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Abstract
The Rasch Poisson Counts model is an appropriate item response theory

(IRT) model for analyzing many kinds of count data in educational and psycho-

logical testing. The evaluation of a fitted Rasch Poisson model by means of a

graphical display or graphical device is difficult and, hence, very much an open

problem, since the observations come from different distributions. Hence meth-

ods, potentially straightforward in the univariate case, cannot be applied for this

model. However, it is possible to use a method, called the covariate–adjusted

frequency plot, which incorporates covariate information into a marginal fre-

quency plot. We utilize this idea here to construct a covariate-adjusted fre-

quency plot for the Rasch Poisson Counts model. This graphical method is

useful in illustrating goodness-of-fit of the model as well as identifying poten-

tial areas (items) with problematic fit. A case study using typical data from a

frequently used intelligence test illustrates the method which is easy to use.

Keywords: Frequency plot, Goodness-of-fit, Model Diagnostics, Graphical Display, Residual Analy-
sis.
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1. Introduction

The Rasch model is the standard model for analyzing count data from

speed tests. Compared to other models the Rasch model has the best sta-

tistical attributes, e. g. it is the only model where the scores are the sufficient

statistics. Hence if the Rasch model fits the data it should be used. The Rasch

Poisson Counts model (RPCM), first published in the classical monograph by

Rasch [1, 2], may be considered as the first item response theory (IRT) model.

This model allows for the analysis of count data which are assumed to be dis-

tributed according to a Poisson distribution. Nevertheless the RPCM has by far

not gained as much attention as other IRT models such as the logistic 1PL- or

2PL-model. The minor attraction of the RPCM may be explained by the field

of previous applications which are mainly confined to very elementary cogni-

tive tasks such as errors in reading tasks (see e. g. Jansen [3]). However,

Jansen [3, 4] showed that data from many common intelligence tests can be

well modeled by the RPCM.

Statistical inference for the RPCM, as for any other statistical models, re-

quires checking the distributional assumptions. This can be easily accom-

plished by comparing the estimated, theoretical distribution with the observed

distribution, the latter usually displayed in a frequency plot in which the ob-

served frequency fy of count value y is plotted against y. This is fairly easy

when only a few parameters are involved but becomes more complex when co-

variate information needs to be taken into account. For this reason, Holling et

al. [5] recently suggested a marginal plot which incorporates covariate informa-

tion to any available refined degree. For example, it is possible to construct an

observed frequency plot that incorporates covariate patterns which are unique

for each study participant. This graphical device was called covariate–adjusted

frequency plot (CAFP).

More precisely, let Y be random variable with values in {0, 1, 2, ...} with the

distributional model P (Y = y) = py = py(ψ) involving a parameter ψ and fy as

the frequency distribution of n observations y1, y2, · · · , yn (more precisely, fy
is the count of sample values in y1, y2, · · · , yn equal to y). Given a consistent

estimate ψ̂ of ψ, usually py(ψ̂)n is compared with fy. This is done on the

basis that py(ψ̂) → py(ψ) and fy/n → py(ψ). Here → means convergence in

probability.

This principle is generalized in the covariate-adjusted frequency plot for



Holling et al. 69

a distributional model incorporating covariates and thus involving potentially

many different parameters. Let the count variable Yi follow a distributional

model p(µ(ψ, ηi)) with i = 1, ..., n where ηi is a known vector or scalar (typically

the values of the covariate(s)), and µ(·, ·) is a known function. A covariate-

adjusted frequency is now defined as f̂y(ψ̂n) =
n∑

i=1

py(µ̂i) and a covariate-

adjusted probability as p̂y(ψ̂n) = 1
n

n∑
i=1

py(µ̂i) where µ̂i = µ(ψ̂n, ηi) for i =

1, ..., n and ψ̂n is a consistent estimate of ψ. The associated plots are con-

structed by plotting f̂y(ψ̂n) and p̂y(ψ̂n) against y, respectively. f̂y(ψ̂n) is con-

structed as a marginal operation over the distribution of the ηi. The rationale

for this construction is given in Holling et al. [5] and provides as the essential

result that, given the model is correct, the covariate adjusted frequency f̂y(ψ̂n)

and fy converge to the same object, hence, they are comparable.

The purpose of this paper is to apply the ideas of the covariate-adjusted

frequency plot to frequency data underlying the RPCM with the ultimate goal of

illustrating goodness-of-fit of the model. In the following section the Rasch Pois-

son Counts model is introduced, followed by the description of the data which

are then used to apply the covariate-adjusted frequency plot to the RPCM.

The paper ends with a discussion comparing alternative approaches to the

covariate-adjusted frequency plot for the RPCM.

2. Rasch Poisson Counts model and the covariate-adjusted frequency
plot

Let Yij denote the count (number of correct solutions, number of errors,

number of marks, etc.) for person i and item j. Assume that Yij follows a

Poisson distribution

P (Yij = y) = Po(y|µij) = exp(−µij)µ
y
ij/y!. (1)

where µij is the expected count for person i and item j, i = 1, · · · , n and

j = 1, · · · , k. The core assumption of the RPCM is the existence of a person-

specific ability parameter θi and an item-specific easiness parameter λj such

that the expected value

µij = θiλj (2)

is a product of the two parameters. The major problem with this model consists

in the number of person parameters which grows with the number of study par-
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ticipants. Therefore, the person parameters have been considered as random

effects in extended models. The item parameters λj are usually considered as

fixed effects as they are relatively few in number and do not increase with the

sample size. As a prior for the person parameters Jansen and van Duijn [6]

introduced the Gamma distribution which is conjugate to the Poisson distribu-

tion. See also Verhelst and Kamphuis [7]. Thus, the arising negative binomial

distribution is used for the item scores. In this case, common goodness-of-fit

displays may be applied.

Instead of a Gamma distribution Jansen [3] used a log-normal distribution

for the person parameters. Under this assumption which seems to be quite nat-

ural the distribution of the items scores is not analytically known as in the case

of the fixed-effects-model. We will only consider the log-normal distribution for

the person parameters since a covariate-adjusted plot can be applied here as

well.

The RPCM may be regarded as special log-linear model where

logµij = β0 + βP
i + βI

j + βPI
ij (3)

with the usual constraints
∑

i β
P
i =

∑
j β

I
j = 0 and

∑
i β

PI
ij =

∑
j β

PI
ij = 0 in

the fixed effects case. Here βP
i is the main effect of the i−th person whereas βI

j

is the main effect of the j−th item. Furthermore, βPI
ij is the person-item inter-

action. Note that (3) corresponds to the full model and the RPCM is achieved

if βPI
ij = 0 for all i and j. In other words, θi corresponds to exp(βP

i ) and λj to

exp(βI
j ). The model can be fitted using the Poisson likelihood based upon (1)

L(β0, β
I
j , β

P
i ) =

∏
i

∏
j

Po(yij |µij). (4)

For the RPCM the likelihood becomes in particular

n∏
i=1

k∏
j=1

Po(yij | exp(β0 + βI
j + βP

i )). (5)

We are now considering the more appropriate random effects model, i. e. con-

sidering the person parameters as random effects. The likelihood for the RPCM

with a log-normally distributed person parameters is then provided as

L(µ, βI
j ) =

∏
i

∫ ∏
j

Po(yij | exp(µ+ βI
j + βP

i ))ϕ(βP
i |0, σ2

P )dβ
P
i , (6)
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where ϕ(βP
i |0, σ2

P ) is the normal density with mean 0 and variance σ2
P .

Note that in the random effects approach the fixed person effects are re-

placed by normal random effects βP
i ∼ N(0, σ2

P ). Parameter estimates were

found using maximum likelihood choosing the Laplace approximation for solv-

ing the marginal integral in the case of the random effects model. All com-

putation were done with the software STATA, version12. For more details on

parameter estimation see e. g. Fischer and Molenaar [2].

To apply the covariate-adjusted frequency plot to the RPCM we will use

some typical intelligence data from the Berlin Structure of Intelligence Test for

Youth: Assessment of Talent and Giftedness (BIS-HB see Jäger et al. [8]).

This test, based on the Berlin model of Intelligence Structure (BIS; e. g. Jäger

[9]), is one of the most comprehensive intelligence tests. It comprises four

major intelligence facets reasoning, processing speed, memory and creativity.

Many of the subtests in the BIS-HB measuring the three last mentioned facets

yield count data which could follow the RPCM. Since the BIS-HB consists of

a representative sample of intelligence items many subtests of other common

intelligence tests or ability tests should be analyzed by the RPCM as well.

As an illustrative example we will use six typical subtests of the BIS-HB

measuring processing speed. These tests require simple cognitive operations

which have to be accomplished as fast as possible. A typical example is to tick

those numbers in a series which are by three greater than the previous number.

In an another task missing letters have to be added to incomplete words to

achieve correct words. The data are based on a representative sample of N =

1, 327 high school students from Germany which has been tested to establish

the norms of the BIS-HB. The data for the 1, 327 participants on six items result

in total 7, 962 observations. Yij is the count for participant i and item j. Figure 1

shows the empirical frequency distribution fy for the counts Yij . This is a simply

frequency plot on the basis of all 7, 962 observations and no account is taken

for the special structure of the data. It is clear from the bi-modal character that

a simple, one-parameter model Poisson model is not appropriate for the data.

One of the core assumptions of the RPCM is the additivity (no interaction

term). Hence there is considerable interest in a graphical device illustrating the

fit of the RPCM. The question is how a fitted frequency f̂y can be constructed

since every observation yij has it own fitted value θ̂iλ̂j . This can be now easily

accomplished using the concept of the covariate-adjusted frequency plot.
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Figure 1: Empirical frequency distribution fy for counts Yij of the processing

speed data.

To illustrate the covariate-adjusted frequency plot for the RPCM, using µij =

E(Yij) = exp(β0 + βP
i + βI

j ) we have that

py(µ(ψ, ηij)) = Po(y| exp[β0 + βP
i + βI

j ])

with py(µ) = Po(y|µ), µ(ψ, ηij) = exp(β0 + βP
i + βI

j ) and

ψ = (β0, β
P
1 , · · · , βP

n , β
I
1 , · · · , βI

k)
T , potentially with the usual constraints

∑
i β

P
i =∑

j β
I
j = 0 in the fixed effect case. Furthermore,

f̂y =

n∑
i=1

k∑
j=1

Po(y|µ̂ij) =

n∑
i=1

k∑
j=1

Po(y| exp[β̂0 + β̂
(P )
i + β̂I

j ]), (7)

where k is the number of items and n the number of study participants; µ̂ij , β̂0,

β̂
(P )
i , β̂I

j are the fitted values under this model. In Figure 2 we see the CAFP for

the RPCM using model (3) with a random effects for the person parameters i.e.

βP
i ∼ N(0, σ2

p). The goodness-of-fit appears reasonably well. It is also possible

to the method to investigate the effect of removing certain items of groups of

items. In Figure 3 we have removed the item effect entirely and the lack-of-fit

is very evident. Hence the item effect is required for this data set. Another

option is to investigate individual items separately. This is done by constructed
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Figure 2: Empirical frequency distribution fy and covariate adjusted frequency

plot f̂y using random person parameter effects for the processing speed data.

a CAFP for the data consisting only out of the item of interest (observed at

the 1,327 participants). This has been done for each of the six items involved

in the study and the associated CAFPs for item 1 and item 3 are provided in

Figure 4. We see that item 3 experience some problems in reaching a good

goodness-of-fit whereas this seems better for item 1.

Figure 3: Empirical frequency distribution fy and covariate adjusted frequency

plot f̂y using the Rasch model without item effects.
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Figure 4: Covariate adjusted frequency plots for the RPCM for items 1 and 3

measuring processing speed.

3. Discussion and extensions

Cameron and Trivedi [10] consider covariate modelling for count outcomes

in detail though model evaluation is focusing on residual analysis. Pearson

residuals have been discussed by many authors including Lindsey [11], Zelter-

man [12] or Winkelmann [13]. However, index-plots or Q-Q-plots on the basis

of Pearson residuals can be misleading, since even if the model is correct in

terms of covariates and distributional assumption the graph might still indicate

some deficiencies. In Figure 5 we see an index plot of the full Rasch model

fitted for the processing speed data (upper left panel), a standardized residual
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plot of the Pearson residuals against fitted values (upper right panel), a Q-Q

plot of the Pearson residuals (lower left panel) and a Q-Q plot of the Anscombe

residual (lower right panel). The latter is suggested in Cameron and Trivedi

[10] to adjust for the Poisson nature of the data. The major drawback of these

residual diagnostic plots is that they all focus on the normal distribution as the

comparison model whereas this is not the model of interest for count data. This

is partly acknowledged when using the Anscombe residuals although the dif-

ference to the Pearson residuals are minor in the Q-Q plot as Figure 6 (lower

panel) shows. See also Augustin, Sauleau and Wood [14] or Ben and Yohai

[15] for further discussion.

Finally, it should be noted, that the covariate-adjusted plot can be applied

to many other IRT-models based on count data, e.g. to the 1PL-, 2PL- and

3PL-model or linear logistic test models. These models are based instead of a

Poisson distribution on a binomial distribution. As can be worked out fairly easy,

a covariate-adjusted plot can also be used here to support decision making, e.

g. whether to use a 1PL- or 2PL-model.

To widen the scope, let us now leave the area of RPCM and look beyond

IRT models and discuss how the CAFP can be applied in other contexts. An

issue of illustrating fit (or lack of fit) arises when dealing with big data e. g.

within large scale assessments. Plotting and, ultimately, looking at individual

values becomes problematic due to the very many points that cover the plotting

area. We illustrate this with the following data constellation. Suppose a set of

values ei are available, where i = 1, · · · , 500, 000. These have been generated

from the two-component mixture ei ∼ 0.5N(10, 1) + 0.5N(15, 4) followed by

Poisson counts Yi ∼ Po(ei). In Figure 6 (upper panels), we see index plots

of the standardized residuals (Yi − ei)/
√
ei. These plots are very difficult to

interpret due the mass of plots in the graphical area which persists even if a

scaling factor of 0.1 is used for the size of the symbols. In the lower panels of

Figure 6 we see the frequency plots, on the left panel with the standard Poisson

distribution fitted f̂y = exp(−µ̂)µ̂y/y!, µ̂ =
∑

i yi/n, which shows a clear lack of

fit. In the right lower panel of Figure 6 we see the covariate-adjusted frequency

plot, in this case defined as

f̂y =

500,000∑
i=1

exp(−ei)eyi /y!, (8)

which gives the correct view, namely that Yi ∼ Po(ei) is the appropriate model
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Figure 5: Residual analysis for the processing speed data: index plot of Pear-

son residual (upper left panel), Pearson residual against fitted value (upper

right panel), Q-Q plot of Pearson residuals (lower left panel) and Q-Q plot of

Anscombe residuals (lower right panel)
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for this data set. Hence, it appears that the covariate-adjusted frequency plot,

as a marginal graphical instrument, is also a valuable graphical tool for big or

huge data sets since its appearance – in contrasts to residual diagnostic plots

– is not affected by large amount of data.

 

Figure 6: Residual plotting and covariate-adjusted frequency plots for a big

data set: index plot of Pearson residual in standard size (upper left panel), with

symbols decreased in size with factor 10 (upper right panel), frequency plot

with standard Poisson distribution fitted (lower left panel) and frequency plot

with covariate-adjusted frequency plot (lower right panel)
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