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Capture-Recapture experiments
come from Biological Sciences
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... as well as in the social sciences




Objective

= develop a population size estimator using
capture-recaputre techniques

= interest in population size estimator which
IS valid under a wider range of scenarios
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Counts of capture-recaptures as
outcome of continous time CR-

experiment

= CR of Wildlife Populations
= CR in Public Health and Surveillance
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Situation in Continuous CR Experiment
Jis o> Sy Jon

frequencies of units identified 1,2, 3, ..., m times

f, 18 unobserved

population size: N = f, + f, +...+ f, = f, +n

if probability p, for zero-count known:

N = Np0+n:N=n/(l—pO)



llustration: Project on illicit drug use ir

Bangkok 2001 (4th Quarter)
Jio Jas Jaseoos fo

frequencies of drug users with 1,2,3, ..., m contacts
to treatment 1nstitutions (hospitals):
f,=2955, f, =1186, f, =803, f, =611,...

/, 1s number of hidden (unseen) drug users

adjusted size of drug user population:
N=f +n=f +6966
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Idea of Modelling
JosJis Jas Jaseos 1

look at associated probabilities:

Pos P1s Prs P3s---5 Py,
and choose a model (Poisson)

Po = e_eapl — 3_0(9,]72 = 8_992 /2 geoers
estimate @ with 0, get p, = e’
N = n/(1-p,)
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Idea of Mixed Modelling

instead of simple Poisson
p; = e 0’/ !

look at mixed Poisson:

o0

p,= €011 f(6)do

0
(to capture heterogeneity in 6)



Idea of Chao

yok at mixed Poisson:

o0

p,= €0’/ f(0)do

0
‘auchy-Schwartz: [E(XY)]’ < E(X?)E(Y?)

o0

jeeﬁf(ﬁ)dﬁj < szeef(é’)dé’ ]98682f((9)d9
Withx=\/ej and y:\/e?H



Idea of Chao

yok at mixed Poisson:

o0

p,= €0’/ f(0)de

0

o0 o0

I e 0f (e)dH] <[ef(0)do [0’ (0)d0

0 0 0

P S pex2p, = fo 2 £ 121,)
"hao's lower bound estimate



Extending the idea of Chao:
way I

ook at mixed Poisson:

o0

p,= |e’0'1j1f(0)do

0
“auchy-Schwartz: [E(XY)]" < E(X*)E(Y?)

4
o0

j e 9’ f(@)d&’] sofe—eef—l £(6)do j e 07 £(0)dl

0 0

o0

with x =+/e ?6’" and y= Je ’9'"



Extending the idea of Chao:

way I
ook at mixed Poisson:

o0

p,= |e’0'1j1f(0)do

0
0

j e 9’ f(H)d&’] sojoe—eef—l £(6)do j e 07" £(0)d6

0 0

o0

(J!'xp)) < (G-Dlp., x (G+Dip,,
. < (j+1)pj+l
P P




Extending the idea of Chao:
way I

P P,

SO ... ratios of mixed Poissons are

monotone non-decreasing with increasing j



Extending the idea of Chao:
way I- a new diagnostic device

monotone pattern should be visible

J Xp, . UtDp,,
P P
when replacing p. by f
ixf G
Sy /5

monotone non-decreasing with increasing j



A new diagnostic device for
heterogeneity: some examples

(] T l)jfjJrl
/;
= Drug user data Bangkok (1/4 year)

= Drug user data L.A. (Hser 1992)

= Drug user data Scotland (Hay and
Smit 2003)

graph: j — ratio =
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Conclusion

Ratio plot seems to work as a diagnostic device
for presence of a mixed Poisson

VA n ﬁ) Nz]}(ﬁ—n n/N

BKK: 2955 1186 6966 3681 10647 0.65
LA: 11982 3893 20198 18439 38637 0.52
Scotl.: 175 85 647 180 827 0.78



Extending the idea of Chao:
way Il

from mixed Poisson to mixed Power series distribution:

0

p,= [e071j1f(0)d0— p, = T w(0)0a, f(0)do

0

Similar Results!



Extending the idea of Chao:
way Il

mixed Power series p, = j p(60)6 a, f(6)do:
0

pj/aj < pj+1/aj+1
p/a. p;/a,
replace again
]Fj /aj ]Fj+1/aj+1

IN

Jiala;, 114



Extending the idea of Chao:
way II: a diagnostic device for the
Power series distribution

plot
fj+1 /aj+1
/i la,

and see 1f pattern monotone

] —



... by the way:
generalised Chao bound

p/a < p,/a,

P,/ a, p, /q,

(pl /al )2a0 S p()
D,/ a,

replace again by observed frequemcies

~  (f /al)zao
fo= /r /a,




An example: mixed binomial

Binomial with size parameter m :

( .j9’(1+9)’" = ( .jp’(l-p)’”“’
J J

so that a, = (ﬂ and u(0)=(1+6)™"



... by the way:
generalised Chao bound

P _(f1 /al)zao
h ",

fi© (m=1)
21, m




Exemplified at a recent example
from screening

Lloyd & Frommer
(2004, Applied
Statistics) screening
for bowel cancer

38,000 men screened
in Sidney at 6
consecutive days by
means of self-tesing
for blood in stools

3,000 tested positively a
least once and cancer
status evaluated

196 were confirmed
positive to have bowel
cancer

How many of 35,000
unconfirmed negative
have bowel cancer?



The counting distribution: a recent
example from screening

= frequency £, of those
tested negative at all
6 times with bowel
cancer is unknown

= an estimate of 7,
might be constructed
from the distribution
0 5.

of counts
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mixed binomial

binomial with size parameter 6:

(6) -
|07 (1+0)
J

6
so thata, = (]j and 1(0)=(1+6)"°



Ratio

Ratio-Plot for Screening Data

j_> ](j+1/aj+1
/i 14,
, 6
with a, =|
J
O
O




Conclusion

Ratio plot seems to work also as a diagnostic
device for heterogeneity for the Power series
distribution

ff n fi N=f+n f/N
37 22 196 26 222 0.12



Distribution or counting the number
of days testing positive for 122
men with confirmed colon cancer

35  mconfirmed

Now frequency £, of 30 positive =
those tested negative -
at all 6 times with _
bowel cancer is 20
known to be 22 15 3
validation sample 10 fl il

0 ________

012345 6



Conclusion

Lo ) n on N=ﬁ)+n f‘o/](f
37 22 196 26 222 0.12

from validation sample: f, =22, f,/ N =22/122=0.18
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Idea of Mixed Modelling

look at mixed Poisson:

0 k

p,= [e’071j1f(0)ao=y "0’/ !q,
i=1

0

(to capture heterogeneity in 0)

reasonable: since NPMLE 1is always discrete



Idea of Mixed Modelling

now let 6 . =min{d,,...,0, } then:
- 0 0 - 0
pO: Ze i qi S e min qu = min
=l =l

N = > _
e ™ 0.




Idea of Mixed Modelling

since for a mixed Poisson:

ﬁ < 2p2 < 3& < 4p4 -

Po P P> Ps
reasonable

9 o~ 2p2
min pl




density

2p,

22 q,Po(2,0))

P

_2q,Po(2,0) y

N/

_ J
quPo(l, 0.)
j

g, Po(1,0)

0.30+

0.254

0.204

0.154

0.104

0.054

0.00

Variable
m— Fjrst Component
= = = Mixture

min



large

. small

Illustration of approximation

0 k
p= [0/ 1/ (0)d0= 30! g
0 i=

1:  £(0)=Po(0.5)0.5+0.5P0o(5)

2 f£(0) = Po(0.5)0.9+0.1Po(5)

3. £(0) = Po(0.5)0.5+0.5Po(1)

4:  £(0)=Po(0.5)0.9+0.1Po(1)

2P2 _0.9499
P

2P 5549
P

2Ps _07741
P

2P 5594
D,



Estimation

estimating
H o~ 2p 2
min pl
leads to
i 2p, _ 27,
min ﬁl fl
and Zelterman estimator arises:
n n 7]
N, =

2f

1

1 o eXp(_ émin) 1 — exp(_



Zelterman's as truncated estimator

write (truncated Poisson likelihood for count 1 or 2)

B e ’0 B 1
P g e 0 11 0/2
) /2
P>

T e 9+ %0’ /2 1+0/2

so that binomial likelihood
fl log(pl) + fz log(pz)

occurs which 1s maximized at
=20
A



Benefits of the truncated likelihood

binomial likelihood

filog(p,)+ f, log(p,)
1s well studied:

/>
it

2) covariates might be easily included with

1) var(p,) = var( )=Dp,(L=p,)/(f; + 1)

logistic regression
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Extending Zelterman's estimator to
the Power Series

write (truncated Poisson likelihood for count 1 or 2)

p = H(0)0a, __ 4
Y w(0)0a, + u(6)6%a, a +6a,
1(0)8’a, _ Oa,

D (0)0a, + (0)0%a, @ +6a,

so that binomial likelihood occurs:
fl log(pl) + fz log(pz)
with




AN example: mixed binomial
A
m) .
Binomial with size m: ( 167 (1+8)™"
J

so that a; = (?j and p(0)=(1+6)™"

ézfz SHoom fy 2
1 a, f, m(m-— 1)/2 f, (m—1)

N, = Py =1/(1+0)"




Example: Screening for Bowel
Cancer by taking Stool Samples at
6 Consecutive Days

f 1, n f N=f+n f/N

Chao 37 22 196 26 222 0.12
Zelterman 37 22 196 75 271 0.26

from validation sample: f, =22, f, / N =22/122 = 0.18 (true)



Critical appraisal of Zelterman's
conventional estimator

= Collins and Wilson (1992 Biometrika):

...For although it often does have a smaller
bias than the other estimators, it does so
at the cost of having a larger standard

aeviation which overwhelms the reduced
bias ...



Generalising Zelterman
Jis Jos Jyseees S

frequencies are concentrated on f,, f,, f;

frequencies of drug users with 1,2,3, ..., m contacts

to treatment 1nstitutions (hospitals) (n = 6966) :

£ =2955, f, =1186, f, =803, f, = 611,...



Generalising Zelterman
Jis Jos Jyseees S

frequencies are concentrated on f,, f,, f;

frequencies of drug users with 1,2,3, ..., m contacts

to treatment 1nstitutions (hospitals) (n = 6966) :

f,=2955, f, =1186, f, =803, f, =611,...



Zelterman's as triple truncated

estimator
write (truncated Poisson likelihood for count 1,2 or 3)

B e 'O B 1

O 0 e 0 1210 /6 1+0/2+67/6
B e’6°/2 B 6/2

O 91 e 121G 16 14012+ 6°/6

e ’6’/6 0 /6
Ps = =

e?0+e%0*/2+e%0°/6 1+60/2+6/6

so that multinomial likelithood 1n @

fl log(pl) + fz log(pz) + f3 log(p3)
occurs which 1s maximized at

5o 3 fi=f  [6(a+20) 9 (h-£)
BV AT AT
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The (upper bound) estimators
Z1

Zelterman's conventional estimator

5_2P _2f
7
and
A n n
NZI — A
1-exp(-0) | _exp(— 2/



The (upper bound) estimators
2

Zelterman's generalized estimator

5o 3 fi=h, [6(£+20) O (fi-f)

2 £, +2f, V 1, +2f 4(f2+2f1)2

and

n B n
1— exp(—é’) - exp(—é)

N22:



The (upper bound) estimators
Z3

2¢°0* /2

e’0

notonly 2p,/ p, = =6, but also

2p,+3py _2e°0°/2+37°0°/6 _ e 0+e 0712 _
P+ D, e’0+e%0%/2 e’0+e0%/2
motivates
b 2p,+3p, 21, +3f,

p+p,  fit)
. n n

N — = — =
S - exp(—60) 1—exp(-0)




The (lower bound) estimators
Cl

under mixed Poisson sampling

oo 2o 3P

Po P P
— C1 (original Chao estimator):

PP
2p,

< p, replacing with estimates




The (lower bound) estimators
C2

under mixed Poisson sampling

oo 2 3P

Po P P
— C2 (generalized Chao estimator):
PP,

3 < p, replacing with estimates
Ps

A_fljfz B ~
fo_3f3 , New =n+ f



Classical estimator undaer Poisson
homogeneity
M

under Poisson sampling

Po P P>
2p,+3p,+4p,... Ny 2/, +3f,+4/f,..

D+ D, TPyt i+ L+ i+

— 0 =

~ n n

N = — = -
R exp(—€0) 1—-exp(-6)
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T

Six Experiments
N=100, replication=1,000

£(0) = Po(0.5)

£(0) = Po(0.5)0.5+0.5Po(1)
£(0) = Po(0.5)0.5+0.5Po(5)
£(0) = Po(0.5)0.9+0.1Po(1)
£(0) = Po(0.5)0.9+0.1Po(5)

f (@)= Po(0.5)0.5
+0.1Po(1)+0.1Po(2)+0.1Po(3)+ 0.1Po(4)+ 0.1Po(5
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Mean

Mean for the Six Estimators (N=100 is true)
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Variance

Variance of the Six Estimators

30004
717273C1 2 M
®
25001
|l z1z2z3c1 2™
2000 717273 C1 C2 M
‘ /-
/b I. °
1500 ° ®
®
717273C1C2 M
1000
» © %0 e P
O ®
500
o o0 ° O
o0 o0 ©
0- . | —@® | ™ o

Exp O Exp 1 Exp 2 Exp 3 Exp 4 Exp 5




MSE
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LIUSUrallon. Froject on nucit drug use Iir
Bangkok 2001 (4th Quarter)

frequencies of drug users with 1,2,3, ..., m contacts

to treatment 1nstitutions (hospitals):
f,=2955, f, =1186, f, =803, f, =611,...
n=f+f,+..+f =6,966

N, =12,622 N, =10,647
N,, =7,987 N, =8,421
NZ3

=10,172
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improve upon Z3 ?

N, = ~
1 —exp(—6)
-2
notonly 2p,/ p, = 2 _(ZH/Z =6, but also
e

2p,+3p, _ 270 /2+3e7°0° /6 _ 96_69+e_96’2 /2 _
P+ D, e’0+e’9% /2 e’0+e’9% /2
motivates
ée. _ 2]32 +3ﬁ3 _ 2f2 +3f3

Pt D, h+ 1
2p2+3p3+4fh__2eﬁ92/2+3eﬁe3/6+4e*%f/24__9

pt+p,t D e ’0+e%0*/12+e7%0° /6

motivates
63 _ 2ﬁ2 +3]A93 +4]A94 _ 2f2 +3f3 +4f4
=

Dt Pyt Dy H+ L+




improve upon Z3 ?

Three Estimators: N , = L
1 —exp(—60)
Z1: é’l = 2—f2
/i

73 6 =223
| A+

74 é:2f2+3f3+4f4
IR A



MSE
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