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ABSTRACT 

The simple adjusted estimator of risk difference in each center is easy constructed by adding a value c on the number of 
successes and on the number of failures in each arm of the proportion estimator. Assessing a treatment effect in 
multi-center studies, we propose minimum MSE (mean square error) weights of an adjusted summary estimate of risk 
difference under the assumption of a constant of common risk difference over all centers. To evaluate the performance 
of the proposed weights, we compare not only in terms of estimation based on bias, variance, and MSE with two other 
conventional weights, such as the Cochran-Mantel-Haenszel weights and the inverse variance (weighted least square) 
weights, but also we compare the potential tests based on the type I error probability and the power of test in a variety 
of situations. The results illustrate that the proposed weights in terms of point estimation and hypothesis testing perform 
well and should be recommended to use as an alternative choice. Finally, two applications are illustrated for the practi-
cal use. 
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1. Introduction 

It is widely known that the conventional proportion esti-
mator, p̂ X n , is a maximum likelihood estimator 
(MLE) and an uniformly minimum variance unbiased 
estimator (UMVUE) for the binomial parameter p  
where the binomial random variable X  is the number 
of successes out of the number of patients n . However, 
Agresti and Coull [1], Agresti and Caffo [2], Ghosh [3], 
and Newcombe [4,5] highlighted the point that p̂  might 
not be a good choice for p  when the assumption of 

ˆ 5np   and  ˆ1 5n p   was violated; this violation 
often occurs when the sample size n  is small, or the 
estimated probability p̂  is close to 0 or 1 (close to the 
boundaries of parameter space), leading to the problem 
of the zero estimate of the variance of p̂ . The estimated 
variance of p̂ , provided by   ˆ ˆ ˆ( ) 1V p p p n  , is zero 
in the occurrence of any case: 0X   or X n . Böh- 
ning and Viwatwongkasem [6] proposed the simple ad- 
justed proportion estimator by adding a value c  on the 
number of successes and the number of failures; cones- 
quently,    ˆ 2cp X c n c    is their proposed esti- 
mate of p  with the non-zero variance estimate 

      2ˆ ˆ ˆ1 2c c cV p n p p n c   . They concluded that the 
estimator    1 2X n   minimizes the Bayes risk (the  
average MSE of ˆcp ) in the class of all estimators of the 
form    2X c n c   with respect to uniform prior on 
[0,1] and Euclidean loss function; furthermore, the esti-
mator    1 2X n   has smaller MSE than X n  in 
the approximate interval  0.15,0.85  of p . For another 
argumentation in the Bayesian approach, Casella and 
Berger [7] showed that    X n      is a Bayes 
estimator of p  under the conditional binomial sampling 

 ~ ,X p binomial n p  and the prior beta distribution 
 ~ ,p beta   . Note that in case of 1    the beta 

distribution has a special case as the uniform distribution 
over [0,1]. Consequently, the estimator    2X c n c   
derived from the Bayesian approach and the Bayes risk 
approach under the above mentioned criteria provides the 
same result at 1c  . 

With the idea of    ˆ 2cp X c n c   , the extension 
leads to 1 2

ˆ ˆ ˆc c cp p   , the adjusted risk difference esti-
mator between two independent binomial proportions, 
for estimating a common risk difference   where 

   1 1 1 1 1ˆ 2cp X c n c   and    2 2 2 2 2ˆ 2cp X c n c    
are proportion estimators for treatment and control arms. 
In a multi-center study of size k , the parameter of in- *Corresponding author. 
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terest is also a common risk difference   that is as- 
sumed to be a constant across centers. We concern about 
a combination of several adjusted risk difference estima- 
tors 1 2

ˆ ˆ ˆc j c j c jp p    from the thj  center  1, 2, ,j k   
into the adjusted summary estimator of risk difference of  

the form 1
ˆ ˆk
c w j c j c jf    where c jf  are the weights  

subject to the condition that 1 1k
j c jf  . In this study,  

we would propose the optimal weights c jf  as an alter- 
native choice based on minimizing the MSE of ĉ w  in 
Section 2, then state the well-known candidates such as 
the Cochran-Mantel-Haenszel (CMH) weights and the 
inverse variance (INV) weights in Section 3. A simula- 
tion plan for comparing the performance among weights 
in terms of estimation and hypothesis testing is presented 
in Section 4. The results of the comparison among the 
potential estimators based on bias, variance, and MSE 
and also the evaluations among tests related the men- 
tioned weights through the type I error probability and 
the power criteria lie on Section 5. Some numerical ex- 
amples are applied in Section 6. Finally, conclusion and 
discussion are presented in Section 7. 

2. Deriving Minimum MSE Weights of  
Adjusted Summary Estimator 

Under the assumption of a constant of common risk dif-
ference   across k  centers, we combine several ad-
justed risk difference estimators 1 2

ˆ ˆ ˆc j c j c jp p    in  

which    1 1 1 1 1ˆ 2c j j jp X c n c    and  

   2 2 2 2 2ˆ 2c j j jp X c n c    f rom the  thj  cen te r  

 1, 2, ,j k   arrive at an adjusted summary estimator 
of risk difference of the form 1

ˆ ˆk
c w j c j c jf   where 

c jf  are non-random weights subject to the constraint 
that 1 1k

j c jf  . Please observe that for a single center  

 1k   the adjusted summary estimator 1
ˆ ˆk
c w j c j c jf     

subject to 1 1k
j c jf   is a shrinkage estimator of a  

simple adjusted estimator 1 2
ˆ ˆ ˆc c cp p   . Our minimum 

MSE weights c jf  of the adjusted summary estimator 

ĉ w  were derived by following Lagrange’s method [8] 
under the assumption of a constant of common risk dif- 
ference over all centers with the pooling point estimator 
to estimate  . Lui and Chang [9] proposed the optimal 
weights proportional to the reciprocal of the variance 
with the Mantel-Haenszel point estimator under the as- 
sumption of noncompliance. It was observed that both of 
optimal weights provided the different formulae because 
of different assumptions even though they were derived 
from the same method of Lagrange. Now, we wish to 
present the proposed weights minimizing the MSE of 

ĉ w  as follows: 

   
2

2

1

ˆ ˆ ˆ
k

cw cw c j c j
j
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To obtain the minimum Q  subject to a constraint 

1 1k
j c jf  , we form the auxiliary function   to seek 
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2
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ˆ 1
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j j

E f f   
 

   
      

   
   

where   is a Lagrange multiplier. The weights c jf  
and   are derived by solving the following equations  

simultaneously: 0







, 0
c jf





, 1, 2, ,j k  . The 

details are presented in Appendix. The result of the 
weighted estimate for the thj  center yields 

 

 

1

11
1

1
1

ˆˆ ˆ1
ˆ

ˆ

ˆˆ ˆˆ ˆ1ˆ
        

ˆ ˆ ˆˆ ˆ

j j pool

c j

k
m m m m poolj j

k
m m m m

V
f

a

V EV

aa E V

 

 











 
 
 
 

         




 

where 1 1 1 2 2 2

1 1 2 2

ˆ ˆˆ
2 2

j c j j c j
j

j j

n p c n p c
E

n c n c

 
 

 
 

 
 

 
 

1 1 1 2 2 2

2 2

1 1 2 2

ˆ ˆ ˆ ˆ1 1
ˆ

2 2

j c j c j j c j c j

j

j j

n p p n p p
V

n c n c

 
 

 
, ˆˆˆ ˆj jaE b    

1

1 1

1 ˆˆ
ˆ

k k

j
j jj

a V
V



 

   , 
1

ˆ
ˆ

ˆ

k
j

j j

E
b

V

  , 1 2
ˆ ˆ ˆpool p p    

1 1 1 1 1
1

1 1 1 1

ˆ
ˆ

k k
j j j j j

k k
j j j j

n p X
p

n n

 

 

 
 
 

,  

1 2 2 1 2
2

1 2 1 2

ˆ
ˆ

k k
j j j j j

k k
j j j j

n p X
p

n n

 

 

 
 
 

 

In the particular case of 1 2 0c c  , our estimator 

1
ˆ ˆk
c w j c j c jf   has a shrinkage estimator to be the 

popular inverse-variance weighted estimator. Under a 
common risk difference   over all centers, the variance 
of ĉw  in the case of non-random weights c jf  are ob- 
tained by 

   
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Suppose that a normal approximation is reliable, the 
asymptotic distribution is 

   
1

2
1

ˆ ˆˆ
(0,1)

ˆˆ ˆˆ ˆ

k
j c j c jcw

k
cw j c j cj

f
N

V f V

  

 






 



 



C. VIWATWONGKASEM  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

50 

for testing 0 0:H    we have the normal approximate test 

 
1 0

2
1 0

ˆ ˆ

ˆ ˆˆ
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We will reject 0H  at   level for two-sided test if 

2c wZ Z  where 2Z  is the upper  100 2th  
percentile of the standard normal distribution. Alterna- 
tively, 0H  is rejected when the p-value ( p ) is less than 
or equal to    p   where  2 1 c wp Z     
and  Z  is the standard cumulative normal distribu- 
tion function. 

3. Other Well-Known Weights 

3.1. Cochran-Mantel-Haenszel (CMH) Weights 

Cochran [10,11] proposed a weighted estimator of cen- 
ter-specific sample sizes for a common risk difference 
based on the unconditional binomial likelihood as 

1
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n n
     . Cochran’s weight jw  is  

widely used as a standard non-random weight derived by 
the harmonic means of the center-specific sample sizes. 
Note that 1

k
j j j jf w w   is also Cochran’s weight 

subject to the condition that 1 1k
j jf  . A straightfor- 

ward derivation illustrates that Ĉ MH  is an unbiased 
estimate of   and the variance of Ĉ MH  is readily 
available as  
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where      1 1 1 2 2 2
ˆ 1 1j j j j j j jV p p n p p n     . As-  

suming that a normal approximation is reliable, the 
Cochran’s Z-statistic for testing 0 0:H    is provided 
as 
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where       0 1 1 1 2 2 2
ˆˆ ˆ ˆ ˆ ˆ1 1j j j j j j jV H p p n p p n     .  

The rejection rule of 0H  follows the same as the previ- 
ous standard normal test.  

Alternatively, Mantel and Haenszel [12] suggested the 
test based on the conditional hypergeometric likelihood 
for a common odds ratio among the set of k  tables un- 

der the null hypothesis of 0 : 1H OR    0  . With 
the null criterion, Mantel-Haenszel’s weight stated by 
Sanchez-Meca and Marin-Martine [13] was equivalent to 

 1 2 1 2 1j j j j jw n n n n   . Since the minor difference 
between the conditional Mantel-Haenszel weight and the 
unconditional Cochran weight is in the denominators, 
thus the two are often referred to interchangeably as the 
Cochran-Mantel-Haenszel weight. In this study, we use 

 1 2 1 2j j j j jw n n n n  . 

3.2. Inverse Variance (INV) or Weighted Least 
Square (WLS) Weights 

Fleiss [14] and Lipsitz et al. [15] showed that the in- 
verse-variance weighted (INV) estimator or the weighted- 
least-square (WLS) estimator for   was in the summary 
estimator of the weighted mean (linear, unbiased estima-
tor) of the form 

1 1

ˆ ˆ
k k

I NV j j j
j j

w w 
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    

where 1 2 1 1 2 2
ˆ ˆ ˆj j j j j j jp p X n X n      and jw  

defined by the reciprocal of the variance as 
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The non-random and non-negative weights jw  yield 
the minimum variance of the summary estimator Î NV  
for estimating  . The variance of Î NV  is just given by 

   
   

2 2

2 2

1 1

11 1

ˆ 1 1ˆ j j j j

I NV

jj j

k k
j j

kk k
jj j

w V w w
V

ww w


  

 

    
 

 
 

However, the weights jw  cannot be used in practice 
since 1 jp  and 2 jp  are unknown. Therefore, it has be- 
come common practice to replace them by their sample 
estimators. It yields 

   1 1 2 21

1 2

ˆ ˆ ˆ ˆ1 1
ˆ j j j j

j
j j
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n n
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 
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This weight was suggested in several textbooks of 
epidemiology such as Kleinbaum et al. [16] or in text- 
books of meta-analysis such as Petitt [17]. We assume 
that a normal approximation is reliable; the inverse-variance 
weighted test statistic for testing 0 0:H    is 
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where  1
0

ˆˆˆ j jw V H  . Also, the rule of 0H  rejection 
follows the same as the above standard normal test. 



C. VIWATWONGKASEM  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

51

4. Monte Carlo Simulation 

We perform simulations for estimating a common risk 
difference   and testing the null hypothesis 0 0:H    
in the similar plans as follows:  

Parameters Setting: Let the common risk difference 
  be some constants varying from 0 to 0.6, with incre-
mental steps of 0.1. Baseline proportion risks 2 jp  
 21 22 2, , , kp p p  in the control arm for the thj  center 
 1, 2, ,j k   are generated from a uniform distribution 
over  0, 0.95  . The correspondent proportion risks 

1 jp  for the treatment arm in the thj  center are obtained 
as 1 2j jp p   . For example, if 0.2  , then 

 2 ~ 0,0.75jp U  and  1 2 ~ 0.2,0.95j jp p U  . The 
sample sizes 1 jn  and 2 jn  are varied as 4, 8, 16, 32, 
100. The number of centers k  takes values 1, 2, 4, 8, 16, 
32. 

Statistics: Binomial random variables 1 jX  and 2 jX  
in treatment and control arms are generated with pa-
rameters  1 1,j jn p  and  2 2,j jn p  for each center j .  

Estimation: All summary estimates of   are com-
puted in a variety of different weights. The procedure is 
replicated 5000 times. From these replicates, bias, vari-
ance, and MSE (mean square error) are computed in the 
conventional way.  

Type I Error: From the above parameter setting, we 
assign 0   under a null 0 0:H   , so all tests are 
computed. The replication is treated 5000 times. From 
these replicates, the number of the null hypothesis reject- 
tions is counted for the empirical type I error  .  

 0 0Number of rejections of   when   is true
 

Number of replications (5000 times)

H H
   

The evaluation for two-sided tests in terms of the type 
I probability is based on Cochran limits [18] as follow.  

At 0.01  , the   value is between  0.005, 0.015 .  
At 0.05  , the   value is between  0.04, 0.06 .  
At 0.10  , the   value is between  0.08, 0.12 .  
If the empirical type I error ̂  lies within those of 

Cochran limits, then the statistical test can control type I 
error.  

Power of Tests: Before evaluating tests with their 
powers, all comparative tests should be calibrated to have 
the same type I error rate under 0H ; then any test whose 
power hits the maximum under 1H  would be the best 
test. To achieve the alternative hypothesis, we assume 
the random effect model for j  as  

 0.1 0.1 2 1j mU m U       

where mU  as an effect of between centers is assigned to 
be uniform  ,m m  for a given  0, 0.1m , or 
equivalently, U  is an uniform variable over  0,1 . 
That is,   0.1jE    and    2

2 12jVar m  . Also, 
we have 1 2j j jp p   where 2 jp  be uniform distri-

bution over  0.1, 0.8 . Binomial random variables 1 jX   
and 2 jX  are drawn with parameters  1 1,j jn p , and 

 2 2,j jn p , respectively. All proposed test statistics are  
then computed. The procedure is replicated 5,000 times. 
From these replicates, the empirical power 1   of test 
is counted. 


 

0 1Number of rejections of   when   is true
1  

Number of replications 5000 times

H H
   

5. Results 

Since it is difficult to present all enormous results from 
the simulation study, we just have illustrated some in-
stances. Nevertheless, the main results are concluded 
perfectly. 

5.1. Results for Estimating Risk Differences 

Table 1 presents some results according to point estima-
tion of a common risk difference  . However, we can 
draw conclusions in the following.  
 The number of centers, k , can not change the order 

of the MSE of all weighted estimators, even though 
an increase in k  can decrease the variance and the 
MSE of all estimators, leading to the increasing effi-
ciency. Also, increasing 1 jn  and 2 jn  can decrease 
the variance of all estimators while fixing k . The 
unbalanced cases of 1 jn  and 2 jn  for center j  have 
a rare effect on the order of the MSE of all estimates.  

 For most popular situations used under 0  , 
0.1  , 0.2  , and 0.3  , the proposed sum-

mary estimator  cw  adjusted by 1 2 1c c c    in-
cluding adjusted by 2c   is the best choice with the 
smallest MSE. The estimator ĉw  adjusted by 

0.5c   and the inverse-variance (INV) weighted es-
timator  0c   are close together and are the second 
choice with smaller MSE. The Cochran-Mantel- 
Haenszel (CMH) weight performs the worst in this 
simulation setting. This finding is very useful in gen-
eral situations of most clinical trials and most causal 
relations between a disease and a suspected risk factor 
since the risk difference is often less than 0.25 [19].  

 For 0.4  , the proposed estimator ĉw  adjusted 
by 1c   performs best; for 0.5  , the proposed 
estimator ĉw  adjusted by 0.5c   performs best; 
for 0.6  , the INV weighted estimator ( 0c  ) 
performs best. 

5.2. Results for Studying Type I Error 

Table 2 presents some results for controlling the empiri-
cal type I error. We can conclude the performance of 
several tests according to the empirical alpha under 0H  
as follows. 
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Table 1. Mean, variance, MSE for estimating θ . 

  k  1 j
n  

2 j
n  Measure CMH 

INV 
( 0c  ) 

0.5c   1c   2c   

0.0 1 2 2 Mean: –0.001700 –0.000850 –0.001130 –0.000850 –0.000570 

    Var: 0.171245 0.042811 0.076109 0.042811 0.019027 

    MSE: 0.171250 0.042813 0.076112 0.042813 0.019028 

0.0 1 4 4 Mean: –0.000800 0.000400 –0.000640 –0.000530 –0.000400 

    Var: 0.088874 0.053058 0.056879 0.039499 0.022219 

    MSE: 0.088875 0.053058 0.056880 0.039500 0.022219 

0.0 1 8 8 Mean: 0.002625 0.001965 0.002333 0.002100 0.001750 

    Var: 0.042575 0.035480 0.033641 0.027249 0.018923 

    MSE: 0.042584 0.035483 0.033647 0.027254 0.018926 

0.0 1 16 16 Mean: –0.000050 0.000328 –0.000047 –0.000044 –0.000040 

    Var: 0.021759 0.020761 0.019275 0.017193 0.013926 

    MSE: 0.021759 0.020761 0.019275 0.017193 0.013926 

0.0 1 32 32 Mean: –0.001900 –0.001950 –0.001840 –0.001790 -0.001690 

    Var: 0.010805 0.010674 0.010160 0.009572 0.008538 

    MSE: 0.010809 0.010678 0.010164 0.009575 0.008540 

0.0 1 100 100 Mean: 0.000566 0.000572 0.000560 0.000555 0.000544 

    Var: 0.003482 0.003478 0.003413 0.003346 0.003219 

    MSE: 0.003482 0.003478 0.003413 0.003347 0.003219 

0.1 16 2 2 Mean: 0.102200 0.051100 0.068133 0.051100 0.034067 

    Var: 0.178755 0.044689 0.079446 0.044689 0.019861 

    MSE: 0.178759 0.047080 0.080462 0.047080 0.024210 

0.1 16 4 4 Mean: 0.101900 0.071067 0.081520 0.067933 0.050950 

    Var: 0.093292 0.056358 0.059708 0.041462 0.023323 

    MSE: 0.093295 0.057194 0.060047 0.042490 0.025729 

0.1 16 4 8 Mean: 0.091175 0.073915 0.078964 0.069820 0.056883 

    Var: 0.068527 0.048536 0.047903 0.036184 0.023445 

    MSE: 0.068605 0.049217 0.048345 0.037095 0.025305 

0.1 16 4 16 Mean: 0.096425 0.086770 0.087330 0.080322 0.069865 

    Var: 0.057752 0.041273 0.040889 0.032469 0.024164 

    MSE: 0.057764 0.041448 0.041048 0.032856 0.025072 

0.1 16 4 32 Mean: 0.103087 0.094537 0.095306 0.089488 0.080958 

    Var: 0.052651 0.037007 0.037127 0.030458 0.025400 

    MSE: 0.052662 0.037037 0.037149 0.030568 0.025763 

0.1 16 8 8 Mean: 0.105625 0.091604 0.093890 0.084500 0.070417 

    Var: 0.047621 0.041375 0.037626 0.030478 0.021165 

    MSE: 0.047653 0.041446 0.037664 0.030718 0.022040 

0.1 16 8 16 Mean: 0.100700 0.094838 0.093524 0.087382 0.077367 

    Var: 0.035620 0.031899 0.029404 0.024987 0.019128 

    MSE: 0.035620 0.031926 0.029445 0.025147 0.019641 

0.1 16 8 32 Mean: 0.097381 0.093334 0.092488 0.088258 0.081217 

    Var: 0.028539 0.025407 0.023764 0.020808 0.017542 

    MSE: 0.028546 0.025452 0.023820 0.020945 0.017895 

0.1 16 16 16 Mean: 0.099100 0.094834 0.093271 0.088089 0.079280 

    Var: 0.023792 0.023050 0.021075 0.018798 0.015227 

    MSE: 0.023793 0.023077 0.021120 0.018941 0.015656 

0.1 16 32 32 Mean: 0.100794 0.099611 0.097741 0.094866 0.089594 

    Var: 0.011022 0.010951 0.010364 0.009764 0.008709 

    MSE: 0.011023 0.010951 0.010369 0.009790 0.008817 

0.1 16 100 100 Mean: 0.100052 0.099934 0.099061 0.098092 0.096204 

    Var: 0.003728 0.003725 0.003654 0.003583 0.003446 

    MSE: 0.003728 0.003725 0.003655 0.003587 0.003461 
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Table 2. Empirical type I error for testing 0 0H : θ = θ  at 5% significance level. 

0
  k  1 j

n  
2 j

n  CMH INV ( 0c  ) 0.5c   1c   2c   

0.0 1 4 4 3.42 3.42 3.42 3.42 3.42 

  4 8 2.08 2.08 6.84 4.76 4.76 

  4 16 3.00 3.00 6.52 5.80 8.18 

  4 32 2.76 2.76 6.66 6.18 10.50 

  4 100 2.54 2.54 7.30 6.46 14.40 

  8 8 3.28 3.28 6.76 4.16 4.16 

  8 16 4.26 4.26 6.54 4.74 4.30 

  8 32 4.34 4.34 5.58 4.22 5.10 

  8 100 5.02 5.02 6.58 6.00 8.90 

  16 16 4.74 4.74 4.48 4.48 3.38 

  16 32 4.50 4.50 4.94 4.44 3.90 

  16 100 5.02 5.02 5.30 4.58 5.10 

  32 32 5.04 5.04 4.66 4.34 3.88 

  32 100 5.22 5.22 5.16 4.46 4.34 

  100 100 4.74 4.74 4.60 4.40 4.14 

0.0 4 4 4 3.68 3.68 3.68 3.68 3.68 

  8 8 3.40 3.40 7.14 4.56 4.56 

  16 16 4.84 4.84 4.66 4.66 3.54 

  16 32 4.52 4.52 5.00 4.52 4.10 

  16 100 5.46 5.46 5.66 4.72 5.26 

  32 32 4.74 4.74 4.42 4.18 3.92 

  32 100 5.34 5.34 5.48 4.74 4.46 

  100 100 5.04 5.04 4.98 4.86 4.64 

0.1 4 4 4 1.26 1.26 8.28 8.28 6.22 

  8 8 4.24 4.24 7.6 4.66 4.66 

  16 16 5.18 5.18 5.76 5.04 4.06 

  16 32 5.66 5.66 5.82 5.40 5.30 

  16 100 5 .8 6 5.86 6 .2 0 4.84 4.88 

  32 32 5.72 5.72 5.64 4.96 4.44 

  32 100 5.88 5.88 5.44 5.20 4.82 

  100 100 5.22 5.22 5.16 5.10 4.82 

0.2 4 4 4 1.74 1.74 4.36 4.36 8.00 

  8 8 4.66 4.66 8.58 5.38 5.38 

  16 16 7.54 7.54 6.32 6.28 6.58 

  16 32 7.26 7.26 6.22 5.56 5.60 

  16 100 6.24 6.24 6.18 5.40 5.88 

  32 32 5.46 5.46 5.40 5.46 5.08 

  32 100 5.56 5.56 5.26 5.22 4 .8 8 

  100 100 5.34 5.34 5.16 5.10 5.22 

0.4 4 4 4 3.00 3.00 12.06 7.44 18.04 

  8 8 8.00 8.00 6.82 9.18 12.04 

  16 16 5.78 5.78 5.92 5.16 7.04 

  16 32 6.82 6.82 6.56 6.16 7.56 

  16 100 6.38 6.38 6.18 5.80 7.06 

  32 32 5.96 5.96 5.78 5.94 6.28 

  32 100 5.92 5.92 5.80 6.04 6.72 

  100 100 5.68 5.68 5.34 5.14 5.48 

Bold values denote that the statistical tests can control the type I error. 
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 The increasing k  cannot change the order of the 

empirical type I error rates of all tests. Also, the un-
balanced cases of 1 jn  and 2 jn  for center j  have a 
slight effect on the order of the empirical type I error 
rates of all tests.  

 None of tests can control type I error rates when sam-
ple size of treatment or control arm is very small 
( 1 4jn   or 2 4jn  ). There exists few tests that can 
control type I error when sample size is small ( 1 8jn   
or 2 8jn  ).  

 For 0  , almost all tests can control type I error 
rates when the sample size is moderate to large 
( 1 16jn   or 2 16jn  ). This finding frequently oc-
curs in practical use of 0 : 0H   .  

 For 0.2  , 0.4  , and 0.6  , almost all tests 
can control type I error rates when the sample size is 
large to very large ( 1 32jn   or 2 32jn  ).  

5.3. Results for Studying Power of Tests 

Table 3 shows some more details of the powers. Fortu- 
nately, almost all tests under 0 : 0H    can control type 
I error rates when the sample size is moderate to large 
( 1 16jn   or 2 16jn  ). We ignore to consider the com- 
parative tests when sample size is very small ( 1 4jn   or 

2 4jn  ) since all of tests can not control type I error 
rates. The performance of several weighted tests accord-
ing to the powers under 1 : 0.1j mH U    can be con-
cluded in the following: 
 The empirical powers yield a similar pattern of results 

like the MSE. An increase in the number of centers, 
k , can increase the power but it can not change the 
order of power.  

 Overall, the proposed weights adjusted by 1c   in- 
cluding 2c   perform best with the highest power 
in a multi-center study of size 2k   when 1 16jn   
or 2 16jn  .  

 The INV weight and the CMH weight are achieved 
with the highest powers in one center study when 

1 16jn   or 2 16jn  .  
 When the sample size is large to very large ( 1 32jn   

or 2 32jn  ), all weights perform well.  

6. Numerical Examples 

Two examples are presented to illustrate the implementa-
tion of the related methodology. Pocock [20] presented 
data from a randomized trial studying the effect of pla-
cebo and metoprolol on mortality after heart attack (AMI: 
Acute Myocardial Infarction) classified by three strata of 
age groups, namely, 40 - 64, 65 - 69, 70 - 74 years. Ta-
ble 4 shows the data and weights corresponding to the 
CMH, the INV, and the proposed strategies. The esti-
mated summary differences based on the CMH, the INV, 
and the proposed weights are 0.031, 0.024, 0.030, re-

spectively. Also, the estimated standard errors of those of 
overall differences are 0.014, 0.013, 0.014, respectively. 
Since both of 2.237C MHZ   and 2.197c wZ   are 
greater than 2 1.96Z  , the CMH and the proposed 
tests at 1c   reject the null hypothesis at 5% level for 
two-sided test and lead to the conclusion of a significant 
difference between the placebo and metoprolol mortality 
rates whereas the INV test with 1.823I NVZ   fails to 
reject the null hypothesis at 5% level.  

Turner et al. [21] presented data from clinical trials to 
study the effect of selective decontamination of the di-
gestive tract on the risk of respiratory tract infection of 
patients in intensive care units. See data and weights in 
Table 5. The estimated overall differences and their es-
timated standard errors are 0.152 (0.012), 0.140 (0.011), 
0.162 (0.012) for the CMH, the INV, and the proposed 
weights at 1c  , respectively. All tests reject the null 
hypothesis with 12.584C MHZ  , 12.215I NVZ  ,  

13.719c wZ   and lead to the conclusion of a significant 
difference between treatment effect of selective decon-
tamination of the digestive tract on the risk of respiratory 
tract infection. 

7. Conclusions and Discussion 

In most general situations used by the risk difference 
lying on [0, 0.25], the results have confirmed that the 
minimum MSE weight of the proposed summary esti-
mator 

cw  adjusted by 1 2 1c c c    (including 

1 2 2c c c   ) is the best choice with the smallest MSE 
under a constant of common risk difference   over all 
k  centers. The number of centers, k , cannot change 
the order of the MSE of all weighted estimators, even 
though an increase in k  can decrease the variance and 
the MSE of all weighted estimators. Also, increasing 1 jn  
and 2 jn  can decrease the variance of all estimators 
while fixing k . The unbalanced cases of 1 jn  and 2 jn  
for center j  have a slight effect on the order of the 
MSE of all estimates. The minimum MSE weight is de-
signed to yield more precise estimate relative to the 
CMH and INV weights. Another benefit of the proposed 
weight is easy to compute because of its closed-form 
formula. With the basis of smallest MSE and the 
easy-to-compute formula, we have been solidly sug-
gested to use the proposed weight. In addition, the vari-
ous choices for c  have been considered again. The use 
of 0.5c   as a conventional correction term [22] should 
be revised. The better value of c  in adding on the 
number of successes and the number of failures is sug-
gested with at least for 1c   (including 2c  ). This 
result is supported by the ideas of Böhning and Viwat-
wongkasem [6], Agresti and Coull [1], and Agresti and 
Caffol [2] that recommended to use the appropriate val-
ues of c  greater than or equal to 1.  
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Table 3. Empirical power (percent) at m = 0.04 after controlling the estimated type I error at the nominal 5% level. 

   X = Controllable Type I error rates Empirical power rates 

k  1 j
n  

2 j
n  CMH INV 0.5c  1c   2c   CMH INV 0.5c   1c   2c   

1 8 8    X X    6.8 6.8 

 8 16 X X  X X 7.3 7.3  8.3 7.4 

 8 32 X X X X X 9.5 9.5 11.5 9.6 9.9 

 8 100 X X  X  11.3 11.3  11.8  

 16 16 X X X X  11.2 11.2 10.6 10.6  

 16 32 X X X X  12.2 12.2 12.7 11.8  

 16 100 X X X X X 16.4 16.4 15.4 14.8 14.6 

 32 32 X X X X  17.6 17.6 16.5 16.4  

 32 100 X X X X X 21.4 21.4 21.2 20.8 20.3 

 100 100 X X X X X 36.8 36.8 36.8 36.5 36.1 

4 8 8    X X    26.9 29.7 

 8 16    X X    29.5 32.8 

 8 32 X X X X X 20.8 23.8 31.5 33.1 35.2 

 8 100 X X  X  23.6 28.9  36.8  

 16 16 X X X X  25.3 27.0 31.0 33.4  

 16 32 X X X X X 32.4 35.9 38.0 40.6 43.6 

 16 100 X X X X X 39.1 44.6 45.2 46.8 48.9 

 32 32 X X X X  44.2 46.1 47.8 49.5  

 32 100 X X X X X 58.1 60.6 61.4 62.8 64.6 

 100 100 X X X X X 85.6 87.0 86.7 87.2 87.8 

8 8 8           

 8 16   X X    44.0 48.8  

 8 32 X X X X X 35.3 39.5 50.2 53.9 59.0 

 8 100 X X    39.9 46.0    

 16 16 X X X X  43.1 45.9 52.7 56.9  

 16 32 X X X X X 53.4 57.0 61.3 64.3 68.5 

 16 100 X X X X X 65.7 69.3 72.0 74.5 77.1 

 32 32 X X X X X 71.1 72.9 74.8 76.9 80.4 

 32 100 X X X X X 86.1 87.7 88.3 89.1 90.4 

 100 100 X X X X X 98.8 98.9 99.0 99.1 99.1 

16 8 8    X X    68.3 77.5 

 8 16   X     68.5   

 8 32 X X X X X 60.9 64.6 74.2 77.1 82.1 

 8 100 X X  X  67.4 72.1  82.0  

 16 16 X X X X  71.0 73.8 79.0 82.2  

 16 32 X X X X X 82.5 84.4 87.3 89.2 92.0 

 16 100 X X X X X 90.3 90.8 93.1 93.8 94.8 

 32 32 X X X X  93.9 94.9 95.3 96.0  

 32 100 X X X X X 99.0 99.1 99.1 99.2 99.3 

 100 100 X X X X X 100.0 100.0 100.0 100.0 100.0 

32 8 8           

 8 16 X X  X X 81.8 83.2  92.7 95.6 

 8 32 X X X X X 88.7 90.0 94.1 95.1 96.7 

 8 100 X X  X  92.2 93.4  96.4  

 16 16 X X    94.5 95.0  97.5  

 16 32 X X X X  98.1 98.5 99.0 99.1  

 16 100 X X X X X 99.7 99.5 99.8 99.9 99.9 

 32 32 X X X X  99.8 99.9 99.9 99.9  

 32 100 X X X X X 100.0 100.0 100.0 100.0 100.0 

 100 100 X X X X X 100.0 100.0 100.0 100.0 100.0 
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Table 4. Mortality data over three strata of age groups following Pocock. 

Age Placebo Metoprolol  Weights 

j  
1 j

x  
1 j

n  
2 j

x  
2 j

n  
j  CMH INV 1c   

40 - 64 26 453 21 464 0.012 0.66 0.79 0.69 

65 - 69 25 174 11 165 0.077 0.24 0.16 0.25 

70 - 74 11 70 8 69 0.041 0.10 0.05 0.06 

 
Table 5. Respiratory tract infections following Turner et al. 

Trial Treatment I Treatment II  Weights 

j  
1 j

x  
1 j

n  
2 j

x  
2 j

n  
j  CMH INV 1c   

1 25 54 7 47 0.314 0.03 0.02 0.02 

2 24 41 4 38 0.480 0.02 0.02 0.03 

3 37 95 20 96 0.181 0.05 0.03 0.04 

4 11 17 1 14 0.576 0.01 0.01 0.01 

5 26 49 10 48 0.322 0.03 0.02 0.02 

6 13 84 2 101 0.135 0.05 0.07 0.07 

7 38 170 12 161 0.149 0.09 0.09 0.09 

8 29 60 1 28 0.448 0.02 0.02 0.03 

9 9 20 1 19 0.397 0.01 0.01 0.01 

10 44 47 22 49 0.487 0.03 0.02 0.03 

11 30 160 25 162 0.033 0.08 0.07 0.06 

12 40 185 31 200 0.061 0.10 0.08 0.07 

13 10 41 9 39 0.013 0.02 0.01 0.01 

14 40 185 22 193 0.102 0.10 0.09 0.09 

15 4 46 0 45 0.087 0.02 0.06 0.04 

16 60 140 31 131 0.192 0.07 0.04 0.05 

17 12 75 4 75 0.107 0.04 0.05 0.05 

18 42 225 31 220 0.046 0.12 0.11 0.09 

19 26 57 7 55 0.329 0.03 0.02 0.03 

20 17 92 3 91 0.152 0.05 0.07 0.07 

21 23 23 14 25 0.440 0.01 0.01 0.02 

22 6 68 3 65 0.042 0.03 0.07 0.05 

 
In terms of type I error estimates, when sample size is 

very small ( 1 4jn   or 2 4jn  ), none of tests can control 
type I error rates. In addition, there exists few tests that 
can control type I error rates when sample size is small 
( 1 8jn   or 2 8jn  ). This result is consonant with the 
comments of Lui [23] that none of conventional 
tests/weights under sparse data is appropriate. This inap-
propriateness under sparse data can cope with the mini-
mum MSE weights from this finding. The further work 
to seek some appropriate tests/weights in sparse data 
challenges for investigators to develop an innovation or 
to improve much more reasonable tests/weights. In gen-
eral results, almost all tests can control type I error rates 

when sample size is moderate to large ( 1 16jn   or 

2 16jn  ). 
In terms of power, we ignore to evaluate the power 

when sample size is very small ( 1 4jn   or 2 4jn  ) 
because all tests can not control type I error rates. The 
results illustrate the same pattern like the MSE. The pro-
posed weights adjusted by 1c   including 2c   per-
form best with the highest power in a multi-center study 
of size 2k   when 1 16jn   or 2 16jn  . The INV 
weight and the CMH weight are achieved with the high-
est powers in one center study when 1 16jn   or 

2 16jn  . When sample size is large to very large 
( 1 32jn   or 2 32jn  ), all tests perform well. We 



C. VIWATWONGKASEM  ET  AL. 

Copyright © 2012 SciRes.                                                                                  OJS 

57

strongly recommend to use the minimum MSE weight as 
an appropriate choice because of its highest power. 
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Appendix 

Under a true common risk difference   over all k  
centers ( 1, 2, ,j k  ), the mean square error of  
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Solving for   by taking summation on c jf , it yields 
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In practice, we have to estimate the adjusted summary 
estimator by replacing the sample estimates for the un-
known quantities: jE , jV , 1 jp , 2 jp ,  . 

 


