ =n/(1 − p0). However, f (�) is typically unknown and an estimate of p0 would require an
estimate of f (�) (see also Bunge & Fitzpatrick, 1993; Pledger, 2005).

The article considers two popular estimators of an unknown population size N which allow
population heterogeneity but avoid producing an estimate for the mixing distribution f (�): the
estimators of Chao (1987) and Zelterman (1988). Both estimators seem to experience different
priorities in different communities. The lower-bound estimator of Chao is well known in the
fields of biology and ecology. In contrast, Zelterman’s estimator is used frequently in the
social sciences, in particular in illicit drug use research (see, e.g. Hay & Smit, 2003; Roberts
& Brewer, 2006). Little is known on how the two approaches are connected and how these
two estimators and their available modifications compare, the point precisely being addressed
in this article.

The importance of the mixture px =∫ ∞
0 p(x |�)f (�) d� can be seen in the fact that it is a

natural model for modelling population heterogeneity. There appears to be consensus (see,
e.g. Pledger, 2005, for the discrete mixture model approach and Dorazio & Royle, 2005, for
the continuous mixture model approach) that a simple model p(x |�) is not flexible enough to
capture the variation in the recapture probability for the different members of most real-life
populations. Every item might be different, as might be every animal or human being.
However, there has also been a recent debate on the identifiability of the binomial mixture
model (see Link, 2003, 2006; Holzmann et al., 2006). Hence, a renewed interest has re-occurred
in the lower bound approach for population size estimation suggested by Chao (1987). In the
lower bound approach there is neither an identifiability problem, nor is there need to specify
or estimate a mixing distribution. In this sense it is completely non-parametric.

To give some details of the lower bound approach consider the Poisson mixture kernel
Po(x |�)= exp (−�)�x/x!. It follows from the Cauchy–Schwarz inequality that

( ∞∫
0

exp (−�)�f (�) d�

)2

≤
∞∫

0

exp (−�)f (�) d�

∞∫
0

exp (−�)�2f (�) d�,

or equivalently, p2
1 ≤ p0(2p2), from where the Chao’s lower-bound estimate f 2

1 /(2f2) for f0

follows (see Chao, 1984, 1987, 1989). Here, fx denotes the frequency of count x∈{0, 1, . . ., m},
where m is the largest count observed in the sample. The estimate for the population size N
is N̂ =n+ f 2

1 /(2f2). As the Chao’s estimator uses only frequencies with counts of 1 and 2, a
binomial log-likelihood might be considered such as f1 log(p1)+ f2 log(p2) which is uniquely
maximized for p̂2 =1 − p̂1 = f2/( f1 + f2). As p2 =�/(�+2) and p1 =2/(�+2) in a Poisson that
truncates all counts except ones and twos, the estimate �̂=2f2 / f1 for the Poisson parameter
� suggested by Zelterman (1988) arises. In the approach of Zelterman the homogeneous
Poisson serves only as a working model and it was shown by Zelterman that the estimate
N̂ =n/(1− p̂0)=n/[1−exp(−�̂)] is more robust against mis-specifications of the Poisson model
than the usual maximum likelihood estimate (MLE).

When there is a fixed number m of recapture occasions in the sampling period such as a
number of trapping occasions a mixture with a Binomial kernel appears more appropriate
than the Poisson kernel. Similarly, using the inequality of Cauchy–Schwarz again we find for
the Binomial mixture kernel

(m
x

)
�x(1−�)m−x =(m

x

)
( �

1−� )x(1−�)m that

( 1∫
0

(
�

1−�

)
(1−�)mf (�) d�

)2

≤
1∫

0

(1−�)mf (�) d�

1∫
0

(
�

1−�

)2

(1−�)mf (�) d�,
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or equivalently, p2
1/
(m

1

)2 ≤p0p2/
(m

2

)
, or finally, m(m−1)p2

1/2≤p0m2p2, leading to Chao’s lower-
bound estimate [(m − 1)/m][ f 2

1 /(2f2)] of f0. Truncating all counts again except counts of one
and two leads to a binomial likelihood which is maximized for �̂=2f2/[2f2 + f1(m − 1)], the
Zelterman estimate for the binomial. This leads to the population size estimate N̂ =n/[1− p̂0]=
n/[1− (1− �̂)m].

The lower-bound estimator is well known in the fields of biology and ecology. In contrast,
Zelterman’s estimator is used frequently in the social sciences, in particular in illicit drug
use research (see, e.g. Hay & Smit, 2003; Roberts & Brewer, 2006). Little is known about
how the two approaches are connected, the point precisely being addressed in this article. It
seems to belong to the feuilleton of the statistical literature in capture–recapture analysis (for
an example, see Wilson & Collins, 1992) that Zelterman’s estimate of the population size is at
least as large as the Chao’s lower-bound estimate. Although this is intuitively understandable
and is confirmed in empirical as well as in simulation studies, a general proof of this result
does not exist. We show here why such a general result cannot exist.

The article is organized as follows. In section 2, we consider the Poisson case. We show
for n= f1 + f2 that the estimator of Chao is always larger than the estimator of Zelterman.
In addition, we also show that this general occurrence of Zelterman’s estimator being smaller
than Chao’s is basically restricted to when n= f1 + f2. Furthermore, if n > f1 + f2 we show that
N̂

Z ≥ N̂
C

, if only �̂=2f2/f1 is small enough. This explains why we see in empirical studies
the Zelterman estimator frequently being larger than Chao’s as the ratio f2/f1 is typically
small. In section 3 we provide a similar analysis for the binomial case with small, but notable
differences. For m=2, we show that both estimators coincide. For m > 2, Zelterman’s estimator
becomes larger than Chao’s if the ratio (2f2)/[f1(m−1)] is small enough. In section 4 a two-
component mixture of Poisson distribution is studied and the asymptotic biases of both esti-
mators are derived. It is shown that for large contaminations the Zelterman estimator
experiences large overestimation bias. Consequently, a modified Zelterman estimator is
suggested which uses only counts of ones and twos in estimation and prediction. It is known
that for the case of homogeneity Chao’s estimator overestimates in small samples (Chao,
1987). A bias-corrected version of Chao’s estimator has been suggested (Chao, 1989; Wilson
& Collins, 1992) and is considered in section 4.2. Section 5 compares all four estimators with
respect to bias and mean-squared error. The article closes with a short discussion.

2. The Poisson case

In the case of a Poisson kernel, we have that Chao’s lower-bound estimate of the missing zero

counts is f̂
C
0 = f 2

1 /(2f2), whereas Zelterman’s estimate is provided as f̂
Z
0 =n/[exp(�̂)−1], where

�̂=2f2/f1. Let also n= f1 + f2 + f3 + · · ·+ fm, where m is the largest observed count. Theorem 1
describes a situation in which the Zelterman estimate is bounded above by the Chao’s
estimate and thus provides a counterexample to the raised hypothesis that Zelterman’s
estimate is always larger than the Chao’s estimator.

Theorem 1
Let px =∫ ∞

0 Po(x |�)f (�) d� and Po(x |�) be the Poisson kernel. Also, let n= f1 + f2 and fi > 0

for i =1, 2. Then, f̂
C
0 > f̂

Z
0 .

Proof. Consider the second-order approximation 1+x +x2/2 of ex. Note that 1+x +x2/2≤
ex, where the inequality becomes sharp except for x =0. It follows that
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f̂
Z
0 = n

exp(�̂)−1
<

f1 + f2

�̂+ �̂
2
/2

= f1 + f2
2f2
f 2
1

( f1 + f2)
= f̂

C
0 ,

which ends the proof.

As Chao’s estimate provides a lower-bound estimate of the population size, Zelterman’s
estimator would underestimate the population size even more. As a consequence, the estimate
of Zelterman should not be used if only counts of 1 or 2 have occurred.

In the following we provide evidence that the underestimation of Zelterman’s estimator
(relative to Chao’s estimator) is basically restricted to the situation described in theorem 1.
For all other situations, we will show that Zelterman’s estimator provides an upper bound ,
at least if �̂ is sufficiently small. We are interested in the more general question when

f̂
Z
0 = n

exp(�̂)−1
≤ f 2

1

2f2
= f1

�̂
= f̂

C
0 (1)

holds for arbitrary integer m > 1 and n= f1 + f2 + f3 + · · ·+ fm. Note that (1) can be rewritten
equivalently as:

n
f1

�̂+1≤ exp(�̂). (2)

Now, �̂ is a point on the line 1+bx where the slope b is given by n/f1, and for (2) to be true,
it must lie in a region of the positive x-axis where

bx +1≤ exp(x). (3)

For lines with slopes b larger than 1, these regions always exist, as bx +1= exp(x) for x =0
and (bx +1)′ =b > exp(x)′x =0 =1. These lines intersect at some point x0 and, for any x ≥ x0,

(3) holds. Thus, if �̂=2f2/f1 ≥x0, we have that f̂
C
0 ≥ f̂

Z
0 . We summarize in theorem 2.

Theorem 2
Let px =∫ ∞

0 Po(x |�)f (�) d� and Po(x |�) be the Poisson kernel. Also, let n= f1 + f2 + f3 + · · ·+
fm, fi > 0 for i =1, 2 and fi > 0 for at least one i in 3, . . ., m. There exists x0 > 0 such that bx0 +1=
exp(x0) with b=n/f1. Then, if �̂> x0, f̂

C
0 > f̂

Z
0 ; if �̂≤x0, f̂

C
0 ≤ f̂

Z
0 .

Theorem 2 guarantees the existence of a point of intersection x0 of the curves exp(x) and

1+bx with b=n/f1. Hence, if �̂≤ x0, f̂
C
0 ≤ f̂

Z
0 . Now, the point of intersection does not exist

in closed form. In Fig. 1, the point of intersection x0 is plotted as a function of b=n/f1. If

the pair (b, �̂) lies below the curve, then f̂
C
0 < f̂

Z
0 . If the pair (b, �̂) lies above the curve, then

f C
0 > f̂

Z
0 . If the pair lies exactly on the curve we have equality.

If we use the second-order Taylor series approximation 1+x +x2/2 of exp(x) around 0, a
point of intersection x̃0 can be found in explicit form for which 1+bx =1+x +x2/2 is valid,
or equivalently,

x̃0 =2
(

n
f1

−1
)
.

Now write x̃0 =2{[f1 + f2 + (n− f1 − f2)]/f1 −1}, so that

x̃0 = 2f2

f1
+2

n− f1 − f2

f1
≥ �̂

with the inequality being strict if n > f1 + f2. Now, if x̃0 becomes identical to x0, we have that

f̂
Z
0 ≥ f̂

C
0 . But x̃0 will be close to x0, if the Taylor series approximation is good which is the

case if x becomes small. In summary, for �̂ small enough, f̂
Z
0 ≥ f̂

C
0 . As a rule of the thumb,
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b

x 0

Fig. 1. The point of intersection as a function of b: in the region above the curve, Chao’s estimator is
larger than that of Zelterman.

we find for values of �̂≤0.5 the approximation good enough to force Zelterman’s estimator
to be larger than Chao’s lower bound.

Examples. Roberts & Brewer (2006) present data that concern men who were arrested by
the Vancouver Police Department for patronizing a prostitute. Such data can be treated as
capture–recapture data when the number of re-arrests is known. For the two years including
1986 and 1987, 521 different men were arrested for patronizing a street prostitute, and 11 of
these were arrested twice in the period. For the 7-year period between 1986 and 1992, 2001
different men were arrested, and 44 of these were arrested twice. No other information on
the arrestees is available. The data provide an illustration for theorem 1, as fi =0 for i > 2. For
the 2-year data, the Chao’s estimate is 12,344, larger than the Zelterman estimate which is
12,340. For the 7-year period the Chao’s estimator is 47,545, again larger than the Zelterman
estimate of 47,531.

van der Heijden et al. (2003) discuss data on illegal ownership of firearms for the 1998–9
period in five administrative regions in the Netherlands. According to them 2561 people
were identified exactly once for the illegal possession of a firearm, 72 people were identified
exactly twice and 5 exactly thrice. We find that �̂=2f2/f1 =144/2561=0.056, a value close
to 0. Consequently, N̂

Z =48,248 > N̂
C =48,185. To illustrate the importance of �̂ being small,

we change f1 to be 1561 and f2 to be 1072. Then, �̂=2f2/f1 =2144/1561=1.37, a value con-
siderably larger than 0.056. Consequently, N̂

Z =3533 < N̂
C =3775. Typically, f1 is much

larger in empirical studies than f2, which leads to a small ratio 2f2/f1 explaining why in most
of the empirical studies the Zelterman estimator of the population provides a larger value
than the Chao’s estimator.

Finally, we wish to illustrate theorem 2. van Hest et al. (2008) study the achieved coverage
of tuberculosis screening among drug users and homeless persons in Rotterdam, the Nether-
lands. Radiologic screening was done using a mobile digital X-ray unit which visited day and
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Table 1. Frequency fx of count x of repeated entry into the screen-
ing programme by year with Chao’s and Zelterman’s estimates of the
size of the target population

Year f1 f2 f3 + n �̂ b N̂
Z

N̂
C

2003 1162 555 107 1824 0.96 1.57 2964 3040
2004 1058 597 57 1712 1.13 1.62 2531 2649
2005 997 489 21 1507 0.98 1.51 2411 2523

night shelters and hostels for homeless persons, methadone-dispensing centres and safe drug
consumption rooms for opiate users, as well as the street prostitution zones in Rotterdam.
Data on the number of persons and their repeated participation in the screening programme
are provided by van Hest et al. (2008) and are summarized in Table 1.

As the numbers in Table 1 show, the estimate of Chao is larger than the estimate of
Zelterman for all three years. This can now be easily explained by means of theorem 2. If we
look at the pairs (b, �̂) for the three years – as indicated by the three bullets in Fig. 1 – we
see that all three points (b, �̂) lie above the curve (b, x0). Hence, the Chao’s estimator must
be larger than the Zelterman’s.

3. The binomial case

In the binomial case, we have that Chao’s lower-bound estimate of the missing zero counts

is f̂
C
0 = [(m − 1)/m][f 2

1 /(2f2)], whereas Zelterman’s estimate of f0 is provided as f̂
Z
0 =n/[(1+

2f2/{(m−1)f1})m −1] (see section 1).
First we consider the case where m=2, so that n= f1 + f2. Chao’s estimate of the frequency

of the zero counts in this case is given by f̂
C
0 = f 2

1 /(4f2). Comparing this with the Zelterman’s
estimate using �̂

′ =2f2/f1, we have:

f̂
Z
0 = n

(1+ �̂
′
)2 −1

= n
4f2

f1
+ 4f 2

2

f 2
1

= n
4f2

f 2
1

( f1 + f2)
= f 2

1

4f2
= f̂

C
0

showing that the Zelterman estimator is identical to the Chao’s estimator in the two-source
binomial situation. We summarize in theorem 3.

Theorem 3

Let px =
(

m
x

)∫ 1
0 �x(1−�)m−xf (�) d�. For m=2, we have that N̂

Z = N̂
C

.

More generally we wish to know if there exists a condition in the binomial case when

f̂
Z
0 = n

(1+ �̂
′
)m −1

≤ m−1
m

f 2
1

2f2
= f̂

C
0 (4)

holds for m > 2 and n= f1 + f2 + f3 + · · ·+ fm. Now, (4) can be written equivalently as:

n

(1+ �̂
′
)m −1

≤ f1

�̂
′
m

and re-arranging this expression gives:

(1+ �̂
′
)m ≥1+ �̂

′
mn
f1

.
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Hence, we need to compare the functions (1+x)m and 1+bmx with b=n/f1. There exists
again a point of intersection x0 > 0 such that (1+x)m < 1+bmx for all x∈ (0, x0) and (1+x)m >
1+bmx for all x > x0. We summarize this in theorem 4.

Theorem 4

Let px =
(m

x

)∫ 1
0 �x(1 − �)m−xf (�) d�. Also, let n= f1 + f2 + f3 + · · ·+ fm, fi > 0 for i =1, 2 and

fi > 0 for at least one i in 3, . . ., m. There exists x0 > 0 such that bmx0 +1= (1+x0)m with b=n/f1.

Then, if �̂
′
> x0, f̂

C
0 > f̂

Z
0 ; if �̂

′ ≤x0, f̂
C
0 ≤ f̂

Z
0 .

Consider the Taylor approximation 1+mx +m(m − 1)x2/2 of (1+x)m around x =0.
Equating 1+mx +m(m−1)x2/2 to 1+bmx leads to

x̃0 = 2
m−1

(
f2

f1
+ n− f1 − f2

f1

)
,

which is an upper bound for �̂
′ = 2

m−1
f2
f1

. Now, if x̃0 becomes identical to x0, we have that

f̂
Z
0 ≥ f̂

C
0 . But x̃0 will be close to x0, if the Taylor series approximation is good which is the

case if x becomes small. In summary, for �̂
′

small enough, f̂
Z
0 ≥ f̂

C
0 .

4. A two-component heterogeneity model in the Poisson case

We are considering here a special case of heterogeneity distribution in which the heterogeneity
distribution is represented by a discrete two-component mixture: f (�)= (1−q)��1 +q��2 , where
�x corresponds to the one-point measure at x. In consequence, the marginal distribution
is given as a two-component mixture px = (1−q)Po(x |�1)+qPo(x |�2). In capture–recapture
analysis frequently two-component mixtures are sufficient to represent the observed
heterogeneity (see also Pledger, 2000, 2005). In addition, a two-component model of this kind
is common in modelling a contaminated distribution. Hence we think of �1 as the
distributional part which becomes contaminated by the distributional part represented by �2.
In the following we simply write �1 =� and �2 =�.

Theorem 5
Let px =qp(x |�)+ (1 − q)p(x |�) be a discrete, two-component mixture with p(x |�)=Po(x |�)
being the Poisson kernel with parameter � and 0≤q ≤1. Then,

lim
N→∞

E(N̂
Z

)
N

= 1− [q exp(−�)+ (1−q) exp(−�)]

1− exp(−�̃)
→�→∞

1−q exp(−�)
1− exp(−�)

≥1,

with

�̃= q exp(−�)�2 + (1−q) exp(−�)�2

q exp(−�)�+ (1−q) exp(−�)�
.

The inequality is strict if �> 0 and q ∈ (0, 1).

Proof. We have that N̂
Z =n/[1− exp(−2f2/f1)]. As

E( fj)=N [q exp(−�)�j /j!+ (1−q) exp(−�)�j /j!]

for j =1, 2 and

© 2010 Board of the Foundation of the Scandinavian Journal of Statistics.



228 D. Böhning Scand J Statist 37

E(n)=N [1−q exp(−�)− (1−q) exp(−�)]

we have that E(NZ) becomes for large N

N
1− [q exp(−�)+ (1−q) exp(−�)

1− exp(−2 1
2 �̃)

,

with

1
2
�̃= q exp(−�)�2/2+ (1−q) exp(−�)�2/2

q exp(−�)�+ (1−q) exp(−�)�
.

The second part of the theorem follows from the fact that (1 − q) exp(−�)� j /j! converges to
zero with �→∞.

The theorem implies that large contaminations have a persistent, potentially strongly
overestimating effect. To give an example, consider q =0.5 and any �≤ 0.4, then the factor
[1−q exp(−�)]/[1− exp(−�)] is larger than 2.

On the contrary, it is a remarkable property of Chao’s estimator that it is not affected by
large contaminations as the following result in theorem 6 shows.

Theorem 6
Let px =qp(x |�)+ (1 − q)p(x |�) be a discrete, two-component mixture with p(x |�)=Po(x |�)
being the Poisson kernel with parameter � and 0≤q ≤1. Then,

lim
N→∞

E(N̂
C

)
N

= [1−q exp(−�)− (1−q) exp(−�)]+ {q exp(−�)�+ (1−q) exp(−�)�}2

q exp(−�)�2 + (1−q) exp(−�)�2

→�→∞ 1.

Proof. We have that N̂
C =n+ f 2

1 /(2f2). The proof then follows along similar arguments as
used in the proof of the previous theorem.

4.1. The modified Zelterman estimator

The overestimation bias involved in the Zelterman estimator suggests considering the modi-
fication

N̂
M = ( f1 + f2)/[1− exp(−�̂)]+ (n− f1 − f2).

The motivation behind this modification lies in the idea to use only those frequency counts
f1, f2 in the prediction (f1 + f2)/[1− exp(−�̂)] which have been used also in the estimation of �.
As a consequence of theorem 1 we have the following lower-bound property of the modified
Zelterman estimator.

Corollary 1
Let px =∫ ∞

0 Po(x |�)f (�) d� and Po(x |�) be the Poisson kernel. Then, N̂
M ≤ N̂

C
.
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Proof. Consider that

N̂
M = f1 + f2

1− exp(−�̂)
+n− ( f1 + f2)=n+ f1 + f2

exp(�̂)−1

≤n+ f1 + f2

�̂+ �̂
2
/2

=n+ f1 + f2

2f2/f 2
1 ( f1 + f2)

= N̂
C

,

using that �̂=2f2/f1, very similar to the argument used in theorem 1.

As a consequence we see in theorem 7 that with this modification the overestimation bias of
the Zelterman estimator disappears.

Theorem 7
Let px =qp(x |�)+ (1 − q)p(x |�) be a discrete, two-component mixture with p(x |�)=Po(x |�)
being the Poisson kernel with parameter � and 0≤q ≤1. Then,

lim
N→∞

E(N̂
M

)
N

=1− [q exp(−�)+ (1−q) exp(−�)]

+ q exp(−�)�+ (1−q) exp(−�)�+q exp(−�)�2/2+ (1−q) exp(−�)�2/2

exp(�̃)−1

→�→∞ 1+q e−�

(
�+�2/2

exp(�)−1
−1
)

≤1,

where

�̃= q exp(−�)�2 + (1−q) exp(−�)�2

q exp(−�)�+ (1−q) exp(−�)�
.

Proof. We have that

N̂
M = [ f1 + f2]/[1− exp(−2f2/f1)]+n− f1 − f2 =n+ ( f1 + f2)/(exp(�̂)−1).

Replacing observed frequencies by their expected values E(N̂
M

) becomes for large N

N(1− [q exp(−�)+ (1−q) exp(−�)])

+N
q exp(−�)�+ (1−q) exp(−�)�+q exp(−�)�2/2+ (1−q) exp(−�)�2/2)

exp(�̃)−1
. (5)

The second part of the theorem follows from the fact that (1 − q) exp(−�)�j /j! converges to
zero with �→∞ and, hence, (5) becomes

N −Nqe−� +Nq e−� �+�2/2
e� −1

≤N ,

which ends the proof (by noting that e� =∑∞
j =0 �j /j!≥1+�+�2/2).

Note that �+�2/2 is the second-order McLaurin series approximation of exp(�)−1. Hence,
the bias will be small. This will also be seen in the simulation study given in the next
section.

To illustrate the modified Zelterman estimator (and its closeness to the Chao’s estimator)
we consider again the data of section 2 on illegal ownership of firearms for the 1998–9
period in five administrative regions in the Netherlands (van der Heijden et al., 2003). We
had f1 =2561, f2 =72 and f3 =5, so that N̂

Z =48,248, N̂
C =48,185 and N̂

M =48,161, showing
that the latter two are rather close.
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4.2. The bias-corrected Chao’s estimator

A bias-corrected version of Chao’s estimator was suggested by Chao (1987)

N̂
B =n+ f1( f1 −1)

2( f2 +1)
(6)

and also discussed in Wilson & Collins (1992) and Chao (2005). Note that N̂
B ≤ NC by

definition of the estimator. As NC is giving already a lower bound under the Poisson
mixture model, the question arises why this corrected estimator is necessary. The motivation
for this correction stems mainly from the case of homogeneity of the Poisson model where
NC is asymptotically unbiased for N , but experiences overestimation bias for small sample
sizes as we shall work out in detail next. The conventional estimator of Chao is n+ f 2

1 /(2f2)
with expected value

E[n+ f 2
1 /(2f2)]=E(n)+E[f 2

1 /(2f2)]=N(1− exp(−�))+E[f 2
1 /(2f2)].

However, E[f 2
1 /(2f2)] becomes close to

N [exp(−�)�]2/[2 exp(−�)�2/2]=N exp(−�)

only for large N , so that the approximation

E[f 2
1 /(2f2)]≈N exp(−�)

is only valid for large N. In fact, E[ f 2
1 /f2] overestimates E( f 2

1 )/E( f2), potentially considerably.
This becomes clear when investigating numerator and denominator in f 2

1 /f2. E( f 2
1 )=var( f 2

1 )+
[E( f1)]2, so that E( f 2

1 ) overestimates [E( f1)]2 by var( f 2
1 ) which can be approximated by E( f1)

leading to the bias correction f 2
1 − f1 in the numerator of f 2

1 /(2f2). Likewise the denominator
expected value E(1/f2) overestimates 1/E( f2) by Jensen’s inequality (assuming that the
expected values exist). In contrast, 1/( f2 +1) always exists and provides a bias reduction as

1
1+E( f2)

≤E
(

1
1+ f2

)
≤E

(
1
f2

)
,

where we have used Jensen’s inequality once more to achieve the first inequality. This bias
reduction can have maximal bias

1/[1+E( f2)]−1/E( f2)=−1/[(1+E( f2))E( f2)].

Simulations show that the denominator correction is more important than the numerator
correction. In the case of heterogeneity, the correction (6) is less important. However, Chao
(2005) points out that NB is also defined for f2 =0 so that the denominator correction might
always be advisable.

To illustrate the modified Chao’s estimator we consider again the data of section 2 on
illegal ownership of firearms for the 1998–9 period in five administrative regions in the
Netherlands. We had f1 =2561, f2 =72 and f3 =5, so that N̂

B =47,543 which is considerably
smaller than the other three: N̂

Z =48,248, N̂
C =48,185 and N̂

M =48,161.

4.3. The source for the overestimation bias in Zelterman’s estimator

The question arises which is the source for the overestimation bias in Zelterman’s estimate
and is approached in theorem 8 which notes that the Zelterman uses the wrong expected
value in predicting f0. It was pointed out in the introduction that both estimators use only
frequencies of counts of one and two. Hence, we might consider a log-likelihood truncated for
all counts except ones and twos, namely log L(�)= f1 log(p1)+ f2 log(p2) with p2 =�/(�+2)=
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1−p1. This binomial-type likelihood is uniquely maximized for p̂2 =1− p̂1 = f2/( f1 + f2). Note
that p2 =�/(�+2) and p1 =2/(�+2) are the truncated Poisson probabilities p2 = [exp(−�)�2/2]/
[exp(−�)�2/2+ exp(−�)�] for count two and p1 = [exp(−�)�]/[exp(−�)�2/2+ exp(−�)�] for
count 1. Hence, log L(�) is a truncated Poisson likelihood that truncates all counts except
ones and twos. As the MLE for p2 is f2/( f1 + f2), the estimate �̂=2f2/f1 for the Poisson
parameter � suggested by Zelterman (1988) arises. In the approach of Zelterman the
homogeneous Poisson serves only as a working model and it was shown by Zelterman that
the estimate N̂ =n/(1− p̂0)=n/[1− exp(−�̂)] is less sensitive against mis-specifications of the
Poisson model than the usual MLE. The major problem of Zelterman’s estimate can be
identified as follows. Whereas in a homogeneous Poisson model with counts larger than two
not truncated, the conditional expectation of f0 is E( f0 | f1, . . ., fm; �̂)= ( f1 + · · ·+ fm)/(exp(�̂)−1)
with �̂ being the MLE with respect to the zero-truncated likelihood, in the case of a homo-
geneous Poisson model with counts larger than two truncated, the conditional expectation

of f0 is E( f0 | f1, f2; �̂)=( f1 + f2)/(�̂+ �̂
2
/2) with �̂=2f2/f1. This latter conditional expectation

turns out to be the lower bound of Chao: E( f0 | f1, f2; �̂)= f 2
1 /(2f2), as shown by theorem 8.

Theorem 8
(i) Let log L(�)= f1 log(p1)+ f2 log(p2) with

p1 = e−��

e−��+ e−��2/2
= 2

�+2
and p2 = e−��2/2

e−��+ e−��2/2
= �

�+2

being the Poisson probabilities truncated to counts of ones and twos. Then, log L(�) is
maximized for �̂=2f2/f1.
(ii) E( f0 | f1, f2; �̂)= f 2

1 /(2f2), for �̂=2f2/f1.

Proof. For the first part, it is clear that f1 log(p1)+ f2 log(p2) is maximal for p̂1 = f1/( f1 + f2),
which is attained for �̂=2f2/f1. For the second part, we see that with ex =E( fx | f1, f2;�)=
Po(x |�)N :

ex =Po(x |�)N =Po(x |�)N =Po(x |�)
(

e0 + f1 + f2 +
∞∑

j =3

ej

)

so that

e0 + e+
3 = [1−Po(1 |�)−Po(2 |�)](e0 + e+

3 )+ [1−Po(1 |�)−Po(2 |�)]( f1 + f2)

with e+
3 =∑∞

j =3 ex. Hence,

e0 + e+
3 = 1−Po(1 |�)−Po(2 |�)

Po(1 |�)+Po(2 |�)
( f1 + f2)

and

e0 =Po(0 |�)( f1 + f2 + e0 + e+
3 )

=Po(0 |�)( f1 + f2)+Po(0 |�)
1−Po(1 |�)−Po(2 |�)

Po(1 |�)+Po(2 |�)
( f1 + f2)

= Po(0 |�)
Po(1 |�)+Po(2 |�)

( f1 + f2)= f1 + f2

�+�2/2
.

Plugging in the MLE �̂=2f2/f1 for � yields the desired result.

Theorem 8 establishes a close connection between the approach by Zelterman and
Chao’s estimator. It shows that Zelterman’s estimator of the Poisson parameter � arises
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when all counts are truncated except counts of ones and twos and when the resulting
likelihood is maximized. If the correct prediction for f0 is used, namely the conditional
expectation for the truncated Poisson model, the Chao’s estimator arises. Hence, the strong
overestimation of the original Zelterman estimator stems from using a wrong conditional
expectation.

5. Simulation study

To investigate the behaviour of estimators further we have executed a comparative simu-
lation study. Two cases were distinguished: the homogeneity case in which samples of size
N =100 were generated from a Poisson distribution with parameter �∈{0.5, 1, 2, 3, 4, 5}. Any
occurring zeros were truncated and population sizes were estimated with the four estimators
according to Zelterman, Chao and the two proposed modifications. In the second case,
heterogeneous samples were generated arising from 50 per cent:50 per cent mixture of
Poisson distributions (high amount of contamination) where the first component was
chosen with parameter 0.5 and the second component parameter � varied in {1, 2, 3, 4, 5, 6, 7}.
In addition, a 90 per cent:10 per cent mixture of Poisson distributions (small amount of
contamination) was studied where the first component was chosen with parameter 0.5 and
the second component parameter � varied in {1, 2, 3, 4, 5}. Expected values and root mean-
squared error were determined in the conventional way:

̂E(N̂)=
(∑

i

N̂ i

)
/10,000,

̂var(N̂)=
∑

i

[N̂ i − ̂E(N̂)]2/10,000

and

RMSE=
√

( ̂E(N̂)−N)2 + ̂var(N̂).
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Fig. 2. Expected values for the four population size estimators for N =100 and homogeneous Poisson
population with parameter �.
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To eliminate any random error owing to the simulation a replication size of 10,000 was
used.

We summarize here the salient findings of the simulation study.

• In the homogeneous case, the Zelterman estimator tends to overestimate more than
the Chao’s estimator (see Fig. 2). The modified Zelterman estimator is less overesti-
mating than the Chao’s estimator. Clearly, the modified Chao’s estimator is the least
biased (almost unbiased). Chao’s estimator and the modified Zelterman’s estimator have
similar standard deviations, but again the modified (bias-corrected) Chao’s estimator
has smaller standard deviation (see Fig. 3).

• In the heterogeneous case, the Zelterman estimator overestimates strongly for large
contaminations (see Figs 4 and 6). The Chao’s estimator and the modified Zelterman’s
estimator have less overestimation bias and both have smaller mean-squared error than

Fig. 3. Standard deviations for the four population size estimators for N =100 and homogeneous
Poisson population with parameter �.

Fig. 4. Expected values for the four population size estimators for N =100 and heterogeneous Poisson
population with mixing distribution 0.5�0.5 +0.5��.
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Fig. 5. Root mean-squared error for the four population size estimators for N =100 and heterogeneous
Poisson population with mixing distribution 0.5�0.5 +0.5��.

Fig. 6. Expected values for the four population size estimators for N =100 and heterogeneous Poisson
population with mixing distribution 0.9�0.5 +0.1��.

the Zelterman’s estimator (see Figs 4 and 5). In all cases, the modified Chao’s estima-
tor is below the true population size. This also means that it has a larger bias than
Chao’s conventional and the modified Zelterman estimator (see Figs 4 and 6). If the
root mean-squared error is considered it seems to perform best among all the four esti-
mators (see Figs 5 and 7).

6. Discussion

For the Poisson case, van der Heijden et al. (2006) is one of the few papers to discuss the
relationship between Chao’s and Zelterman’s estimator. Their analysis is based on asymptotic
considerations concluding that Chao’s estimator is smaller than Zelterman’s estimator if only
the ratio f2/f1 is small enough. This conclusion is correct. However, it overlooks the existing
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Fig. 7. Root mean-squared error for the four population size estimators for N =100 and heterogeneous
Poisson population with mixing distribution 0.9�0.5 +0.1��.

exact relationships for m=2 as well as for the more general case m > 2, which is presented
here. It was also shown that Zelterman’s and Chao’s estimators are close if the ratio f2/f1 is
small. However, it was also demonstrated that Zelterman’s estimator can overestimate
considerably. A modification of the Zelterman’s estimator was suggested which behaves
similar to Chao’s estimator but still shares the simple features of Zelterman’s estimator; in
particular, it can be generalized to allow the incorporation of covariates as suggested for the
conventional Zelterman estimator in Böhning & van der Heijden (2009). The bias-corrected
estimator of Chao appears to be performing well for small samples and small amounts of
heterogeneity as the simulation study has shown. It also has smallest variance among all
considered estimators, an important aspect when constructing confidence intervals.
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