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Mixed binomial models are frequently used to provide estimates for the unknown size of
a partially observed population when capture–recapture data are available through a
known, finite, number of identification (sampling) sources. In this context, inherently
major problems may be the lack of identifiability of the mixing distribution (Link, 2003)
and boundary problems in ML estimation for mixed binomial models (such as the beta-
binomial or finite mixture of binomials), see e.g. Dorazio and Royle (2003, 2005). To solve
these problems, we introduce a novel regression estimator based on observed ratios of
successive capture frequencies. Both simulations and real data examples show that the
proposed estimator frequently leads to under-estimate the true population size, but with
a smaller bias and a lower variability when compared to other well-known estimators.

& 2013 Elsevier B.V. All rights reserved.
1. Introduction

Capture–recapture methods are often used to estimate the unknown size of a partially observed population, through
samples derived using some identification mechanisms (traps, lists, registers, etc.). These methods have been introduced in
the wildlife setting to estimate animal abundance, and extended to epidemiology, public health, quality control, etc., see
Chao et al. (2001), Roberts and Brewer (2006), and Böhning and Patilea (2008).

Throughout the paper, we will consider an endogenous mechanism, e.g. a register, which identifies n units from a closed
population of unknown size N. The number, m, of sampling occasions (sources) is assumed to be fixed and known; the
number of units identified by the mechanism exactly x times is denoted by nx, x¼ 1;…;m, and the number of units
identified at least once is n¼ n1 þ n2 þ⋯þ nm. Since N¼ n0 þ n, cap–recap methods use information on nx, x¼ 1;…;m to
estimate n0 or, alternatively, N. A common estimation approach is to model the number of times a unit has been identified
through a counting distribution. Let px x¼ 1;…;m denote the conditional probability of exactly x identifications for a generic
unit; we know that the (conditional) maximum likelihood estimator of N is the integer part of the Horvitz–Thompson
estimator N̂ ¼ ⌊nð1þ θ0Þ⌋ where θ0 ¼ p0=ð1�p0Þ represents the odds that an individual is unseen. Therefore, to estimate N,
we need to estimate p0 or n0. According to the hypothesis of a fixed, known, number of sampling occasions (sources), the
number of times the ith individual has been identified may be described by a binomial distribution with (possibly subject-
specific) probability, πi, i¼ 1;…;N. Heterogeneity may be observed, and summarized by a covariate vector, or unobserved.
We discuss the last case where individual-specific variation in identification probabilities is described by a (possibly) known
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parametric distribution, that is πi � Gð�jξÞ. We start from a simple beta-binomial model and propose a population size
estimator based on a regression model for ratios of successive capture frequencies, to avoid boundary issues which often
represent a problem in ML approaches, see Dorazio and Royle (2003, 2005) and Mao and You (2009). While the estimator is
derived by adopting a beta-binomial model, we show in a simulation study that it may be applied with satisfactory results to
general mixed binomial models.

The outline of the paper is as follows: Section 2 reviews recent developments in mixed binomial models for capture–
recapture data. In Section 3 the proposed estimator is derived using an Empirical Bayes approach. In Sections 4 and 5 the
behavior of the proposed estimator is investigated using the simulation scheme of Pledger (2005), and the analysis of real
datasets. Section 6 contains concluding remarks and future research agenda.

2. Modeling unobserved heterogeneity

To estimate the size of a population of interest, we use mixed binomial models, where the mixing distribution models
individual-specific heterogeneity in the target population, which could be due to the effect of unobserved covariates. In this
context, it could be interesting to work with data representing the full capture configuration for a given individual (e.g.
010010 meaning the unit has been captured by two out of six sources); however, in some circumstances, the entire sequence
is unknown and the only information we have on the capture history is the total frequency of capture. In these cases, we
may not adopt behavioral and/or time response models (see e.g. Otis et al., 1978) and turn to mixed binomial distributions.
The estimator we propose is a simple and reliable tool to provide a population size estimate when no time-, individual- or
source-specific information has been recorded.

2.1. Mixed models

Discrete (see e.g. Norris and Pollock, 1996; Pledger, 2000) and continuous mixtures (see e.g. Coull and Agresti, 1999;
Dorazio and Royle, 2003) have been used to mitigate the potential bias in population size estimates, arising should one not
be able to account for individual-specific characteristics. Finite mixture (latent class) models may help reduce the bias by
partitioning units into two or more homogeneous groups, see Norris and Pollock (1996) and Mooijaart and van der Heijden
(1992); however, finite mixture models may underestimate the population size if additional variation exists within each
group (see e.g. Coull and Agresti, 1999). For this reason Morgan and Ridout (2008) propose a two-component mixture with
binomial and beta-binomial kernels.

When individual covariates are available, they may be used to account for individual observed heterogeneity, see e.g.
Huggins (2002). Bartolucci and Forcina (2001) extend this approach, and propose a Rasch-type model where subjects are
homogeneous within a finite set of latent classes and stratified according to a set of discrete covariates. Bartolucci and
Pennoni (2007) model observed/latent heterogeneity, through a latent class model where sources are ordered with respect
to time. In many empirical cases, covariates are not recorded and mixed binomial distributions, an example of Mh models
see e.g. Otis et al. (1978), have to be used to account for individual variation in detection probabilities. In the following, we
will focus on these models.

2.2. The choice of a mixing distribution

On the basis of an extensive simulation study, Pledger (2005) claims that neither finite mixture nor beta-binomial
models can be proved to outperform the others regardless of the true, but unknown, mixing distribution. As far as the beta-
binomial model is concerned, several authors have pointed out its low precision in ML estimates of N; this has been referred
to as weak identifiability of model parameters, see e.g. Burnham and Overton (1978, 1979). Failures in the beta-binomial
model are also observed when the maximized log likelihood is achieved near the boundaries of the parameter space
(Dorazio and Royle, 2003); similar boundary problems occur as well in finite mixture models, see Mao and You (2009).
Besides low precision and boundary problems, identifiability of model parameters is of great concern when ML approaches
are employed to estimate the population size by mixed binomial models. In this context, estimating the population size
reduces to estimating the marginal odds that an individual is unseen (Sanathanan, 1977). This turns out to be completely
nonidentifiable in the general class of nonparametric models (Link, 2003); if we fix a specific mixing distribution, it can be
identified when the number of capture occasions is not smaller than four (Holzmann et al., 2006). However, as noted by
Dorazio and Royle (2003) and Coull and Agresti (1999), several mixed models may fit data reasonably well, and produce
substantially different estimates for the population size. It can be proved that two different mixing distributions, say
Q1aQ2, with different untruncated marginal distributions may lead to identical truncated marginal distributions, i.e.
PQ1

ðxÞ ¼ PQ2
ðxÞ, 8x¼ 1;…;m. Since the population size estimates are based on the truncated distributions, different

estimates of N are obtained on the basis of identical truncated marginal distributions. Therefore, PQ is nonidentifiable
and the same argument applies to marginal odds an individual is unseen. For these reasons, the choice of the mixing
distribution cannot be based on conventional goodness of fit measures; only prior knowledge of potential sources of
heterogeneity in individual propensities of capture can be considered when selecting models. Due to identifiability issues, a
sensitivity analysis of the population size estimates with respect to different assumptions upon the mixing distribution is
mandatory. For example, the ratio plot mentioned by Hoaglin (1980) in supplement of the Poissoness plot, to check for
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homogeneity in Poisson-type distributions, and extended by Hoaglin and Tukey (1985) to other discrete distributions, can
be used to detect substantial departures from homogeneity.

Starting from the idea of the ratio plot, and extending the proposal by Rocchetti et al. (2011), we introduce a regression
estimator which is based on an alternative parameterization of the odds which does not suffer of any of the weak
identifiability/boundary issues discussed above. The estimator we propose extends the proposal by Rocchetti et al. (2011)
in several aspects. Here, we aim at estimating the total amount of an unknown population when dealing with a few, fixed,
number of capture occasions, while Rocchetti et al. (2011) discuss the case of a large, potentially unknown, number of
sampling occasions. The situation we discuss in the present paper is equally common in practice because of the availability
of a few number of sources (due to different purposes of each other and/or privacy issues which make difficult the correct
identification of recaptured individuals) which can be integrated in order to produce more precise prevalence estimates.
In the case of mixed binomial distributions, as pointed out by Link (2003), different mixing distributions, each with support
bounded away from zero, may produce identical sampling distributions for the observed data, but lead to inconsistent
inferences about n0. This makes it impossible to define the best mixing distribution and, thus, to establish the best estimate
for the probability of missing a unit (p0). We introduce a suitable parameterization, in terms of the posterior odds parameter,
that allows us to provide a non-parametric estimate of the quantity of interest, overcoming weak identifiability and
boundary issues in beta-binomial models. While the approach in Rocchetti et al. (2011) applies to the distributions in the
Katz family, the approach we propose is based on the extension of the Chao (1989) inequality to m sources, that is on the
monotonicity of posterior odds, and therefore applies to the whole family of mixed binomial distributions.
3. An empirical Bayes estimator

Let us start by assuming that the observed counts are drawn from a truncated beta-binomial distribution, since the zero
count is not observed. To estimate n0 (or equivalently the population size given the equality N¼ nþ n0), we define a linear
regression for (adjusted) ratios of successive frequency counts; the estimator for n0 is obtained by projecting the regression
function back to zero. The starting point comes from a simple extension of the Chao (1989) lower bound for binomial
mixtures when m42 sampling occasions are considered; monotonicity of the posterior odds parameter is proved in
Appendix A. Let us consider a binomial distribution with a number of trials equal to m, and probability of success π. The
number of successes (the number of times an individual has been registered) is denoted by x¼ 0;1;2;…;m. The binomial
distribution can be written as

PðX ¼ xjπ;mÞ ¼ m

x

� �
πxð1�πÞm�x ¼ αxθ

xμðθÞ

where θ¼ π=ð1�πÞ, μðθÞ ¼ ð1þ θÞ�m, αx ¼ ðmx Þ. If we model unobserved individual-specific variation in π through a mixing
distribution gð�Þ, the marginal pdf is

PðX ¼ xjmÞ ¼ Px ¼
Z

αxθ
xμðθÞgðθÞ dθ

and the posterior mean for θ is

θx;B ¼
R
αxθ

xþ1μðθÞgðθÞ dθR
θxαxμðθÞgðθÞ dθ

¼ Pxþ1αx
Pxαxþ1

¼ xþ 1
m�x

� �
Pðxþ 1jmÞ
PðxjmÞ

Note that Px relates to the marginal probability whereas Px defined in the introduction is a general notation for the
probability of observing exactly x recaptures. The posterior odds conditional to x captures is proportional, for fixed m, to the
ratio between the marginal distribution evaluated at xþ 1 and x. In the case of a homogeneous binomial model, we have
θx;B ¼ π=ð1�πÞ and, therefore, the plot for the couples ðx; θx;BÞ would be constant and parallel to the x-axis. The plot can be
easily linked to Poissoness plot introduced by Hoaglin (1980) and extended by Hoaglin and Tukey (1985) to binomial and
other discrete distributions. In the case of mixed binomial models, the ratio-plot can be proven to be monotone non-
decreasing with x, see Appendix A for a simple proof. Therefore, we have that

Px

αx

Px�1

αx�1
rPxþ1

αxþ1

Px

αx
:

��
ð1Þ

When x¼1, the previous inequality leads to

P0Z
P2
1ðm�1Þ
2mP2

ð2Þ

defining a lower bound for P0 (the marginal probability of missing a unit), see Chao (1989). Replacing the unknown
probabilities by the observed frequencies nx=N, the Chao lower bound estimator is achieved:

n̂C
0 ¼

n2
1ðm�1Þ
2n2m

) N̂C ¼ nþ n̂C
0 ¼ nþ n2

1ðm�1Þ
2n2m

:
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We will use the monotonicity result to motivate the proposed estimator. Let us write

θx;B ¼ hðx;ϕÞ

where hð�Þ is an appropriate response function and ϕ denotes the corresponding parameter vector. Let us replace θx;B by its
empirical counterpart

θ̂x;EB ¼
ðxþ 1Þ
ðm�xÞ

nxþ1

nx

We may estimate ϕ by least squares and solve for x¼0, to get

θ̂0;EB ¼
1
m
n1

n0
¼ h 0; ϕ̂
� �

) n̂0 ¼
n1

mhð0; ϕ̂Þ
ð3Þ

This approach is quite general and applies to the whole class of mixed binomial distributions; it can be specialized when
π � Betaðα; βÞ; in this case, the marginal distribution is

Px ¼ αx
Bðxþ α;m�xþ βÞ

Bðα; βÞ where B x; yð Þ ¼ ΓðxÞΓðyÞ
Γðxþ yÞ

and ΓðxÞ is the ordinary Gamma function. The posterior mean is given by

θx;B ¼
Pxþ1αx
Pxαxþ1

¼ ðxþ αÞ
ðm�x�1þ βÞ

Bðxþ α;mþ β�xÞ
Bðxþ α;mþ β�xÞ ¼

xþ α

ðm�x�1þ βÞ
that is, a non-linear function in x. Let us consider the following monotone transform of θx;B:

θx;B
1þ θx;B

� �
¼

Pxþ1αx
Pxαxþ1

1þ Pxþ1αx
Pxαxþ1

¼
xþ α

ðm�x�1þ βÞ
1þ xþ α

ðm�x�1þ βÞ
¼ xþ α

ðmþ αþ β�1Þ: ð4Þ

Rewriting

α

ðmþ αþ β�1Þ ¼ γ and
1

ðmþ αþ β�1Þ ¼ δ

Eq. (4) leads to the linear regression model

θx;B
1þ θx;B

� �
¼ γ þ δx: ð5Þ

Estimates for γ and δ can be obtained by plugging in observed frequencies on the left-hand side of (5)

αxnxþ1

αxþ1nx þ αxnxþ1
¼ γ þ δx

where δAð0;1Þ and γAð0;1Þ. We may use ordinary least squares to provide estimates ðγ̂ ; δ̂Þ, and invert the relation at x¼0
to obtain the estimate for n0

n1α0
n1α0 þ n0α1

¼ γ̂ ) n̂0 ¼
n1ð1�γ̂ Þ

mγ̂
: ð6Þ

Comparing expression (6) with expression (3), we may notice that, in this case, hð0; ϕ̂Þ ¼ γ̂=ð1�γ̂ Þ. By using the previous
regression estimator, we are implicitly assuming that the monotone non-decreasing trend in θx;B holds, at least
approximately, also when the marginal probabilities are estimated through relative frequencies nx=N, x¼ 1;…;m�1, even
if sample (random) variation in the nx could break this monotonicity. In practice, it is preferable to fit the response on a
logarithmic scale, which is approximately linear near the origin and avoids negative fitted values, which can occur when
γ̂o0. Negative estimates could also be avoided by defining appropriate non-linear transforms of γ and δ, and employing
nonlinear least squares (NLS, see e.g. Lawson and Hanson, 1974). For sake of simplicity, we will not pursue this approach
further. By using a log-transform, we get

log
θx;B

1þ θx;B

� �
¼ log

x
m�1þ β þ α

þ α

m�1þ β þ α

� �

¼�log ðm�1þ β þ αÞ þ log ðxþ αÞ: ð7Þ

Applying McLaurin expansion around α, we obtain

log
θx;B

1þ θx;B

� �
C log

α

m�1þ β þ α

� �
þ x

α
¼ γ1 þ δ1x; γ1o1; δ1ARþ
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Fig. 1. Plot of ratios rx ¼ log ðθx;EB=ð1þ θx;EBÞÞ versus x. Data simulated from a mixed binomial distribution. Mixing distribution Betað1:76;9:99Þ. N¼100,
m¼6. True curve (solid line), regression estimator Nr (dashed line), and tangent line at x¼0 (dotted line).
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By plugging-in observed frequencies, we obtain the following regression model:

rx ¼ log
θ̂x;EB

1þ θ̂x;EB

 !
¼ log

ðxþ 1Þnxþ1

ðm�xÞnx þ ðxþ 1Þnxþ1

� �
Cγ1 þ δ1x ð8Þ

Note that estimates γ̂1 and δ1 can be obtained by weighted least squares, as detailed below. Solving for n0, at x¼0, we obtain
the following estimate:

n̂r
0 ¼

n1 1�expðγ̂1 Þ
	 

expðγ̂1 Þm

and N̂ r ¼ n̂r
0 þ n ð9Þ

where the suffix r stands for regression. In this case, hð0; ϕ̂Þ ¼ expðγ̂1Þ=ð1�expðγ̂1ÞÞ.
While we have used the beta-binomial model as motivation for the proposed estimator, we must notice that all we really

need is that log ½θx;Bð1þ θx;BÞ� follows, at least approximately, a linear pattern. We should stress that the regression model in
Eq. (8) includes, as a special case, the binomial distribution as a reference term, that can be obtained for δ¼ 0. In this sense,
our aim is not that of testing for monotonicity of the observed ratios or comparing different mixing distributions, which is
an ill-posed question. Rather, we aim at defining an estimator which is valid under mild conditions for the whole class of
binomial models, regardless of the specific mixing distribution, since the proposed approach does not suffer from weak
identifiability or boundary issues which are often encountered when beta or discrete mixing distribution are considered. For
a more formal use of the ratio plot, the interested reader is referred to Böhning et al. (2013). The linear function in (8) is the
tangent line to the curve at x¼0; given that log ð�Þ is a concave function of x (and θx;B is non-decreasing in x), the linear
function will be above the curve, and the approximation would be satisfactory should the corresponding equation be
estimated on x-points sufficiently near to 0. As much as we move away from zero, γ̂1 tends to move away from the true
(if any) γ1, taking higher values. Therefore, the proposed approach leads to underestimate the true n0; Fig. 1 displays a ratio
plot for data generated according to case B1 of Pledger (2005). As it can be easily observed, the intercept term of the tangent
curve is lower than the estimate derived by the regression model, which (slightly) underestimates the true n0. As far as the
estimator bias is concerned, we must admit that a general expression for the bias cannot be derived; what we can do is to
study the bias issue when a beta-binomial model holds. As it can be evinced from Eq. (7) in the paper, when a beta-binomial
model holds, we use the following approximation:

log
θx;B

1þ θx;B

� �
¼�log m�1þ β þ αð Þ þ log xþ αð ÞC log

α

m�1þ β þ α

� �
þ x
α
¼ γ1 þ δ1x

Apart from the intercept term, the bias corresponds, loosely speaking, to the accuracy of the term δ1x in reproducing
log ðxþ αÞ when x-0. The bias is increasing with α-0, as it can be noticed by looking at Fig. 2, where lines correspond to
linear models fitted on ratios corresponding to counts x¼ 1;…;6 (that is to the truncated distributions), with αA ½0:01;3�
and fixed β41. For αo1, the bias may reduce when also βo1, since these values imply a higher mass at the right tail of the
distribution of the binomial parameter, producing a lower regression estimate for γ. Fig. 3 below reports case 13 of the
simulation study (beta mixing with α¼ 0:49, β¼ 2:76, plot a), and a modification (α¼ 0:49, β¼ 0:76, plot b).
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To account for potential heteroscedasticity, we used a weighted OLS estimator. The weight matrix W is the inverse of the
response covariance matrix; we assume that, conditional on fixed and observed n, counts n1;…;nm follow a multinomial
distribution with cell probabilities τ¼ ðτ1;…; τmÞ′

n1;…;nmjn�MultinomialðτÞ
where EðnxÞ ¼ nτx, Covðn1;…;nmÞ ¼ n½ΛðτÞ�ττ′�Þ, and ΛðτÞ ¼ diagðτÞ. The proposed estimator is based on a transformation of
observed frequencies, say tðnxÞ, x¼ 1;…;m; therefore, we adopt the multivariate delta method to approximate the
covariance matrix for tðnxÞ, x¼ 1;…;m. When we face small population sizes, as in the simulation study, the distribution
of the random vector ðn1;…;nmÞ=n may not be close to a multivariate normal distribution and, thus, one may wonder
whether the multivariate delta method lead to reliable results. Our empirical findings, based on the simulation study in
Section 4, are that weighting mainly influences variability/dispersion rather than point estimates.

4. Simulation study

Pledger (2005) describes a simulation study where mixed binomial distributions built from several mixing distributions
for individual-specific detection probabilities are used. The aim is to give a comprehensive assessment of bias and precision
for a class of population size estimators. This scheme has been widely adopted in the literature; for this reason we used it as
well to provide a detailed comparison with other, well-known, estimators. The study is based on 1000 samples drawn from
different mixed binomial distributions with population size N¼100 and m¼6 sampling occasions. Comparison entails
estimators from homogenous (binomial) and two heterogeneous models, the beta-binomial and two components finite
mixture model, referred to as BB and 2PM, respectively.

Table 1 shows the mixing distributions divided into three groups (A, B and C) with corresponding mean, variance and
skewness values. In group A, both mean and heterogeneity are low and the probability of missing a unit is slightly higher
than 0.4; group B has similar generating distributions, with higher mean and heterogeneity, and lower masses at zero, while
group C distributions have low mean, high heterogeneity and sometimes huge masses at zero. Thus, three different
scenarios are considered to analyze the behavior of the proposed estimator under different settings.

Table 2 shows the median of the proposed estimator values N̂rðbÞ, over samples b¼ 1;…;1000, and the corresponding median
absolute deviations MAD¼Med½N̂ rðbÞ�MedðN̂rðbÞÞ�. We also report, from Table 4 of Mao and You (2009), the median and Mad
estimates for the BB model (Nhβ ), the 2PM model (Nh2 ), the lower bound estimators of Mao (2007b), Nϕ, and Chao (1989), Nψ .

When a beta mixing is used (choices A1, B1 and C1), N̂r tends to slightly (significantly in C1) underestimate the
population size. When observed counts come from a finite mixture model, the proposed estimator may be sensitive to larger
counts, and tend to slightly overestimate the population size. This is not true for choice C2, where N̂r satisfactory models the
mass near to zero, leading to a moderately negative bias. When the generating distribution is clear of zero but has high
skewness (choices A2, A4, B2 and B4), N̂r behaves similarly to the 2PM model, and both are preferable to the BB model.

While Pledger (2005) pointed out serious underestimation for all the estimators therein considered when the beta-
binomial model is used in the presence of low true skewness (choices A3, A5, B3, B5, C5 and C6), the proposed estimator
Table 1
Mixing distributions for individual capture probabilities. Mean (μ), variance (s2) and skewness coefficient of the mixing distributions, π¼component
weight, θ¼component specific parameter, from Pledger (2005).

Mixing distribution Details μ s2 Skew P0

Group A
A1. Beta Bð1:76;9:99Þ 0.15 0.010 1.02 0.448
A2. Two-point π ¼ ð0:942;0:058Þ, θ¼ ð0:125;0:552Þ 0.15 0.010 3.78 0.422
A3. Two-point π ¼ ð0:5;0:5Þ, θ¼ ð0:05;0:25Þ 0.15 0.010 0.00 0.457
A4. Two-point π ¼ ð0:964;0:036Þ, θ¼ ð0:131;0:669Þ 0.15 0.010 5.00 0.415
A5. Four-point π ¼ ð0:4;0:1;0:1;0:4Þ, θ¼ ð0:05;0:1;0:2;0:25Þ 0.15 0.009 0.00 0.445
A6. Uniform a¼0, b¼0.3 on [0,b] 0.15 0.010 0.00 0.435

Group B
B1. Beta Bð1:31;3:94Þ 0.25 0.030 0.80 0.306
B2. Two-point π ¼ ð0:866;0:134Þ, θ¼ ð0:182;0:690Þ 0.25 0.030 2.14 0.259
B3. Two-point π ¼ ð0:5;0:5Þ, θ¼ ð0:077;0:423Þ 0.25 0.030 0.00 0.329
B4. Two-point π ¼ ð0:916;0:084Þ, θ¼ ð0:198;0:822Þ 0.25 0.030 3.00 0.242
B5. Four-point π ¼ ð0:4;0:1;0:1;0:4Þ, θ¼ ð0:06;0:2;0:3;0:44Þ 0.25 0.029 0.00 0.324
B6. Quadratic f x ¼ 85:7ðx�0:4Þ2 on ð0:1;0:6Þ 0.26 0.030 1.04 0.265

Group C
C1. Beta Bð0:49;2:76Þ 0.15 0.030 1.54 0.550
C2. Two-point π ¼ ð0:935;0:065Þ, θ¼ ð0:104;0:807Þ 0.15 0.030 3.53 0.441
C3. Exponential λ¼ 6, truncated to ð0;1� 0.16 0.030 1.68 0.479
C4. Log f x ¼�log ðxÞ on ð0;1� 0.25 0.050 0.89 0.371
C5. Beta mix π ¼ ð0:5;0:5Þ, Bð0:43;8:08Þ and Bð9:13;27:38Þ 0.15 0.015 0.27 0.492
C6. Beta mix π ¼ ð0:5;0:5Þ, Bð0:81;4:57Þ and Bð3:63;6:74Þ 0.25 0.030 0.48 0.315



Table 2

Simulation results. Median (Mad) values for the proposed estimator, N̂ r , for the beta-binomial N̂hβ and the 2PM N̂2 model, Mao (2007a,b) N̂ϕ , and Chao

(1989) N̂ψ lower bounds. N¼100, m¼6 sources, B¼1000 samples.

Choice N̂ r N̂hβ N̂h2 N̂ψ N̂ϕ

A1 98(11.9) 95(30.0) 95(34.7) 101(43.8) 81(12.9)
A2 110(11.6) 273(275.0) 108(30.3) 114(38.9) 95(16.7)
A3 91(10.2) 81(15.9) 82(20.6) 88(30.1) 74(10.4)
A4 111(15.7) 451(541.3) 106(21.0) 109(25.5) 96(15.9)
A5 96(10.6) 86(19.2) 88(24.9) 94(33.2) 78(11.7)
A6 97(10.7) 89(19.7) 91(27.5) 96(33.5) 80(13.0)
B1 92(6.0) 98(20.1) 89(13.8) 97(26.5) 84(8.5)
B2 105(8.8) 248(193.1) 102(12.3) 109(21.5) 98(11.2)
B3 86(4.9) 83(10.3) 99(39.1) 129(84.5) 79(7.7)
B4 112(9.3) 1463(2011.6) 102(10.5) 108(15.7) 99(10.5)
B5 88(5.1) 82(10.4) 98(37.5) 130(86.1) 80(7.9)
B6 97(6.3) 114(28.0) 100(16.6) 107(26.0) 92(9.4)
C1 70(6.9) 93(51.0) 66(18.6) 80(40.0) 60(10.3)
C2 99(16.5) 1(–) 102(22.0) 111(32.7) 94(20.6)
C3 84(8.7) 120(70.9) 78(19.3) 93(40.5) 72(11.3)
C4 82(5.8) 102(31.1) 78(11.2) 91(28.7) 76(8.0)
C5 79(7.9) 71(14.3) 74(21.3) 77(26.3) 66(9.4)
C6 85(5.4) 90(14.1) 88(15.7) 97(30.9) 82(7.6)
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seems to produce more precise estimates. It is commonly acknowledged, see e.g. Dorazio and Royle (2003), that boundary
problems may occur for both the BB and the 2PM models; just to give an example, as stressed also by Mao and You (2009),
the former leads to infinite estimates in the 97.2% of cases when the choice C2 is entailed. The proposed estimator does not
suffer from such problems; in fact, regardless of the true mixing distribution, it is always well defined.

While neither estimators can be considered to clearly outperform all the others, we may observe that the proposed
estimator Nr always (but in a very few cases) outperforms the BB model, and, often, the 2PM model; in all analyzed
conditions, N̂r has lower variability when compared to 2PM or BB estimators, as can be stated by looking at corresponding
MADs. Compared to Chao and Mao lower bounds, Nr seems to produce more reliable and/or less dispersed estimates, and
could thus represent a potential alternative to lower bound estimators. Indeed, for the simulation reported in Table 2, N̂r is a
lower bound in 14 out of 18 cases, and in the remaining cases, the positive bias is not substantial, as it can be evinced by
corresponding MADs. Further simulation results, discussing the performance of the proposed variance estimator, and the
analysis of the bias of the regression estimator according to Mao and You (2009) results, are given in Appendix C.

5. Examples

In this section, we discuss real data examples: the golf tees data (Borchers et al., 2002) with m¼8, the meadow voles data
(Pollock et al., 1990) with m¼5 and the Hong Kong bird data, with m¼20 sampling occasions. Nonparametric bootstrap CI have
been calculated using S¼1000 resamples. For all the considered examples, we used the function closedN of the R library secr, to
provide competing estimators, namely the 2-point mixture, the beta-binomial, the jackknife of Otis et al. (1978) estimators.
Obtained results have been compared with those previously discussed in the literature, to give also a look at potential differences in
the point or interval estimates. All confidence intervals are built considering a 95% nominal level.

5.1. Golf tees data

In a field experiment, 250 groups (760 individuals) of golf tees were placed in groups of different sizes in a survey region
of 1680 m2, either exposed above the surrounding grass, or, at least partly, hidden by it. They were surveyed by the 1999
statistics honors class at the University of St Andrews (Scotland), see Borchers et al. (2002). A total of n¼162 groups of tees
were seen, but a (potentially unknown) number is missed and needs to be estimated. Table 3 shows the corresponding
frequency distribution. Fig. 4 provides a plot of the observed ratios and the estimated regression line. This is a well-known
example where, due to weak identifiability, the beta-binomial model provides an unreliable estimate of the confidence
interval of the population size, as we will discuss in the following. The regression estimate of the number of missed units is
n̂r
0 ¼ 54 leading to a population size N̂r ¼ 216; the confidence intervals are ½193;238� and ½188;247�, depending on whether

we use the asymptotic approximation for the variance of Nr or a nonparametric bootstrap approach. The bootstrap estimate
of the standard deviation is ŝdðN̂ rÞ ¼ 14:17, while the asymptotic standard error estimate is ŝdðN̂ rÞ ¼ 11:26. The maximum
likelihood estimate based on the beta-binomial model is Nhβ ¼ 302, with confidence interval ½219;501�, (ŝdðN̂hβ Þ ¼ 66:56);
this is still much wider than the one for the regression estimator, but substantially narrower than the one reported in King
et al. (2010), that is ½209;7705�. As it can be evinced by the simulation section for those cases with a substantial mass at zero
and a high variability, the 2PM model clearly underestimates the true population size, with a point estimate N̂h2 ¼ 184, and
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Fig. 3. Beta-binomial model. Bias of the linear estimator for α¼ 0:49; (a) β¼ 2:76, (b) β¼ 0:76.

Table 3
Frequency distribution of golf tees groups detected by eight observers.

n0 n1 n2 n3 n4 n5 n6 n7 n8

– 46 28 21 13 23 14 6 11

Fig. 2. Beta-binomial model. Bias of the linear estimator for αA ð0;3�. log ðxþ αÞ (‘*’), estimated regression models (solid lines), and values at x¼0 (red ‘○’).
(For interpretation of the references to color in this figure caption, the reader is referred to the web version of this article.)
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a very narrow confidence interval ½179;191�, ŝdðN̂h2 Þ ¼ 2:97, for further comparison see also Morgan and Ridout (2008).
The jackknife estimator of Otis et al. (1978) provides a point estimate N̂ jackk ¼ 213, which is slightly more biased than the
estimate obtained through the proposed regression model, with a confidence interval ½190;254� which covers the true
population size, even if it is slightly wider than those we have shown before for the regression estimator, ŝdðN̂ jackkÞ ¼ 15:77.
Chao's lower bound estimate is given by N̂ψ ¼ 200 with a 95% confidence interval ½180;240�, ŝdðN̂ψ Þ ¼ 14:59, showing
a slightly higher variability when compared to the log–linear estimator. As it has been mentioned before, the true
population size is N¼250; also in this case, the regression estimator tends to produce a more reliable and efficient estimate
than the ML estimates obtained by using the beta-binomial or the 2-component finite mixture models.



Table 4
Frequency distribution of captured voles over m¼5 occasions.

n0 n1 n2 n3 n4 n5

– 29 15 15 16 27
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Fig. 5. Meadow voles data. Plot of ratios rx ¼ log ðθx;EB=ð1þ θx;EBÞÞ versus x. Solid line: regression estimator.
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Fig. 4. Golf tees data. Plot of ratios rx ¼ log ðθx;EB=ð1þ θx;EBÞÞ versus x. Solid line: regression estimator. Observed (filled circles) and true (empty circle) ratios.
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5.2. Meadow voles data

The dataset of meadow voles has been previously analyzed by Pollock et al. (1990) and Lee and Chao (1994). There were
five consecutive trapping days (m¼5) and totally 102 distinct voles were captured. The frequency distribution of captured
voles is shown in Table 4 and Fig. 5 provides a plot of the observed ratios rx, x¼ 1;…;4, together with the regression line
corresponding to Nr (solid line). The regression model provides an estimate n̂r

0 ¼ 31 and a total population size N̂r ¼ 133 with
95% non-parametric bootstrap confidence interval ½116;175�, and an approximated Wald-type confidence interval ½113;153�.
To give a comparison term, we may notice that the value N̂ r is similar to the results obtained by employing the lower bound



I. Rocchetti et al. / Journal of Statistical Planning and Inference 145 (2014) 165–178174
Chao (1989) estimate, leading to an estimate N̂ψ ¼ 130, with a confidence interval ½113;172�, ŝdðN̂ψ Þ ¼ 13:74, which is
comparable in size with the one for the regression estimator (at least in its bootstrap version). The MLe for the beta-binomial
model reported by Mao and You (2009) is N̂hβ ¼ 659, with α̂ ¼ 0:045 and β̂ ¼ 0:446 obtained near the boundaries
of the parameter space. By using the closedN function, we obtain a point estimate N̂hβ ¼ 295, with a completely
unreliable confidence interval ½102;411893�, which is clearly indicating that the standard error is growing to infinity.
The estimate obtained through the 2PM model is N̂h2 ¼ 117, with (still quite narrow) confidence interval [110,129]; the
jackknife estimator gives a point estimate N̂ jackk ¼ 139, with associated confidence interval ½122;171� and standard error
estimate ŝdðN̂ jackkÞ ¼ 12:18. Also in this case, the proposed estimator seems to provide a more reliable estimate when
compared to the beta-binomial and the 2PM models, a reliable competitor for lower bound estimators of the population size
when the general class of mixed binomial distributions is entailed, and leads to an estimated population size which is quite
similar to the estimate produced by the jackknife procedure of Otis et al. (1978).
5.3. Hong Kong bird data

This dataset comes from the Hong Kong Big Bird Race (BBR), an annual competition among teams of birdwatchers. The
challenge is to record as many wild bird species in the Hong Kong territory as possible during a fixed interval of time.
Twenty teams (m¼20) competed in the Year 2000 BBR, each team had four members who went around the city to record
the number of distinct bird species they observed. The frequency counts of species recorded by the 20 teams are displayed in
Table 5, while Fig. 6 provides a plot of the observed ratios rx, x¼ 1;…;19, together with the estimated regression line. In this
example, the regression model leads to an estimate n̂r

0 ¼ 9 with N̂r ¼ 229, and a non-parametric bootstrap confidence
interval [223,240], with standard error ŝdðN̂rÞ ¼ 4:18, while if we use the asymptotic variance estimator the confidence
interval is [221,238], with ŝdðN̂rÞ ¼ 3:89. The jackknife estimate (Otis et al., 1978) is N̂ jackk ¼ 238 with a confidence interval
½228;256�, and a standard error estimate ŝdðN̂ jackkÞ ¼ 6:67. As far as the beta-binomial model is concerned (see also Lloyd and
Yip, 1991; Lloyd, 1992), the maximum likelihood estimate is 368 (s.e. 177.9); by using the closedN function we obtained the
same point estimate, but asmaller standard error ŝdðN̂hβ Þ ¼ 73:41, leading to a confidence interval ½279;591�. As before, also
in this case the MLe for the beta-binomial model is unusually high when compared to other estimates; the same can be
argued for the corresponding standard error and the confidence interval. The 2PM model leads to a null estimate and
standard error for n0 and to an undefined confidence interval for the population size; here the model failed to converge as it
Table 5
Frequency distribution of bird species observed by 20 teams in Hong Kong, year 2000.

n0 n1 n2 n3 n4 n5 n6 n7 n8 n9 n10

– 21 16 13 10 4 13 6 4 11 1

n11 n12 n13 n14 n15 n16 n17 n18 n19 n20

6 5 8 3 4 6 11 15 8 55
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Fig. 6. Hong Kong bird data. Plot of ratios rx ¼ log ðθx;EB=ð1þ θx;EBÞÞ versus x. Solid line: regression estimator.
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could happen and, currently, happened in a number of the simulation cases discussed by Mao and You (2009). The Chao
(1989) lower bound estimate is N̂ψ ¼ 234, with a standard error ŝdðN̂ψ Þ ¼ 7:86 and a confidence interval ½225;259�, which is
wider than the one obtained through the proposed regression estimator. In this perspective, the proposed regression
estimator seems to provide a potential and reliable alternative to ML when a beta or a discrete mixing is assumed, and
a reliable lower bound with a lower variability than the Chao estimator.
6. Concluding remarks

In this paper, by using an appropriate reparameterization, we extend the approach developed by Rocchetti et al. (2011) to
situations where the number of sampling occasions is known and fixed. We propose an estimator based on a novel weighted
regression model for (log) ratios of successive capture frequencies for the whole class of mixed binomial distributions. The
proposed estimator is introduced also to prevent identifiability and boundary problems which are quite standard in ML
estimation for mixed binomial models, especially when a beta mixing is considered. The observed data are used to provide
estimates for the number of unregistered individuals, and, therefore, of the unknown population size, through very simple
regression approach.

The beta-binomial and the proposed regression models have the same number of parameters (the regression model is, in
a sense, a reparameterization of the former), but the proposed estimator does not suffer from any boundary problem, since
it is neither designed to provide estimates of the beta distribution parameters, say ðα; βÞ, nor it needs to employ an Horvitz–
Thompson approach to estimate N. Since observed ratios are always well-defined through continuity correction, the
intercept and slope estimates are always finite, and the same is true for the estimates of n0 and N. The proposed estimator is
quite simple to be implemented in standard worksheets and do not need any complex software to be used. An asymptotic
formula for the corresponding variance is given in Appendix B; the performed simulation study shows that this
approximation works quite well in practice, as shown in Section 4 and Appendix C.

When we move across choices in the Pledger (2005) scheme, we have very often that N̂rrN. With increasing sample
size, the relative bias is slightly decreasing (while the variability decreases more substantially), while the estimator tends to
converge when the number of sampling occasions increases. When lower bound estimators are considered, we may observe
that the proposed regression estimator N̂r gives a satisfactory approximation to it, with good properties in terms of bias and,
in particular, in terms of dispersion, which is substantially lower than those of the lower bounds of Mao (2007b) and Chao
(1989). The proposed estimator has been applied to some real data, producing reliable estimates when compared to results
in the literature. In general, the regression estimator could be considered a valid lower bound estimator: it produces results
very close to the Chao estimator, and is characterized by a substantially lower variability. Future research should be focused
on analyzing the influence, on the population size estimate, of the particular specification of the regression function we use
to model the ratio plot distribution, in a sensitivity analysis perspective.
Appendix A. A monotonicity result for ratios in m-captures mixed binomials

Let us denote the number of successes (here, the number of times an individual is registered) with x¼ 0;1;2;…;m.
The binomial distribution can be written as

PðX ¼ x π;mj Þ ¼ m

x

� �
ðπÞxð1�πÞm�x ¼ m

x

� �
π

1�π

� �x
ð1�πÞm ¼ αxθ

xð1þ θÞ�m ¼ αxθ
xμ θð Þ

where

θ¼ π

1�π
; μ θð Þ ¼ ð1þ θÞ�m; αx ¼

m

x

� �
:

If we consider a distribution on θ representing unobserved heterogeneity in the individual-specific probability π,
the marginal pdf can be written as follows:

Px ¼ PðX ¼ xjmÞ ¼
Z

αxθ
xμðθÞGðθÞ dθ

where GðθÞ represents the mixing distribution. Writing V ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½μðθÞθx�1�

q
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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q
, and using the Cauchy–Schwarz

inequality, we may write
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Table 6

Simulation results. Asymptotic and Monte Carlo (Asy.se, MC.se) estimates for the standard error of the proposed estimator, the beta-binomial N̂hβ and the

2PM N̂2 model. Empirical coverage rates for the asymptotic and the nonparametric bootstrap confidence interval, Cov(Asy.CI) and Cov(Emp.CI). N¼100,
m¼6 sources, B¼1000 samples, Nb¼1000 bootstrap resamples.

Choice Cov(Asy.CI) Cov(Emp.CI) Asy :seðNrÞ MC:seðNrÞ seðN̂hβ Þ seðN̂h2 Þ

A1 0.931 0.932 16.4 17.0 59 99
A2 0.943 0.944 21.5 23.9 170 78
A3 0.875 0.888 14.8 15.1 30 79
A4 0.939 0.936 23.4 25.5 202 57
A5 0.925 0.910 16.7 17.5 22 55
A6 0.896 0.905 18.4 19.2 27 94
B1 0.817 0.807 8.5 9.1 33 29
B2 0.939 0.939 13.6 13.3 255 17
B3 0.622 0.631 7.0 7.7 13 72
B4 0.917 0.895 13.9 14.1 371 10
B5 0.708 0.721 6.9 7.9 12 56
B6 0.930 0.924 9.3 9.7 57 41
C1 0.586 0.582 10.4 11.4 101 58
C2 0.952 0.944 26.7 26.1 436 28
C3 0.759 0.763 11.5 11.9 147 57
C4 0.752 0.741 7.8 8.5 55 22
C5 0.666 0.671 11.5 12.6 22 89
C6 0.653 0.689 8.5 8.6 20 38
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Thus

Px

αx
Px�1

αx�1

r

Pxþ1

αxþ1
Px

αx

which implies the posterior mean of the odds is non-decreasing in x.

Appendix B. The formula for the asymptotic variance

Following Böhning (2008), we can use conditioning in combination with the delta-method to give an approximate
expression for the variance of the proposed regression estimator. In this case, we have

Var n̂r
0

� 

CVar n1ð Þ ∂n̂r

0

∂n1

� �2
þ Var γ̂1

� 
 ∂n̂r
0

∂γ̂1

� �2
ð10Þ

Var n̂r
0

� 

Cn1 1�n1

N̂

� �
1�expðγ̂1Þ
expðγ̂1Þm

� �2
þ Var γ̂1

� 
 �n1

expðγ̂1Þm

� �2
ð11Þ

where Np1ð1�p1Þ is the variance of n1 assuming a multinomial distribution with parameter p1 (probability of being caught
once), which can be estimated by N̂ðn1=N̂Þð1�ðn1=N̂ÞÞ ¼ n1ð1�ðn1=N̂ÞÞ, while Varðγ̂1Þ is the variance of the intercept estimate
in the regression model.

Appendix C. Further simulation results

Table 6 reports the simulation study results for standard error estimates and empirical coverage rates. In both cases, we
provide values averaged over the B¼1000 simulated samples for the asymptotic variance approximation detailed in
Appendix B and Wald-type confidence intervals. To check for empirical behavior of these estimators, we also provide Monte
Carlo estimates for the standard error and the empirical coverage rates obtained through nonparametric bootstrap
(S ¼ 1000 resamples). Some points are worth of a discussion; first, as far as the standard error estimates are concerned, the
average asymptotic standard error approximation resembles quite accurately the Monte Carlo estimates. This means that,
even with moderate population sizes, the proposed standard error estimator works accurately. When looking at empirical
coverage rates, the behavior of the Wald-type CI is very similar to the one based on nonparametric bootstrap; therefore, we
may use the former avoiding unnecessary computational effort. The observed coverage rates are quite good and often near
to the nominal 0.95 level, but for cases B5, C1 and C3–C6, where the observed level is substantially lower than the nominal
one. This is probably due to a quite pronounced curvature at x¼0 which could not be recovered by the adopted linear
approximation. In these cases, however, only a negligible portion of asymptotic CIs overestimate the true N value, 0.012 at
maximum in all analyzed cases, and this still points out that the proposed estimator can be used as an efficient lower bound
estimator.



Table 7
Simulation results. Marginal odds θ0, sharpest lower bound ϕðf Q Þ, the intrinsic bias (i-bias) ϕðf Q Þ�θðQ Þ, approximation bias (a-bias) EðθÞ�ϕðf Q Þ, and
estimation bias (e-bias) θ̂�EðθÞ. N¼100, m¼6 sources, B¼1000 samples.

Choice θ0 ϕðf Q Þ i-bias EðθlÞ θ̂ l
a-bias(θl) e-bias(θl)

A1 0.81 0.67 �0.14 0.66 0.78 �0.01 0.12
A2 0.73 0.73 0.00 0.81 0.88 0.08 0.07
A3 0.84 0.84 0.00 0.77 0.67 �0.07 �0.10
A4 0.71 0.71 0.00 0.82 0.84 0.11 0.02
A5 0.80 0.79 �0.01 0.78 0.73 �0.01 �0.05
A6 0.77 0.67 �0.11 0.68 0.71 0.01 0.03
B1 0.44 0.31 �0.13 0.34 0.32 0.03 �0.02
B2 0.35 0.35 0.00 0.38 0.42 0.03 0.04
B3 0.49 0.49 0.00 0.38 0.31 �0.11 �0.07
B4 0.32 0.32 0.00 0.43 0.45 0.11 0.02
B5 0.48 0.47 �0.02 0.42 0.33 �0.05 �0.09
B6 0.36 0.35 �0.01 0.32 0.32 �0.03 0.00
C1 1.22 0.52 �0.70 0.53 0.51 0.01 �0.02
C2 0.79 0.94 0.15 0.85 0.91 �0.09 0.06
C3 0.92 0.54 �0.38 0.56 0.53 0.02 �0.04
C4 0.59 0.31 �0.28 0.31 0.30 0.00 �0.01
C5 0.97 0.49 �0.47 0.44 0.49 �0.05 0.05
C6 0.46 0.29 �0.18 0.26 0.28 �0.03 0.02
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Since the marginal odds that an individual is unseen can not be consistently estimated, see Sanathanan (1977), we may
followMao and You (2009) and question whether proposed estimators should be compared with the true population size or,
rather, with what we could consistently estimate. In this case, we may distinguish between intrinsic, approximation and
estimation bias. The first term measures the departure of the true marginal odds from what we could consistently estimate,
that is the Mao (2007b) lower bound; the second term represents the ability of the proposed estimator to produce unbiased
estimates of the lower bound, and is measured as the deviation between the lower bound and the expected value of the
proposed estimator. The last term measures the deviation between the sample mean of the proposed estimator and its
expected value and roughly measures bias due to sample variability. Table 7 summarizes the results, where columns
referring to θ0, ϕðf Q Þ, and i-bias are drawn from Table 3 of Mao and You (2009). Quantities Eðθr0Þ for the proposed estimator

have been derived by taking the expected value of the regression model predictions, while θ̂
r
0 is the mean value of the

marginal odds, estimated by averaging empirical ratios θ̂
r
0, over B¼1000 simulation samples. As it can be easily observed,

estimator N̂r seems to provide a good approximation to the sharpest lower bound, with usually moderate downward bias,
but for cases A2, A4, B4 where a consistent skewness is present, and some slight upward bias is observed.

To evaluate the behavior of the proposed estimator in other settings, we extended the simulation study by varying the
population size, N¼ 500;1000 and the number of sampling occasions m¼ 9;12. We do not report corresponding tables here
for sake of brevity. However, the main findings are that the relative bias is slightly decreasing with increasing population
size, for a given number of sampling occasions, while the observed variability is substantially decreasing. This points out,
again, the problem of identifiability stated by Link (2003). Rather, a quite clear path arises when, for a given population size,
the number of sampling occasions is increased; in this case, the bias substantially reduces.
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