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Overview

Methodology is presented that allows to estimate

the size of population from a single register, such

as a police register of offenders. A capture-

recapture variable is constructed from Dutch

police records and is a count of the police

contacts for a violation. A population size esti-

mate is derived assuming that each count is a

realization of a Poisson distribution and that the

Poisson parameters are related to covariates

through the truncated Poisson regression model

or variants of this model. As an example,

estimates for perpetrators of domestic violence

are presented. It is concluded that the methodol-

ogy is useful, provided it is used with care.

Fundamentals of Capture Recapture

Introduction

For many policy reasons, it is important to know

the size of specific delinquent populations. One

reason is that it provides insight into the threat

these populations may pose on society. Another

reason is that it gives an estimate of the workload

of the police.

However, estimating the size of a delinquent

population may be problematic for various reasons.

Counting the number of crimes from police records

may lead to a dark number problem. It may be that

the crime is registered but the offender is not known

or, as is often the case with victimless crimes, the

crime is not registered at all. In victim surveys,

people report the number of times they have been

the victim of a particular crime, like robbery or

burglary. Based on that information, an estimate

can be obtained of the total number of these crimes.

However, victim surveys do not provide an estimate

of the number of offenders, since they usually are

unknown to the victim, nor do they provide insight

into victimless offenses. Self-report studies can

potentially estimate the size of a delinquent popula-

tion since people are simply asked whether they are

member of this type of population. Problems related

to self-report studies are the difficulty of obtaining

a representative sample, the risk of socially desir-

able answers, and the need for large samples if

offenses are infrequent. For a more elaborate com-

parison and an overview of the literature on police

registers, victim surveys, and self-report studies, the

reader is referred to Wittebrood and Junger (2002).

The methodology presented here makes use

of a single register. There is a large literature

on capture recapture making use of two

registers. Estimation based on a single register

has two important advantages: first, it does not

require the unverifiable assumption that the two

sources are statistically independent, and,

second, it does not require the elaborate process

of linking databases that is often troubled by

privacy regulations. Also, often there are techni-

cal problems in making correct linkages and in

avoiding incorrect linkages. A single register that

contains (re)captures circumvents these

problems.

In this entry, a way to estimate the number of

offenders from police data is discussed. The data

are from the Dutch police register system.

Offenses committed by a known offender are

registered in this system. So for each specific

offense, like, for example, illegally owning

a gun, an offender-based data set can be

constructed that shows the number of illegal gun

owners apprehended once, twice, three times, and

so on. Note that illegal gun owners who were not

apprehended are not part of this offender-based

data set. Yet, if their number could be estimated,

this would yield an estimate of the total number

of illegal gun owners (compare van der Heijden

et al. 2003a).

The aim is to estimate the number of offenders

never apprehended, using the data about

offenders apprehended at least once. These esti-

mates are derived under two assumptions. First,

the number of apprehensions is a realization of

a Poisson distribution. Second, the logarithm of

the Poisson parameter for an offender is a linear

function of his covariates. These assumptions are

discussed in greater detail at the end of the

introduction.

At this point, it is indicated how, using these

assumptions, the size of the population never

apprehended can be estimated. Consider an

offender with a Poisson parameter that gives

him a probability of.25 to be apprehended at
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least once. Suppose that this offender is indeed

apprehended, then there are three other offenders

with the same Poisson parameter who have not

been apprehended. By performing this trick for

every offender who is apprehended and adding

up all individual estimates, an estimate is

obtained of the number of offenders who are not

apprehended, and this solves the problem.

The methods employed in this entry originate

from the field of biology, where they are used to

estimate animal abundance. In these applications,

the data are collected at specific time points, and

for each animal that is seen at least once, there is

a capture history. For example, if there are five

capture times, a history could be 01101 if

the animal is seen at captures 2, 3, and 5 and

not seen at captures 1 and 4. In the present

methodology, however, the data are collected in

continuous time, so only the total number that

someone is captured is used.

Typically, in the biological application area,

covariate information is not available or not used,

leading to a basic model in which the Poisson

parameters are assumed to be homogenous over

the animals. For an overview of this area, the

reader is referred to Seber (1982, Chap. 4),

Chao (1988), and Zelterman (1988). In the statis-

tical literature, this problem is also known as the

estimation of the number of (unseen) species

(Bunge and Fitzpatrick 1993).

In criminology, there are some early studies by

Greene and Stollmack (1981) who use arrest data

to estimate the number of adults committing

felonies and misdemeanors in Washington D.C.

in 1974/1975; Rossmo and Routledge (1990)

who estimate migrating (or fleeing) fugitives in

1984 and prostitutes in 1986/1987, both in

Vancouver; and Collins and Wilson (1990) who

use arrest data to estimate the number of adult and

juvenile car thiefs in the Australian capital

territory in 1987. In the field of drug research,

a one-source capture-recapture analysis has also

been applied to estimate, for example, the size of

the marijuana cultivation industry in Quebec

(Bouchard 2007) and young drug users in Italy

(Mascioli and Rossi 2008). These studies

do not devote systematic attention to covariate

information on the apprehended individuals.

The methodology reviewed here makes use of

covariates that are available in police registers,

such as age, gender, and so on. The methodology

yields the following results: (1) the hidden num-

ber of offenders and a 95 % confidence interval

for this hidden number, (2) a distribution of these

hidden numbers over covariates, and (3) insight

into which part of the hidden number is visible in

the register and which part is missed, stratified by

the levels of the covariates.

Covariate information is incorporated by

using a regression model that makes use of trun-

cated Poisson distributions, such as the truncated

Poisson regression model and the truncated

negative binomial regression model, that are

well known in econometrics (e.g., Cameron and

Trivedi 1998, Chap. 4). These models are elabo-

rated so that a frequency can be estimated for the

zero count as well as a confidence interval for this

point estimate (see Van der Heijden et al. 2003a,

2003b; Cruyff and van der Heijden 2008;

Böhning and van der Heijden 2009, that also

show examples on undocumented immigrants,

illegally owned firearms, and drunk driving).

The methodology will be illustrated for perpetra-

tors of domestic violence (van der Heijden

et al. 2009).

Assumptions

As the methodology originates from the field of

biology and it is used in the field of criminology,

the assumptions of the methodology are

discussed here in greater detail. Of course,

assumptions that are realistic for animals will

not always be realistic for human offenders.

The first assumption is that the number of

times an individual is apprehended is

a realization of a Poisson distribution (equations

will be provided later). Johnson et al. (1993)

discuss the genesis of the Poisson distribution

and state that it was originally derived by Poisson

as the limit of a binomial distribution with suc-

cess probability p and N realizations, where N

tends to infinity and p tends to zero, while Np

remains finite and equal to l. It turns out that even
for N ¼ 3, the Poisson distribution approximates

the binomial distribution reasonably well if p is

sufficiently small. Johnson et al. (1993) also note
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that the probability of success p does not have to

be constant for the Poisson limit to hold. This

implies that an individual’s count still follows

a Poisson distribution, even if this individual’s

Poisson parameter has changed during the period

of observation. It follows for the type of applica-

tions being discussed that individuals do not need

to have a constant probability to be apprehended,

but it suffices if they can be apprehended a num-

ber of times (see van der Heijden et al. 2003a).

It is important to note that the Poisson assump-

tion is only valid if a change in the individual

Poisson parameter is unrelated to any prior appre-

hensions or non-apprehensions. This follows

from the independence of subsequent trials in

a binomial distribution. In the biostatistical liter-

ature, this problem is known as positive conta-

gion (if the probability increases) or negative

contagion (if the probability decreases).

Closely related to the contagion issue, there is

the problem of an open or closed population.

A population is closed if the number of offenders

is constant over the period of data collection and

is open if offenders may enter or leave the popu-

lation during this period. Given what has been

noted above, it is clear that the population may be

open as long as entering or leaving it is not related

to apprehension or non-apprehension. For

example, detention following an apprehension

removes the person from the population and

excludes the possibility of any subsequent

apprehensions and can therefore be seen as an

extreme case of negative contagion.

So far the Poisson assumption pertaining to an

individual count is discussed. The second

assumption follows from using a regression

model, in which the logarithm of the Poisson

parameters is a linear function of covariates. In

the regression model, the Poisson parameters are

still assumed to be homogeneous for individuals

with identical values on the covariates, but they

are allowed to be heterogeneous for individuals

with different values. Since here the differences

in Poisson parameters are determined by the

observed covariates, this is referred to as

observed heterogeneity. If, in addition to

observed heterogeneity, there are differences in

the Poisson parameters that cannot be explained

by the observed covariates, we speak of

unobserved heterogeneity. If the Poisson regres-

sion model does not fit due to unobserved hetero-

geneity, this is referred to as overdispersion.

In conclusion, the most important violations of

the Poisson assumptions in criminological appli-

cations are contagion and overdispersion.

The contagion problem may be larger for some

offenses than for others, and an indication of its

importance can be obtained by studying the

behavior of offenders as well as police officers

(e.g., by doing qualitative research). If no addi-

tional information is available on their behavior,

it seems best to interpret the results with caution.

Overdispersion can be assessed in the data as

a result of the analysis, and this will be discussed

below.

Models

An informal definition of a Poisson distribution is

as follows. The Poisson distribution is character-

ized by a Poisson parameter denoted by l. This
parameter l expresses the probability of a given

number of events (i.e., the count) under two

assumptions, namely, that events occur:

1. With an average rate in a fixed interval of time

2. Independent of the time since the last event

The probability that the count Y generated by

a Poisson distribution with Poisson parameter l is
equal to j is

pj ¼ PðY ¼ jÞ ¼ e�llj
j!

: (1)

Three models for count data are discussed,

namely, (1) the truncated Poisson regression

model, (2) the truncated negative binomial

regression model, and (3) the Zelterman regres-

sion model.

First consider Eq. 1. Two examples of

a Poisson distribution are provided in Table 1.

In the first example, an individual has a Poisson

parameter l¼ .5. Then his or her probability to be

seen zero times is .607, the probability to be seen

once is .303, twice is .076, and so on. These

probabilities add up to 1. In the second example,

it is assumed that there is an individual with

Poisson parameter 1. His or her probability not
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to be seen is .368, the probability to be seen once

is .368, twice is .184, and so on. Note that the

individual with Poisson parameter l ¼ 1 has

a larger probability to be observed at least once,

namely, (1 � .368) ¼ .632, whereas this proba-

bility for the individual Poisson parameter l¼ .5

is only (1 � .607) ¼ .393. It follows that the

individual with Poisson parameter l ¼ 1 has a

larger probability to be seen.

Model 1: The Truncated Poisson RegressionModel

In single-register capture-recapture data the

observed individuals each have a count larger

than zero. Since for the observed individuals

the count cannot be zero, these individuals

have the so-called truncated Poisson distribu-

tions. For the data in the first and second row

of Table 1, the truncated distributions for y > 0

are obtained by dividing the probabilities by

1 � P(y ¼ 0|l), that is, for the first example we

divide by 1 � .607 ¼ .393 and for the second

example we divide by 1 � .368 ¼ .632; see rows

three and four of Table 1.

As a first step towards developing the trun-

cated Poisson regression model, assume that

there are no covariates. This implies the homoge-

neity assumption, so that only a single Poisson

parameter needs to estimated. This Poisson

parameter is then used to obtain the probability

of not being registered given that the Poisson

parameter equals the value l, as denoted

P(y ¼ 0|l). Using P(y ¼ 0|l), the part of the

population is estimated that we did not see.

A small example will illustrate this. Assume

that n ¼ 250 individuals are observed with a

Poisson parameter for which P(y ¼ 0|l) ¼ .667.

This would mean that P(y > 0|l) ¼ .333, that is,

only one-third of the population is observed

so our n refers to one-third of the population

size. The missed part of the population size is

(.667/.333) * 250 ¼ 500. The estimated popula-

tion size would then be equal to the observed part

plus the missed part, that is,N¼ 250 + 500¼ 750.

In the statistical literature, this is known as the

Horvitz-Thompson estimator of the population

size (see Van der Heijden et al. 2003b).

Secondly, the Poisson parameter for individ-

ual i is related to the covariate values x1i, x2i, . . .
of individual i by a log-linear model, that is,

Log li ¼ b0 þ b1x1i þ b2x2i þ � � � (2)

This equation explains the term “regression” in

the name “truncated Poisson regression model.”

Once the model is estimated and the parameters

are known, the Horvitz-Thompson method can be

applied on an individual level (see Van der

Heijden et al. 2003b). Using the earlier example,

for each of the 250 individuals in the data, there is

an estimated li-parameter. For each individual i
separately, P(y ¼ 0|li)/P(y > 0|li) can be calcu-

lated, and this yields the number of missed indi-

viduals with covariate values identical to

individual i. If these numbers of missed individ-

uals over i are summed and 250 is added,

the estimated population size is found derived

under the truncated Poisson regression model.

Summarizing, the homogeneity assumption is

exchanged for a heterogeneity assumption that

allows individuals to be different with regard to

their covariates. It is important to consider the

case where heterogeneity is completely or partly

ignored. Van der Heijden et al. (2003a) show that

ignoring heterogeneity leads to an estimated pop-

ulation size that is too low. Ignoring heterogene-

ity may happen if important covariates are not

used in Eq. 2.

It is possible to investigate whether there is

ignored heterogeneity by using a test presented

by Gurmu (1991). If this test is significant, then

there is evidence for additional heterogeneity

(i.e., additional with regard to the heterogeneity

that is already taken into account by the

covariates), and the estimated population size is

Capture Recapture to Estimate Criminal
Populations, Table 1 Two examples of Poisson distri-

butions (line 1 and 2) and their corresponding truncated

Poisson distributions.

0 1 2 3 4 5 6 Total

l ¼ .5 .607 .303 .076 .013 .002 .000 .000 1.000

l ¼ 1 .368 .368 .184 .061 .015 .003 .001 1.000

l ¼ .5 – .771 .193 .032 .004 .000 .000 1.000

l ¼ 1 – .582 .291 .097 .024 .005 .001 1.000

Notes: The columns show the number of times an individ-

ual is seen. The cells give the probabilities
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to be interpreted as a lower bound for the true

population size. Thus, the Gurmu test can be used

to investigate the fit of the model. Another way of

investigating the validity of the Poisson assump-

tion is the ratio plot (Böhning and Del Rio

Vilas 2008). According to the previous section,

rj¼ ( j + 1)pj+1/pj¼ l, a constant, if the pj follows
a Poisson distribution. Departure from this con-

stant indicated unobserved heterogeneity.

Model 2: The Truncated Negative Binomial

Regression Model

The distinction between the truncated negative

binomial regression model and the truncated

Poisson regression model is that the truncated

negative binomial regression model allows for

additional heterogeneity of Poisson parameters

after the covariates have been taken into account.

Equations for the negative binomial model are

complicated; see Hilbe (2011) for details.

Cruyff and Van der Heijden (2008) discuss the

application of the truncated negative binomial

regression model for population size estimation.

It turns out that this model is often difficult to fit

numerically, in particular when Poisson parame-

ters are small. For details, see Cruyff and Van der

Heijden (2008) where this is shown using

a simulation study. Unfortunately there are also

numerical problems for the example discussed

below. For an example of opiate users where

fitting the truncated negative binomial regression

truncated Poisson regression model did not lead

to numerical problems, see Cruyff and Van der

Heijden (2008).

Model 3: The Zelterman Regression Model

The Poisson distribution Eq. 1 has the property

that, for any j, P( j + 1|l)/P( j|l) ¼ l/( j + 1). This

can be rewritten as l ¼ ( j + 1) P( j + 1|l)/P( j|l).
Zelterman (1988) uses this property to propose

local estimators of the Poisson parameter by

plugging in observed frequencies fj of count j
for P( j|l) and P( j + 1|l). In particular, if the

frequencies f1 and f2 are plugged in, an estimate

of the Poisson parameter

l̂ ¼ 2f2
f1

is found, and this estimate of l can then

be used to estimate P(0) ¼ 1 � exp(l) and

hence the Zelterman population size estimator

NZ ¼ n/(1 � exp(l)). This estimator is closely

related to Chao’s estimator NC ¼ n + f1
2/2f2, that

is used for similar purposes (Böhning 2010).

Zelterman’s proposal has the advantage that

it is robust against violations of the Poisson

assumption such as unobserved heterogeneity.

Also, when interest goes out to the frequency

of the missed count f0, then it makes sense to

use the information that is the most close to f0,
that is, f1 and f2, because individuals that make

up f1 and f2will be most similar to the individuals

that make up f0. Probably for this reason and

because the estimator is easy to understand,

Zelterman’s estimator is quite popular in

estimates of drug using populations (see,

Van Hest et al. 2007).

Recently Böhning and Van der Heijden (2009)

generalized the Zelterman estimator so that it can

take covariates into account as in Eq. 2. As the

Zelterman estimator is a useful competitor of the

Poisson estimator if there is heterogeneity of the

Poisson parameters, the Zelterman regression

model is a useful competitor of the truncated

Poisson regression model when the homogeneity

assumption of the Poisson parameters (condi-

tional on the covariates) is violated. This follows

from the robustness property of the Zelterman

estimator.

Model Choice

In the truncated Poisson regression model, the

presence of unobserved heterogeneity in the data

can be investigated with a test proposed by

Gurmu (1991) and ratio plots (Böhning and Del

Rio Vilas 2008). If unobserved heterogeneity

can be ignored, the truncated Poisson regression

model is the model of choice. If unobserved

heterogeneity cannot be ignored, the population

size estimate given by the truncated Poisson

regression model is to be interpreted as a

lower bound for the true population size. In this

situation, the truncated negative binomial

regression model can be tried. However, regu-

larly numerical problems are encountered in the

estimation of the model. If there is doubt about
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the Poisson assumption for individuals having

counts higher than 2, then the Zelterman regres-

sion model provides a robust estimate.

Example

In the context of domestic violence policy, it is

important to have reliable estimates of the scale

of the phenomenon. In 2009, a study was

conducted to supplement a victim study and

perpetrator study (van der Heijden et al. 2009).

Here the perpetrator study is reported. cthe prev-

alence of domestic violence, particularly because

so few victims are willing to file charges, which

leads to underreporting, that is, the dark number

in registers. The aim of the capture-recapture

methods used in this study is to estimate the size

of the underreporting. Adding up the reporting

and underreporting then yields an estimate of the

total population of offenders. The estimates have

been made using data from incidents that were

reported and where charges were filed. The data

represent the Netherlands except the police

region for The Hague.

The estimates presented have been calculated

using the Poisson regression model and the

Zelterman regression model. The negative bino-

mial regression model had numerical estimation

problems. The estimates are presented for a year

ranging from mid-2006 to mid-2007. Distinc-

tions were also drawn as regards specific

features of the estimated populations, that is,

the sex and age of the individual suspect, the

type of violence used, the type of victim of

domestic violence, and the ethnic background

of the suspect.

The first line of Table 2 shows the observed

distribution of the counts. A total of 17,662 per-

petrators are observed in the year ranging from

mid-2006 to mid-2007, of whom 15,169 were

observed once, 1,957 twice, and so on. The

second line of Table 2 shows the fitted values

under the truncated Poisson regression model.

The estimated population size is 69,290

(confidence interval is 66,242–72,338) of whom

51,629 perpetrators are not found in the police

register. The fit of the model is not good, as is

revealed by comparing the observed frequency of

the counts and the estimated frequency of the

counts: The Gurmu test on overdispersion gives

a chi-squared distributed test value of 30.04 for

1 � of freedom (p < .0001), showing that the

departure from the truncated Poisson regression

model is significant. Similarly, Fig. 1 shows

a ratio plot (Böhning and Del Rio Vilas 2008)

where these ratios are monotonically increasing,

indicating strong unobserved heterogeneity. For

this reason, further results for the truncated

Poisson regression model are not presented, but

the focus will be on the Zelterman regression

model.

The Zelterman regression model yields

a population size estimate of 84,862 (confidence

interval is 80,293–89,431). Columns 1–3 of

Table 3 provide parameter estimates, standard

errors, and p-values for a Wald test. Gender is

significant, and the fitted conditional Poisson

parameter for males is exp (.49) ¼ 1.63 times as

large as the fitted conditional Poisson parameter

for females. For type of domestic violence, sexual

and physical assaults have a lower fitted Poisson

parameter than threat. In comparison to an (ex-)

partner, a family friend and “other” have lower

fitted Poisson parameters. Ethnic background

(first or second generation) is not significant,

except for “not registered” in the official register,

which are undocumented foreigners, who have

a lower fitted Poisson parameter than the native

Dutch population.

Capture Recapture to Estimate Criminal Populations, Table 2 Observed and fitted frequencies of

counts 0, 1, 2, . . . for domestic violence data under truncated Poisson regression model

0 1 2 3 4 5 >5 Total

Observed – 15,169 1,957 393 99 28 16 17,662

Estimated 51,629 14,814 2,494 317 33 3 0 69,290a

a95 % confidence interval is 66,242–72,338
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Columns 4 and 5 of Table 3 provide observed

univariate frequencies and fitted frequencies.

For example, 14,827 males are found in the

police register, and the estimate of the number

of males is 68,048; thus, it can be concluded

that 14,827/68,048 * 100 ¼ 22 % of the male

perpetrators is observed. For females, this

percentage is 2,653/16,813 * 100 ¼ 16 %. The

other percentage can be derived in an identical way.

Future Directions

It is shown how police records can be used to

estimate the size of criminal populations. These

estimates can be used to evaluate the effective-

ness of the police forces and grant insight into

differential arrest rates (Collins and Wilson,

1990) for different groups. Even though the def-

inition of the data is straightforward, however,

the data are sometimes contaminated with errors.

The reason is that the police does not collect these

data for the purpose of conducting statistical ana-

lyses, they do so to facilitate the process of

apprehending offenders. Therefore, the register

is not always as careful as it should be.

For example, data cleaning was required to min-

imize the likelihood of incorrect double counts

(i.e., the same apprehension appears twice in the

system). Clearly, an incorrect double count incor-

rectly decreases fk by 1 and increases fk+1 by 1, so
that there appear to be more recaptures than there

actually are. The result is that the estimated zero

count is too low. Although careful attention has

been devoted to the appearance of incorrect dou-

ble counts, it is possible that there are still a few in

the data.

Conversely, suppose that an individual has

been apprehended several times, but this has not

been recognized so that this individual has been

entered several times as several single persons.

This will lead to the result that f1 is too large

whereas fj with j > 1 is too small, leading to an

overestimation.

Apart from problems in the correctness of the

data, it may also be that data do not follow the

assumptions of the model. This will lead to biased

estimates. Above we discussed the problem of

positive contagion (leading to estimates that are

too low) and negative contagion (leading to esti-

mates that are too high). Another problem

discussed above is unobserved heterogeneity,

leading to estimates that are too low. It may

very well be that unobserved heterogeneity

always plays a role when the data are derived

from a police registration.

As regards the meaning of our population size

estimate, one might wonder what it stands for?
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Basically, the apprehended individuals can only

be generalized to similar individuals who are not

apprehended (but who are in principle apprehen-

sible and where charges could be filed). Thus, the

population size estimate does not stand for the

total number of perpetrators of domestic vio-

lence; it stands for the apprehensible ones. The

population estimate is still useful, since it repre-

sents the number of individuals who pose a threat

to society and is thus an indication for the police

potential workload.
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▶ Feminist Theory and Domestic Violence

▶History of the Dutch Crime Victimization

Survey(s)

▶History of the Self-Report Delinquency
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Justice

▶ International Crime Victimization Survey

Capture Recapture to Estimate Criminal Populations, Table 3 Parameter estimates, observed and estimated sub-

population sizes under Zelterman regression model. Estimated total population size is 84,862 (95 % CI is

80,293–89,431)

Par SE p Observed Estimated

Constant �2.07 .13 .00

Male .49 .09 .00 14,827 68,048

Female .00 2,653 16,813

Age/10 �.02 .02 .26

Threat .00 3,822 14,442

Waylay .20 .13 .12 556 1,830

Physical �.38 .06 .00 11,234 59,046

Other viol. �.20 .11 .08 1,063 4,859

Psychological .13 .18 .46 298 1,067

Sexual �.42 .15 .01 686 3,607

(Ex-)partner .00 12,130 56,113

Friend family �.40 .16 .01 616 4,178

Child .03 .11 .78 1,271 6,366

Elderly �.05 .26 .84 168 811

Parents .16 .09 .08 1,301 4,890

Other family .11 .09 .18 1,611 7,027

Other �.79 .19 .00 561 5,467

Native Dutch 00 9,642 42,253

Morocco (2) �.10 .18 .57 345 1,597

Morocco (1) .03 .21 .89 730 3,267

Turkey (2) �.03 .18 .89 318 1,451

Turkey (1) �.25 .22 .26 687 3,811

Suriname (2) �.05 .15 .72 489 2,297

Suriname (1) �.16 .19 .40 1,368 7,214

Dutch Antilles (2) �.64 .39 .10 109 927

Dutch Antilles (1) .76 .41 .07 735 2,460

Not western (2) �.28 .34 .41 108 641

Not western (1) .16 .35 .65 1,146 5,242

Western (2) �.08 .12 .49 830 3,869

Western (1) .02 .17 92 593 2,807

Not registered �.54 .11 .00 1,268 9,325
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▶ Self-Reported Offending: Reliability and

Validity

▶ Surveys on Violence Against Women

▶Understanding Victimization Frequency
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Synonyms

Chronic offenders; Persistent offenders

Overview

In 1986, the National Academies Press

published a two-volume compendium entitled

“Criminal Careers and ‘Career Criminals’”
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