Capture-Recapture Methodology in the Biological and Health Sciences – an Approach Based upon Generalized Chao Bounds

Presentation at Maejo University Chiang Mai, 22. August 2007

Dankmar Böhning

Applied Statistics

School of Biological Sciences

... as well as in the social sciences

Objective

- develop a population size estimator using capture-recaputre techniques
- interest in population size estimator which is valid under a wider range of scenarios

Overview

- Introduction
- Chao,s Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study

Counts of capture-recaptures as outcome of continous time CR-experiment

- CR of Wildlife Populations
- CR in Public Health and Surveillance

Study period

Situation in Continuous CR Experiment

$$f_1, f_2, f_3, ..., f_m$$

frequencies of units identified 1, 2, 3, ..., m times

 f_0 is unobserved

population size:
$$N = f_0 + f_1 + ... + f_m = f_0 + n$$

if probability p_0 for zero-count known:

$$N = Np_0 + n \Rightarrow \hat{N} = n/(1-p_0)$$

Illustration: Project on illicit drug use ir Bangkok 2001 (4th Quarter)

$$f_1, f_2, f_3, ..., f_m$$

frequencies of drug users with 1,2,3, ..., m contacts to treatment institutions (hospitals):

$$f_1 = 2955, f_2 = 1186, f_3 = 803, f_4 = 611,...$$

 f_0 is number of hidden (unseen) drug users

adjusted size of drug user population:

$$N = f_0 + n = f_0 + 6966$$

Frequency Distribution of BKK-Drug Users with j Contacts

Idea of Modelling

$$f_0, f_1, f_2, f_3, ..., f_m$$

look at associated probabilities:

$$p_0, p_1, p_2, p_3, ..., p_m$$

and choose a model (Poisson)

$$p_0 = e^{-\theta}, p_1 = e^{-\theta}\theta, p_2 = e^{-\theta}\theta^2/2,....,$$

estimate θ with $\hat{\theta}$, get $\hat{p}_0 = e^{-\hat{\theta}}$

$$\hat{N} = n/(1-\hat{p}_0)$$

Frequency Distribution of BKK-Drug Users with j Contacts

Idea of Mixed Modelling

instead of simple Poisson

$$p_{j} = e^{-\theta}\theta^{j} / j!$$

look at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta$$

(to capture heterogeneity in θ)

Idea of Chao

ook at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta$$

Cauchy-Schwartz: $[E(XY)]^2 \le E(X^2)E(Y^2)$

$$\int_{0}^{\infty} e^{-\theta} \theta f(\theta) d\theta \bigg)^{2} \leq \int_{0}^{\infty} e^{-\theta} f(\theta) d\theta \int_{0}^{\infty} e^{-\theta} \theta^{2} f(\theta) d\theta$$

with
$$x = \sqrt{e^{-\theta}}$$
 and $y = \sqrt{e^{-\theta}}\theta$

Idea of Chao

ook at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta$$

$$\int_{0}^{\infty} e^{-\theta} \theta f(\theta) d\theta \right)^{2} \leq \int_{0}^{\infty} e^{-\theta} f(\theta) d\theta \int_{0}^{\infty} e^{-\theta} \theta^{2} f(\theta) d\theta$$

$$p_1^2 \le p_0 \times 2p_2 \Longrightarrow f_0 \ge f_1^2 / (2f_2)$$

Chao's lower bound estimate

Extending the idea of Chao: way I

ook at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta$$

Cauchy-Schwartz: $[E(XY)]^2 \le E(X^2)E(Y^2)$

$$\left(\int_{0}^{\infty} e^{-\theta} \theta^{j} f(\theta) d\theta\right)^{2} \leq \int_{0}^{\infty} e^{-\theta} \theta^{j-1} f(\theta) d\theta \int_{0}^{\infty} e^{-\theta} \theta^{j+1} f(\theta) d\theta$$

with
$$x = \sqrt{e^{-\theta}\theta^{j-1}}$$
 and $y = \sqrt{e^{-\theta}\theta^{j+1}}$

Extending the idea of Chao: way I

ook at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta$$

$$\int_{0}^{\infty} e^{-\theta} \theta^{j} f(\theta) d\theta \bigg)^{2} \leq \int_{0}^{\infty} e^{-\theta} \theta^{j-1} f(\theta) d\theta \int_{0}^{\infty} e^{-\theta} \theta^{j+1} f(\theta) d\theta$$

$$(j! \times p_{j})^{2} \leq (j-1)! p_{j-1} \times (j+1)! p_{j+1}$$

$$(j \times p_j)^2 \leq (j-1)! p_{j-1}$$
 $j \times p_j \leq (j+1) p_{j+1}$
 $p_{j-1} \leq p_j$
Bielefeld March 2007

Extending the idea of Chao: way I

$$\frac{j p_j}{p_{j-1}} \leq \frac{(j+1)p_{j+1}}{p_j}$$

so ... ratios of mixed Poissons are monotone non-decreasing with increasing *j*

Extending the idea of Chao: way I- a new diagnostic device

monotone pattern should be visible

$$\frac{j \times p_j}{p_{j-1}} \leq \frac{(j+1)p_{j+1}}{p_j}$$

when replacing p_i by f_i :

$$\frac{j \times f_j}{f_{j-1}} \leq \frac{(j+1)f_{j+1}}{f_j}$$

monotone non-decreasing with increasing *j*

A new diagnostic device for heterogeneity: some examples

graph:
$$j \rightarrow \text{ratio} = \frac{(j+1)f_{j+1}}{f_j}$$

- Drug user data Bangkok (1/4 year)
- Drug user data L.A. (Hser 1992)
- Drug user data Scotland (Hay and Smit 2003)

Ratio for BKK Drug User Data

Ratio for L.A. Drug User Data

Ratio for Scottish Drug User Data

Conclusion

Ratio plot seems to work as a diagnostic device for presence of a mixed Poisson

	f_1	f_2	n	\hat{f}_0	$\hat{N} = \hat{f}_0 + n$	n/\hat{N}
BKK:	2955	1186	6966	3681	10647	0.65
LA:	11982	3893	20198	18439	38637	0.52
Scotl.:	175	85	647	180	827	0.78

Extending the idea of Chao: way II

from mixed Poisson to mixed Power series distribution:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta \rightarrow p_{j} = \int_{0}^{\infty} \mu(\theta) \theta^{j} a_{j} f(\theta) d\theta$$

Similar Results!

Extending the idea of Chao: way II

mixed Power series
$$p_j = \int_0^\infty \mu(\theta) \theta^j a_j f(\theta) d\theta$$
:

$$\frac{p_{j}/a_{j}}{p_{j-1}/a_{j-1}} \leq \frac{p_{j+1}/a_{j+1}}{p_{j}/a_{j}}$$

replace again

$$\frac{f_{j} / a_{j}}{f_{j-1} / a_{j-1}} \leq \frac{f_{j+1} / a_{j+1}}{f_{j} / a_{j}}$$

Extending the idea of Chao: way II: a diagnostic device for the Power series distribution

plot

$$j \rightarrow \frac{f_{j+1}/a_{j+1}}{f_j/a_j}$$

and see if pattern monotone

... by the way: generalised Chao bound

$$\frac{p_{1} / a_{1}}{p_{0} / a_{0}} \leq \frac{p_{2} / a_{2}}{p_{1} / a_{1}}$$

$$\frac{(p_{1} / a_{1})^{2} a_{0}}{p_{2} / a_{2}} \leq p_{0}$$

replace again by observed frequemcies

$$\hat{f}_0 = \frac{(f_1 / a_1)^2 a_0}{f_2 / a_2}$$

An example: mixed binomial

Binomial with size parameter m:

$$\binom{m}{j}\theta^{j}(1+\theta)^{-m} = \binom{m}{j}p^{j}(1-p)^{m-j}$$

so that
$$a_j = \binom{m}{j}$$
 and $\mu(\theta) = (1 + \theta)^{-m}$

... by the way: generalised Chao bound

$$\hat{f}_0 = \frac{(f_1 / a_1)^2 a_0}{f_2 / a_2}$$

$$= \frac{f_1^2 (m-1)}{2f_2}$$

Exemplified at a recent example from screening

- Lloyd & Frommer (2004, Applied Statistics) screening for bowel cancer
- 38,000 men screened in Sidney at 6 consecutive days by means of self-tesing for blood in stools

- 3,000 tested positively a least once and cancer status evaluated
- 196 were confirmed positive to have bowel cancer
- How many of 35,000 unconfirmed negative have bowel cancer?

The counting distribution: a recent example from screening

- frequency f₀ of those tested negative at all
 6 times with bowel cancer is unknown
- an estimate of f₀
 might be constructed
 from the distribution
 f_{1,} f_{2,} f_{3....}
 of counts

mixed binomial

binomial with size parameter 6:

$$\binom{6}{j}\theta^j(1+\theta)^{-6}$$

so that
$$a_j = \begin{pmatrix} 6 \\ j \end{pmatrix}$$
 and $\mu(\theta) = (1 + \theta)^{-6}$

Ratio-Plot for Screening Data

Conclusion

Ratio plot seems to work also as a diagnostic device for heterogeneity for the Power series distribution

$$f_1$$
 f_2 n $\hat{f_0}$ $\hat{N} = \hat{f_0} + n$ $\hat{f_0}/\hat{N}$
37 22 196 26 222 0.12

Distribution of counting the number of days testing positive for 122 men with confirmed colon cancer

- Now frequency f₀ of those tested negative at all 6 times with bowel cancer is known to be 22
- validation sample

Conclusion

$$f_1$$
 f_2 n \hat{f}_0 $\hat{N} = \hat{f}_0 + n$ \hat{f}_0 / \hat{N}
37 22 196 26 222 0.12

from validation sample:
$$f_0 = 22$$
, $f_0 / N = 22/122 = 0.18$

- Introduction
- Chao's Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study

Idea of Mixed Modelling

look at mixed Poisson:

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta \approx \sum_{i=1}^{k} e^{-\theta_{i}} \theta_{i}^{j} / j! q_{i}$$

(to capture heterogeneity in θ)

reasonable: since NPMLE is always discrete

Idea of Mixed Modelling

now let $\theta_{\min} = \min\{\theta_1, ..., \theta_k\}$ then:

$$p_0 = \sum_{i=1}^k e^{-\theta_i} \ q_i \le e^{-\theta_{\min}} \ \sum_{i=1}^k q_i \ = \ e^{-\theta_{\min}}$$

$$\hat{N} = \frac{n}{1 - e^{-\theta_{\min}}} \ge \frac{n}{1 - \sum_{i=1}^{k} e^{-\theta_i} q_i} = \frac{n}{1 - p_0}$$

Idea of Mixed Modelling

since for a mixed Poisson:

$$\frac{p_1}{p_0} \le \frac{2p_2}{p_1} \le \frac{3p_3}{p_2} \le \frac{4p_4}{p_3} \dots$$

reasonable

$$\theta_{\min} \approx \frac{2p_2}{p_1}$$

$$\frac{2p_2}{p_1} = \frac{2\sum_{j} q_j Po(2, \theta_j)}{\sum_{i} q_j Po(1, \theta_j)} \approx \frac{2q_1 Po(2, \theta_1)}{q_1 Po(1, \theta_1)} = \theta_1 = \theta_{\min}$$

Illustration of approximation

$$p_{j} = \int_{0}^{\infty} e^{-\theta} \theta^{j} / j! f(\theta) d\theta \approx \sum_{i=1}^{k} e^{-\theta_{i}} \theta_{i}^{j} / j! q_{i}$$

large 1:
$$f(\theta) = Po(0.5)0.5 + 0.5Po(5)$$
 $\frac{2p_2}{p_1} = 0.9499$
2: $f(\theta) = Po(0.5)0.9 + 0.1Po(5)$ $\frac{2p_2}{p_1} = 0.5549$
3: $f(\theta) = Po(0.5)0.5 + 0.5Po(1)$ $\frac{2p_2}{p_1} = 0.7741$
small 4: $f(\theta) = Po(0.5)0.9 + 0.1Po(1)$ $\frac{2p_2}{p_2} = 0.5594$

Estimation

estimating

$$\theta_{\min} \approx \frac{2p_2}{p_1}$$

leads to

$$\hat{\theta}_{\min} = \frac{2\hat{p}_2}{\hat{p}_1} = \frac{2f_2}{f_1}$$

and Zelterman estimator arises:

$$\hat{N}_Z = \frac{n}{1 - \exp(-\hat{\theta}_{\min})} = \frac{n}{1 - \exp(-\frac{2f_2}{f_1})}$$
Bielefeld March 2007

Zelterman's as truncated estimator

write (truncated Poisson likelihood for count 1 or 2)

$$p_{1} = \frac{e^{-\theta}\theta}{e^{-\theta}\theta + e^{-\theta}\theta^{2}/2} = \frac{1}{1 + \theta/2}$$

$$p_{2} = \frac{e^{-\theta}\theta^{2}/2}{e^{-\theta}\theta + e^{-\theta}\theta^{2}/2} = \frac{\theta/2}{1 + \theta/2}$$

so that binomial likelihood

$$f_1 \log(p_1) + f_2 \log(p_2)$$

occurs which is maximized at

$$\hat{\theta} = \frac{2f_2}{f_1}$$

Benefits of the truncated likelihood

binomial likelihood

$$f_1 \log(p_1) + f_2 \log(p_2)$$

is well studied:

1)
$$\operatorname{var}(\hat{p}_2) = \operatorname{var}(\frac{f_2}{f_1 + f_2}) = p_2(1 - p_2)/(f_1 + f_2)$$

2) covariates might be easily included with logistic regression

- Introduction
- Chao's Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study

Extending Zelterman's estimator to the Power Series

write (truncated Poisson likelihood for count 1 or 2)

$$p_{1} = \frac{\mu(\theta)\theta a_{1}}{\mu(\theta)\theta a_{1} + \mu(\theta)\theta^{2} a_{2}} = \frac{a_{1}}{a_{1} + \theta a_{2}}$$

$$p_{2} = \frac{\mu(\theta)\theta^{2} a_{2}}{\mu(\theta)\theta a_{1} + \mu(\theta)\theta^{2} a_{2}} = \frac{\theta a_{2}}{a_{1} + \theta a_{2}}$$

so that binomial likelihood occurs:

$$f_1 \log(p_1) + f_2 \log(p_2)$$

with

$$p = p_2 = \frac{\theta a_2}{a_1 + \theta a_2} \text{ or } \theta = \frac{p}{1 - p} \frac{a_1}{a_2}$$
since $\frac{\hat{p}}{1 - \hat{p}} = \frac{f_2}{f_1}$, $\hat{\theta} = \frac{f_2}{f_1} \frac{a_1}{a_2}$

An example: mixed binomial

Binomial with size $m: \binom{m}{j} \theta^j (1+\theta)^{-m}$

so that
$$a_j = \binom{m}{j}$$
 and $\mu(\theta) = (1 + \theta)^{-m}$

$$\hat{\theta} = \frac{f_2}{f_1} \frac{a_1}{a_2} = \frac{f_2}{f_1} \frac{m}{m(m-1)/2} = \frac{f_2}{f_1} \frac{2}{(m-1)}$$

$$\hat{N}_Z = \frac{n}{1 - \hat{p}_0}, \hat{p}_0 = 1/(1 + \hat{\theta})^m$$

Example: Screening for Bowel Cancer by taking Stool Samples at 6 Consecutive Days

$$f_1 \qquad f_2 \qquad n \qquad \hat{f}_0 \quad \hat{N} = \hat{f}_0 + n \qquad \hat{f}_0 / \hat{N}$$
 Chao 37 22 196 26 222 0.12 Zelterman 37 22 196 75 271 0.26

from validation sample: $f_0 = 22$, $f_0 / N = 22/122 = 0.18$ (true)

Critical appraisal of Zelterman's conventional estimator

- Collins and Wilson (1992 Biometrika):
- ...For although it often does have a smaller bias than the other estimators, it does so at the cost of having a larger standard deviation which overwhelms the reduced bias ...

Generalising Zelterman

$$f_1, f_2, f_3, ..., f_m$$

frequencies are concentrated on f_1, f_2, f_3

frequencies of drug users with 1,2,3, ..., m contacts to treatment institutions (hospitals) (n = 6966):

$$f_1 = 2955, f_2 = 1186, f_3 = 803, f_4 = 611,...$$

Generalising Zelterman

$$f_1, f_2, f_3, ..., f_m$$

frequencies are concentrated on f_1, f_2, f_3

frequencies of drug users with 1,2,3, ..., m contacts to treatment institutions (hospitals) (n = 6966):

$$f_1 = 2955, f_2 = 1186, f_3 = 803, f_4 = 611,...$$

Zelterman's as triple truncated estimator

write (truncated Poisson likelihood for count 1,2 or 3)

$$p_{1} = \frac{e^{-\theta}\theta}{e^{-\theta}\theta + e^{-\theta}\theta^{2}/2 + e^{-\theta}\theta^{3}/6} = \frac{1}{1 + \theta/2 + \theta^{2}/6}$$

$$p_{2} = \frac{e^{-\theta}\theta^{2}/2}{e^{-\theta}\theta + e^{-\theta}\theta^{2}/2 + e^{-\theta}\theta^{3}/6} = \frac{\theta/2}{1 + \theta/2 + \theta^{2}/6}$$

$$p_{3} = \frac{e^{-\theta}\theta^{3}/6}{e^{-\theta}\theta + e^{-\theta}\theta^{2}/2 + e^{-\theta}\theta^{3}/6} = \frac{\theta^{2}/6}{1 + \theta/2 + \theta^{2}/6}$$

so that multinomial likelihood in θ

$$f_1 \log(p_1) + f_2 \log(p_2) + f_3 \log(p_3)$$

occurs which is maximized at

$$\hat{\theta} = -\frac{3}{2} \frac{f_1 - f_3}{f_2 + 2f_1} + \sqrt{\frac{6(f_2 + 2f_3)}{f_2 + 2f_1} + \frac{9}{4} \frac{(f_1 - f_3)^2}{(f_2 + 2f_1)^2}} \ge 0$$

Bielefeld March 2007

- Introduction
- Chao,s Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study

- Introduction
- Chao,s Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study: Estimators considered

The (upper bound) estimators Z1

Zelterman's conventional estimator

$$\hat{\theta} = \frac{2\hat{p}_2}{\hat{p}_1} = \frac{2f_2}{f_1}$$

and

$$\hat{N}_{Z1} = \frac{n}{1 - \exp(-\hat{\theta})} = \frac{n}{1 - \exp(-\frac{2f_2}{f_1})}$$

The (upper bound) estimators 22

Zelterman's generalized estimator

$$\hat{\theta} = -\frac{3}{2} \frac{f_1 - f_3}{f_2 + 2f_1} + \sqrt{\frac{6(f_2 + 2f_3)}{f_2 + 2f_1} + \frac{9}{4} \frac{(f_1 - f_3)^2}{(f_2 + 2f_1)^2}}$$

and

$$\hat{N}_{Z2} = \frac{n}{1 - \exp(-\hat{\theta})} = \frac{n}{1 - \exp(-\hat{\theta})}$$

The (upper bound) estimators Z3

not only
$$2p_2/p_1 = \frac{2e^{-\theta}\theta^2/2}{e^{-\theta}\theta} = \theta$$
, but also

$$\frac{2p_2 + 3p_3}{p_1 + p_2} = \frac{2e^{-\theta}\theta^2 / 2 + 3e^{-\theta}\theta^3 / 6}{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2} = \theta \frac{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2}{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2} = \theta$$

motivates

$$\hat{\theta} = \frac{2\hat{p}_2 + 3\hat{p}_3}{\hat{p}_1 + \hat{p}_2} = \frac{2f_2 + 3f_3}{f_1 + f_2}$$

$$\hat{N}_{Z3} = \frac{n}{1 - \exp(-\hat{\theta})} = \frac{n}{1 - \exp(-\hat{\theta})}$$

The (lower bound) estimators C1

under mixed Poisson sampling

$$\frac{p_1}{p_0} \le \frac{2p_2}{p_1} \le \frac{3p_3}{p_2} \le \dots$$

⇒ C1 (original Chao estimator):

$$\frac{p_1 p_1}{2 p_2} \le p_0$$
 replacing with estimates

$$\hat{f}_0 = \frac{f_1^2}{2f_2}$$
, $N_{C1} = n + \hat{f}_0$

The (lower bound) estimators C2

under mixed Poisson sampling

$$\frac{p_1}{p_0} \le \frac{2p_2}{p_1} \le \frac{3p_3}{p_2} \le \dots$$

⇒ C2 (generalized Chao estimator):

$$\frac{p_1 p_2}{3 p_3} \le p_0$$
 replacing with estimates

$$\hat{f}_0 = \frac{f_1 f_2}{3f_3}$$
, $N_{C2} = n + \hat{f}_0$

Classical estimator under Poisson homogeneity M

under Poisson sampling

$$\theta = \frac{p_1}{p_0} = \frac{2p_2}{p_1} = \frac{3p_3}{p_2} = \dots$$

$$\Rightarrow \theta = \frac{2p_2 + 3p_3 + 4p_4 \dots}{p_1 + p_2 + p_3 + \dots} \Rightarrow \hat{\theta} = \frac{2f_2 + 3f_3 + 4f_4 \dots}{f_1 + f_2 + f_3 + \dots}$$

$$\hat{N}_{M} = \frac{n}{1 - \exp(-\hat{\theta})} = \frac{n}{1 - \exp(-\hat{\theta})}$$

- Introduction
- Chao,s Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study: Design

Six Experiments N=100, replication=1,000

1:
$$f(\theta) = Po(0.5)0.5 + 0.5Po(1)$$

2: $f(\theta) = Po(0.5)0.5 + 0.5Po(5)$
3: $f(\theta) = Po(0.5)0.9 + 0.1Po(1)$
4: $f(\theta) = Po(0.5)0.9 + 0.1Po(5)$

0: $f(\theta) = Po(0.5)$

5: $f(\theta) = Po(0.5)0.5$

+0.1Po(1)+0.1Po(2)+0.1Po(3)+0.1Po(4)+0.1Po(5)

- Introduction
- Chao,s Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study: Results

Mean for the Six Estimators (N=100 is true)

lliustration: Project on illicit drug use ir Bangkok 2001 (4th Quarter)

frequencies of drug users with 1, 2, 3, ..., m contacts

to treatment institutions (hospitals):

$$f_1 = 2955, f_2 = 1186, f_3 = 803, f_4 = 611,...$$

 $n = f_1 + f_2 + ... + f_m = 6,966$

$$\hat{N}_{Z1} = 12,622$$
 $\hat{N}_{C1} = 10,647$ $\hat{N}_{Z2} = 7,987$ $\hat{N}_{C2} = 8,421$

 $\hat{N}_{73} = 10,172$

- Introduction
- Chao's Idea and Lower Bounds
 - Extending Chao: Way I
 - Extending Chao Way II
- Upper Bounds and Zelterman approach
 - Motivation
 - Zelterman's Estimator as an Upper Bound
 - Generalising Zelterman
- A Simulation Study: improve upon Z3?

improve upon Z3?

$$\hat{N}_Z = \frac{n}{1 - \exp(-\hat{\theta})}$$

not only
$$2p_2/p_1 = \frac{2e^{-\theta}\theta^2/2}{e^{-\theta}\theta} = \theta$$
, but also

$$\frac{2p_2 + 3p_3}{p_1 + p_2} = \frac{2e^{-\theta}\theta^2 / 2 + 3e^{-\theta}\theta^3 / 6}{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2} = \theta \frac{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2}{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2} = \theta$$

motivates

$$\hat{\theta}_3 = \frac{2\hat{p}_2 + 3\hat{p}_3}{\hat{p}_1 + \hat{p}_2} = \frac{2f_2 + 3f_3}{f_1 + f_2}$$

$$\frac{2p_2 + 3p_3 + 4p_4}{p_1 + p_2 + p_3} = \frac{2e^{-\theta}\theta^2 / 2 + 3e^{-\theta}\theta^3 / 6 + 4e^{-\theta}\theta^4 / 24}{e^{-\theta}\theta + e^{-\theta}\theta^2 / 2 + e^{-\theta}\theta^3 / 6} = \theta$$

motivates

$$\hat{\theta}_4 = \frac{2\hat{p}_2 + 3\hat{p}_3 + 4\hat{p}_4}{\hat{p}_{10} + \hat{p}_{12} + \hat{p}_{3h 2007}} = \frac{2f_2 + 3f_3 + 4f_4}{f_1 + f_2 + f_3}$$

improve upon Z3?

Three Estimators:
$$\hat{N}_Z = \frac{n}{1 - \exp(-\hat{\theta})}$$

Z1:
$$\hat{\theta}_1 = \frac{2f_2}{f_1}$$

Z3:
$$\hat{\theta}_3 = \frac{2f_2 + 3f_3}{f_1 + f_2}$$

Z4:
$$\hat{\theta}_4 = \frac{2f_2 + 3f_3 + 4f_4}{f_1 + f_2 + f_3}$$

MSE for Three Generalized Zelterman Estimators

Key-References

Böhning, D. and Kuhnert, R. (2006). <u>The Equivalence of Truncated Count Mixture Distributions and Mixtures of Truncated Count Distributions</u>. *Biometrics* **62**, 1207-1215.

Böhning, D. and Schön, D. (2005). <u>Nonparametric maximum likelihood estimation of the population size based upon the counting distribution</u>. *Journal of the Royal Statistical Society, Series C, Applied Statistics* **54**, 721-737.

Böhning, D. and Patilea, V. (2005). <u>Asymptotic Normality in Mixtures of Power Series Distributions.</u> *Scandinavian Journal of Statistics* **32**, 115-132.

Papers download at (also copy of this talk):

www.reading.ac.uk/~sns05dab

