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Abstract  
 

This paper focuses on a development of a classification model that gives an accurate 
placement of regions into classes of the relative risk of crimes over time. The analysis 
was based on statistics on the cases of burglary and murder from 13 regions of Namibia 
for the period 2002 - 2006. Since crime statistics are counts, they are often contaminated 
by heterogeneity. The effect of population heterogeneity in the crime counts in particular 
makes comparison of crime risk across regions using traditional methods of classification 
impossible. As such a method for standardizing crime counts was introduced and models 
for modeling population heterogeneity proposed. In particular a mixture likelihood 
approach to clustering by McLachlan and Basford (1988) which was further extended for 
covariate effects was used. This is due to its ability in identifying important clusters and 
in mapping the relative risk of crime onto the study regions via the maximum a posteriori 
(MAP) method while inference was done via the EM algorithm of Dempster et al (1997). 
The result shows that the space - time mixture model conducted under non - parametric 
form gives a good account of the relative risk of the two crimes over time, while both 
space - time mixture and covariate adjusted space - time mixture models points to a 3 
risk classification of the regional relative risk of the two crimes namely high, medium 
and low risk class respectively. 

 
 
 

Introduction 

The issue of increasing crime rate is a phenomenon affecting many countries in the world. It 
is due to increasing crime rate that scientific communities including statisticians are working 
together with law enforcement agencies in finding solutions to this issue. With much 
improved methods and techniques of crime surveillance in place, much of research work in 
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the field of Criminology has shifted towards analytic methods for analyzing crime 
surveillance data.  

The issue of crime surveillance cannot be highly emphasized enough, as in the 
criminological studies surveillance is aimed at recording incidences of crimes as well as in 
early detection of possible changes in the patterns of crime distributions. In the case of 
Namibia in particular, crime surveillance can be used as a tool for effective policing and for 
initiating proper and timely crime intervention initiatives. The use of cluster analysis 
techniques in the classification of geographical areas or regions of interest is very useful in 
identifying areas of increasing crime rate. In particular, traditional methods of classification 
like single, average and complete linkage (Tsiamtsiouri and Panaretos; 1999) have been 
widely used. These methods use a Euclidean distance as a classification measure.  

Although traditional methods have emerged as an important classification tools, they 
are not conducive in classifying areas from a heterogeneous setting. This is due to their 
sensitivity in dealing with crime data from areas of varying population sizes and lack of 
adjustment of the classification model for possible covariate effects. In addition, spatial 
clustering is not possible since the distance measure is only defined in a linear space while 
also highly skewed towards areas of high population sizes. 

The crime data used in this paper comes from 13 regions of various population sizes for 
the period 2002 to 2006 (see figure 1). However, for comparison purposes, these data were 
complemented with statistics on the projected regional populations (population at risk) from 
the Central Bureau of Statistics (CBS). Therefore identification of regions with unusual high 
level of crime risk is necessary for initiating timely interventions, proper planning mechanism 
and better resource allocations.  
 
 

 

 

                               Figure 1: Regional boundary map of Namibia 
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Modeling Crime Counts 

In a Criminological study, crime occurrence is measured in counts. As such, the Poison 
provides a natural distribution for modeling crime data. Although count data are associated 
with crime data, they often do exhibit over-dispersion (extra - Poison variation) violating the 
Poison assumption of equal mean-variance components. A diagnostic test for assessing over-
dispersion or lack of thereof in the count data can be found in Böhning (1999). Therefore, 
alternative models dealing with over-dispersed count data have been proposed. 

For instance Osgood (2000) propose using a negative binomial (NB) regression model 
in analyzing over-dispersed crime count data. Although this model is now widely used in the 
Criminological field, Berk and MacDonald (2008) argue that it does not always solve over-
dispersion issue if fundamental errors in the regression model are not fully addressed. 
Alternatively, Böhning (2000 and 2003), McLachlan and Basford (1988) and Lawson et al 
(1999) introduce mixture models as an alternative to the NB.  

Mixture models allow for unobserved complex structure in the data to be represented by 
a set of unobserved classes through probabilistic means (see also Böhning, Dietz and 
Schlattmann; 1998 and Lindsay; 1995). This leads to the application of mixture models in the 
area of cluster analysis (Aerts et al; 2002, McLachlan and Basford; 1988, and Everit; 1993), 
where it is used in the identification and allocation of areas into classes of homogeneous 
traits. According to Magidson and Vermunt (2002), recent developments in model based 
clustering provides improvements in the ability to identify these very important clusters and 
allocate areas into the classes accordingly.  

Therefore, this paper focuses on a development of an appropriate classification model 
based on the concept of mixture models by McLachlan and Basford (1988) using an 
improved method of crime standardization and to propose suitable methods for monitoring 
changes in the regional crime risk over time.  

 

Standardized crime ratio (SCR) 

The presence of population heterogeneity in crime data necessitates the introduction of a 
standard method for standardizing the reported crime counts to the population at risk. This 
process enables smooth comparison of crime rates across study regions without significant 
loss of information. In particular, the SCR which is parallel to the standardize mortality ratio 
(SMR) implemented in Epidemiology and Public Health (see Böhning; 2004) is therefore 

introduced. Now, given the reported crime counts rto from region r  during the time period t  

and the corresponding expected counts rte , we can define the SCR as 

                                    ,rt
rt

rt

o
SCR

e
=       1,2,...,r R=  and 1,2,...,t T=                                     (1) 

An interesting aspect from this equation is the calculation of the rte . Since the reference 

population is not readily available, the rte  are calculated in terms of the population at risk rtn  
as  

                  ˆ
rt t rte nλ=  
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where, t̂λ  is the rate of crime during the time period t  and it is defined as ˆ
rt

r
t

rt
r

o

n
λ =

∑

∑ . Fleiss 

et al (2003) refer to this technique as the internal indirect standardization method. One of the 
advantages of using this method of standardization according to Böhning (2004) lies in the 

marginal means of the ratio 
rt

r t

rt
r t

o

e

∑∑

∑∑  which is fixed to 1.  

 

Finite mixture models 

As before, given the observed crime counts rto  and the expected counts rte  calculated on the 
basis of internal indirect standardization, then information on the occurrences of crimes can 

be contained in the constructed SCR. Let jtλ  be the true parameter representing the relative 

risk of the rtSCR  in the 
thj  class during the time period t  and assuming this relative risk is 

varying across study regions, then a population heterogeneity which is referring to the 

unobserved cluster variation in the parameter values of jtλ  exist. 

Now, assuming that the rto  follow a Poison distribution such that under SCR its 

distribution conditional on the model parameter is given by ( ), ~rt t rt rt t rto e Po o eλ λ , then the 

conditional density of the rto  takes the form  
 

( ) ( ), ,rt t rt rt jt rt jt
j

f o P e Po o e pλ=∑        1,2,...,j k=                   (2) 

 
Equation (2) yield a k  component finite spatial mixture of Poison distribution with a 

mixing density given by  
 

1 2

1 2

...

...
t

t

t t k t

t
t t k t

P
p p p

λ λ λ 
=   
 

        (3) 

 

implying that at the time period t , tP  is assigning proportion jtp  to cluster j  with a relative 

risk jtλ . In addition, jtp  should satisfy (i) 0jtp ≥  and (ii) 1jt
j

p =∑  for all t .  

Although the model in (2) is good in presenting the spatial distribution of regional 
crime data over study areas, it is not ideal for monitoring crimes over time since comparison 
of the relative risk is not possible. This is because the model produces t  independent 
mixtures which in time are incomparable as the number of components ( )k  of the mixture 

model might differ or if they are similar, the levels of spatial relative risk ( )jtλ  might be 
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substantially different. Hence regional allocation to the levels of the relative risk will not be 
entirely identical.  

To overcome this problem, a mixture model that account for space and time 
components of the crime data by assuming fixed time periods is considered. In such a case, 
crime surveillance data from all time periods are viewed as a single data set. As such a single 

finite space - time mixture for the space - time crime data can be developed. Now, letting jλ  

to be the unobserved cluster variation in the population such that ( )| , ~ |rt j rt rt j rto e Po o eλ λ , 
then we can re-write equation (2) as 

 

( ) ( ), ,rt rt rt j rt j
j

f o P e Po o e pλ=∑        1,2,...,j k=                   (4) 

 

where now 
1 2

1 2

...

...
k

k

P
p p p

λ λ λ 
=  
 

. It is however observed from the above equation that jλ  

does not depend on the time period t  which is also reflected in the number of classes ( )k , 

while jp  should satisfy similar condition as jtp . Furthermore, it is observed from the form of 

the mixing distribution that neither tP  nor P  assumes any specific function which depends 
on the parameters to be estimated. Thus it is said to be in a non - parametric form.  
 
 
Inference based on mixture models 

 
The parameters of the mixing distribution are conventionally estimated using the non - 
parametric maximum likelihood estimators (NPMLE). The specific form of the log - 
likelihood for the space - time mixture is  
 

( ) ( ) ( )| , |rt rt rt j rt j
jr t r t

l P f o P e Po o e pλ
 

= =  
 
∑∏∏ ∏∏      (5) 

 
which is performed once as compared to the spatial mixture where the maximum likelihood is 
performed t  times e.g.  
 

( ) ( )|t rt jt rt jt
jt r t

l P Po o e pλ
 

=  
 
∑∏ ∏∏        (6) 

 
 

However, according to Böhning (2000) a closed form solution for the log - likelihood 
does not exist. As such the EM algorithm of Dempster et al (see Böhning; 1999 and 2000, 
Militino, Ugarte and Dean; 2001 and also the derivation of the EM algorithm in 
Chadrasekaran and Arivarignam; 2006) has been implemented to estimate the parameters of 
P  when the number of components or classes k  is fixed (known), else the vertex exchange 
method (VEM) (Lesperance and Kalbfleisch; 1992) that computes a grid of positive support 
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points should precede the EM algorithm. The estimated parameters are given by 

1 2

1 2

ˆ ˆ ˆ...ˆ
ˆ ˆ ˆ...

k

k

P
p p p
λ λ λ 

=   
 

. 

 
In addition since the number of components k  is not known, model selection criterions 

conducted within the maximum likelihood framework will be used in determining the best 
model fit as a number of possible candidate models will be fitted. Specifically, the Bayesian 
Information Criteria (BIC) by Schwartz (1988) and Akaike Information Criteria (AIC) by 
Akaike (1973) were used. For a k  component space - time mixture model, the AIC and BIC 
value are calculated as follows 

 
( ) ( )
( ) ( ) ( )

2ln 2 2 1

2ln 2 1 ln
k

k

AIC l k

BIC l k R T

= − + −

= − + − ×        (7) 

 

In the equations, ( )ln kl  is the maximized log - likelihood value for the k  component 

space - time mixture, ( )2 1k −  is the number of parameters to be estimated in the mixture 

model, while ( )R T×  is the number of data points. The model that minimizes the above 
criterions gives the best fit.  
 
 

Crime mapping 
 
A common practice in disease mapping and risk assessments is using a finite estimate of the 
non - parametric prior as a mapping tool (Böhning; 2000). Specifically, maximum a 
posteriori (MAP) estimation method by McLachlan and Krishnan (1997) and Rouse (2005) is 
used. Since for a given time period t  the composition of P̂  is formed by a set of disjoint 
clusters, then each region will only be assigned to one component of the relative risk.  
Therefore, for the space - time mixture in equation (4), the posterior probability for assigning 

regions to cluster j  with a relative risk jλ  is  
 

 ( ) ( )
( )

ˆ ˆ|
ˆ| , , ,

ˆ ˆ|

rt j rt j

j rt rt

rt l rt l
l

Po o e p
p o e P

Po o e p

λ
λ

λ
=
∑       , 1, 2,...,l j k=     (8) 

 
Therefore in terms of MAP, a region will only be allocated to that cluster for which it has the 
highest posterior probability of belonging.  

 

Application 

The space - time mixture model discussed in the preceding sections was applied to the crime 
surveillance data from 13 administrative regions of Namibia for the 5 year time period (2002 
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- 2006). Specifically, space - time crime data on the cases of burglary and murder were 
considered. Table 1 gives the results of the fitted space - time mixtures and model selection 
criterions for the two crimes. In the table, k  represent the number of components in the space 
- time mixture while log( )l  gives the natural log - likelihood of the k  component space - 
time mixture. 

 

                        Table 1: Results of the fitted mixture and the model selection criteria 

Burglary Murder 

    k      ( )log l      BIC  AIC      ( )log l      BIC  AIC  

   4*   -169.016   367.253 346.032   -245.344   519.909 498.688 

   3   -169.016   358.904 344.032   -246.221   513.313 498.441 

   2   -175.635   363.793 355.270   -261.252   535.028 526.505 

   1   -187.919   380.012 377.838   -320.409   644.992 642.818 

 

The result shows that for each crime, a 3 component space - time mixture give the best model 
fit as it minimizes both criterions (see also Appendix A.1 for the parameter estimates for each 
k  component mixture). The parameter estimates for the crime specific mixing distributions 

for the 3 component space - time mixture are 
0.275 0.956 3.060ˆ
0.43 0.43 0.14

P
 

=  
 

 for burglary and 

0.504 1.065 1.767ˆ
0.37 0.34 0.29

P
 

=  
 

 for murder. These relative risk were compared to the threshold 

given by MLE for the relative risk in the homogeneous case ( )ˆ 1λ = . 
 

This shows that only 14% of the space - time regions was assigned to the class with 
an increase in the relative risk of burglary of 3.060, while 43% apiece of the space - time 
regions was allocated to the class with a decrease in the relative risk of 0.956 and 0.275 
respectively. Similarly in the case of murder, 37% of the space - time regions was allocated to 
the class with a decrease in the relative risk of 0.504 as oppose to 34% and 29% of the space - 
time regions that were allocated to the class with an increase in the relative risk of 1.065 and 
1.767.  

Practical interpretation of these statistics is that the space - time regional relative risk 
can be classified into three classes namely low, medium and high risk classes. Furthermore, 
regions in the high risk class are three times more at risk of burglary and nearly twice at risk 
of murder over time than they would normally be under homogeneous risk structures. The 
distribution of the space - time regional allocation to the components of the relative risk over 
time is presented in figure 2. From the figure, each map represent a time period, while 



International Journal of Criminology and Sociological Theory, Vol. 3, No. 2, June 2010, 477-495 

 484

legends signify the level of the relative risk which are low risk class (white color) to high risk 
class (dark grey) respectively.  

(i) Burglary 

 

(ii) Murder 

 

 

 

                    Figure 2: Relative risk maps for the two crimes (2002 – 2006) 
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The maps show evidence of space - time clustering in the regional classification of the 
relative risk for the two crimes with mainly central and southern regions showing excess in 
the relative risk. In particular, Erongo and Khomas regions were consistently classified as 
high risk areas for burglary except in 2006 when Khomas was the only high risk area. 
Similarly in terms of murder, Karas and Khomas regions were classified as high risk areas 
over time, while Erongo was a high risk area only in 2003 and 2004. On the other hand, 
Omaheke region although consistently classified as a high risk area for murder, it has shifted 
to the medium risk class since 2005 while Hardap was the only region with fluctuating shift 
in all three components of the relative risk over time.  

It is therefore understandably convenient to assume a north - south gradient in the 
case of murder while, in the case of burglary it is more difficult to determine where the 
direction of the greatest rate of increase in the relative risk lies, although a north - south - 
west gradient seems fairly justifiable.  
 
Extended space - time mixture model 
 
Here the space - time mixture model is further extended for possible covariate effects. In 
particular, the population density calculated as the ratio of regional population at risk by the 
size of the region was considered as a potential covariate. This is due to the fact that the 
Namibian Population and Housing census of 2001 indicated a high level of migration 
particularly from the northern to southern regions. In the case of mixture models, covariates 
are modeled through the mixed poison regression which according to McLachlan (1997) and 
Nylund and co (2007) gives a natural extension to the Poison regression model. This 
methodology is therefore extended to the space - time mixture Poison regression where 
covariates are included in the parameters of the mixing distribution. The mixed Poison 
regression is of the form  

 

( )log rtj rtjλ η=  

              ( ) 0 1log ,rt j rte xβ β= + +      1,2,...,j k=      (9) 
 
This is a general form of a linear mixed model (GLMM) with a k  component space - time 

mixture over the intercept 0β  and a fixed effect over the covariate variable. Furthermore, 
equation (9) is also referred to as the partial random effect model (PREM).  Although the 
regression model in equation (9) has different intercepts for each j  component, the covariate 
effect remains identical for each component. Similarly, the k  component space - time 
mixture can also be allocated to the covariate effect and then evaluate the model fit. This 
gives a full random effect model (FREM) which is of the form  
 

 ( ) 0 1logrtj rt j j rte xη β β= + +  

Parameter estimates for the space - time mixture Poison regression is done via adaptation of 

the EM algorithm. In this case, the marginal distribution of the rto  is 
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( ) ( )| , | rtj

rt rtj rt j
j

f o P Po o e pηη =∑  while the corresponding log - likelihood function is now 

of the form ( ) ( )| rtj

rt j
jr t

l P Po o e pη= ∑∏∏ . The parameters of the mixing distribution are 

therefore estimated to be 
1 2

1 2

ˆ ˆ ˆ...ˆ ,
ˆ ˆ ˆ...

k

k

P
p p p

ψ ψ ψ 
=  
 

   where ( )0 1 1
ˆ ˆ ˆˆ ,j j j orψ β β β= . This implies 

that P̂  is assigning weights ˆ jp  to the regression parameters 0
ˆ

jβ  and 1̂ jβ  in the case of 

FREM or 0
ˆ

jβ  and 1̂β  in the case of PREM. Since the number of components k  of the space - 
time mixture regression is not known, a set of candidate models will be fitted. Once again the 
AIC and BIC criterions will be used in determining the best model fit. These criterions are 

now defined as ( )2ln 4AIC l k= − +  and ( ) ( ) ( )2ln 2 lnBIC l k R T= − + ×  under PREM or 
( ) ( )2ln 2 3 1AIC l k= − + −  and ( ) ( ) ( )2ln 3 1 lnBIC l k R T= − + − ×  in the case of FREM. 

Similarly, the posterior probability of assigning regions to the components of the space - time 
mixture regression is 
 

( )
( )

ˆ|
ˆ ,

ˆ|

rtj

rtl

rt j

rtj
rt l

l

Po o e p
p

Po o e p

η

η
=
∑       , 1, 2,...,l j k=                  

(10) 
 

The outcome of the model fit is shown in table 2. For each crime, the result shows no 
significant improvement in the log - likelihood of the PREM with a 3 and 4 component space 
- time mixture over the intercept. As a result a FREM with a 3 component space - time 
mixture over both intercept and population density effect was fitted. This undertaking lead to 
a considerable improvement in the log - likelihood in the case of burglary only.  

                      Table 2: Results of the fitted mixtures and the model selection criteria 

Burglary Murder 

PREM    
k  

    

( )log l  
    BIC  AIC      ( )log l      BIC  AIC  

                 
1 

  -198.045   404.439 398.020   -329.357   667.063 660.714 

                 
2 

  -167.501   351.700 339.002   -252.761   522.220 509.522 

                 
3 

  -161.322   347.690 328.644   -243.595   512.236 493.190 

                   -161.322   356.039 330.644   -242.764   518.923 493.528 
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4 

FREM 

         
3k =  

 

  -157.182 

 

  347.759 

   

320.364 

 

  -243.108 

 

  519.611 

   

492.216 

 

Furthermore, the model selection criterion indicates that a 3 component model is supported in 
the case of burglary. This result is also confirmed by the estimated parameters of the 
covariate adjusted space - time mixture model in Appendix A.2. In this case the parameter 
estimates for a 4 component model shows two components with nearly identical relative risk 
of 1.314 and 1.311. Although this values seems different under more decimal places, they are 
treated equal and hence were merged and given an average relative risk of 1.313. This results 
in a model with a 3 component space - time mixture over the intercept, a result which 
coincides with the model that minimizes the two criterions. 

The preferred model in the case of burglary shows no significant difference between 
the model under PREM (BIC = 347.690) to that under FREM (BIC = 347.759), although with 
respect to the AIC a model with a 3 component space - time mixture under PREM is 
somehow weekly supported. Hence a 3 component model under PREM was used for the rest 
of the analysis as it minimizes both criterions and we have less parameter to estimate. It can 
also be shown that the effect of population density on the risk of burglary will somehow be 
very close if not identical in the case of FREM, hence it is irrelevant as to which of the two 
models is chosen. Similar conclusion can also be made in the case of murder, where a 3 
component space - time mixture under PREM minimizes the two criterions.  

Residual heterogeneity is also detected when the space - time mixture is adjusted for 
population density as the resulting log - likelihood of the preferred model under the two 
criterions improves by 7.694 (burglary) and 2.626 (murder) as compared to the log - 
likelihood of the corresponding 3 component space - time mixture in table 1. The estimated 
parameters of the mixing distribution of the space - time mixture regression and the solution 

under homogeneous case ( )1k =  is given in table 3.  

Table 3: Parameter estimates of the 3 component covariate adjusted space – time  

                 mixture under the partial random effect model (PREM) 

Crime    k        ˆ jp        ˆ
jλ  ( )0

ˆ . .j S Eβ  

 

Burglary 

  1 

  3 

1.00 

0.15 

0.13 

0.72 

1.030 

3.854 

1.309 

0.387 

 0.190 (0.075) 

 1.938 (0.048) 

 0.858 (0.071) 

-0.361 (0.122) 

   1 1.00 1.031  0.161 (0.035) 
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Murder 

 

  3 0.15 

0.40 

0.45 

1.877 

1.282 

0.567 

 0.709 (0.032) 

 0.327 (0.036) 

-0.489 (0.050) 

 
The proportion of regional space - time data assigned to the high risk classes are of interest. 
The result from the table shows that 15% of the regional space - time data was allocated to 
the high risk class in both cases with an intercept parameter of 1.938 in the case of burglary 
and 0.709 in the case of murder. A further detail comparison of the relative risk between the 
space - time mixture model (STM) and the covariate adjusted space - time mixture (CASTM) 

is presented in table 4. In the table, ˆ jp∆  is the change in the proportion of regional space - 

time data in the 
thj  class, while ( )0

ˆ
je

β  and ( )1̂e
β  are the changes in the relative risk of the two 

crimes in the 
thj  class when population density is negated and the effect of the population 

density itself. 
 
Table 4: Comparison of the risk classes between the space – time mixture model and the 
population density adjusted space – time mixture model. 

 

Crime 

 

Risk class 

            ˆ jp   

   ˆ jp∆  

 

 ( )0
ˆ

je
β  

 

  ( )1̂e
β  STM CAST

M 

 

 

Burglary 

1k =      -      -      -  1.209  0.973 

High  0.14  0.15   0.01  6.945  

Medium  0.43  0.13  -0.30  2.358  0.907 

Low  0.43  0.72   0.29  0.697  

 

 

Murder 

1k =      -      -      -  1.175  0.978 

High  0.29  0.15  -0.14  2.032  

Medium  0.34  0.40   0.06  1.387  0.987 

Low  0.37  0.45   0.08  0.613  

 
 

The result shows that after adjusting for population density the proportion of regional space - 
time data in the high risk class increases by 1% with those in the low risk class increasing by 
as much as 29% in the case of burglary. This points to a high level trade - off in the 
proportion of regions in the medium class with a high percentage shifted to the low risk class. 
However in the case of murder, a 14% decrease in the proportion of regional space - time 
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data in the high risk class is observed while in the low risk class it increases by a mere 8% .It 
is further observed from table 4 that regions in the high risk class are six times more at risk of 
burglary than they would normally be under homogeneous case when population density is 
negated. This is double the risk in the case of the space - time mixture model. Similarly in the 
case of murder, when the effect of population density is negated regions in the high risk class 
are twice at risk for murder which is somehow similar to the risk in the space - time mixture 
model. The distribution of the space - time regions into components of the above relative risk 
is presented in figure 3 below.  

(i) Burglary 
 

 
 

(ii) Murder 

 
 
Figure 3: Relative risk maps for the two crimes (2002 - 2006) accounting for population density 
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Comparison of the relative risk maps in figure 2 and 3 shows a clear shift in the relative risk 
of some regions in both cases. Particularly in the case of burglary, Erongo region shifted from 
a high to the medium risk area while Oshana shifted from a medium to the high risk area 
when the population density is taken into account. Similarly in the case of murder, Karas 
region shifted from a high to a medium risk area although it was classified as a high risk area 
in 2005. In addition, Erongo region which has been classified as a high risk area in 2003 and 
2004 and a medium risk area in 2006 has now shifted to the medium and low risk classes 
respectively. Furthermore, Hardap which was a high risk area in both 2002 and 2006 periods 
is now classified as a medium risk area in both cases when the population density is taken 
into account, while Omaheke region has now largely become a medium risk area for murder 
throughout the study period.  

It is therefore of interest to note that the differences in the allocation of regions in the 
relative risk maps of figure 3 can be attributed to the high value of the intercept term in the 
regression model. This is because the effect of population density is quite minimal across the 
relative risk classes in both cases. It is also observed from table 4, that the effect of 
population density for each crime is similar to the effect in the respective homogeneous 
models. This is also a further indication that the population density is somehow not 
significant in the model.  

Overall, the maps in figure 2 and 3 clearly show evidence of spatial dependency in the 
regional relative risk for each crime. Although the magnitude of the degree of association is 
not clear at this stage, it can be deduced from the two figures that geographical characteristics 
of the regions seems to play an important role as most of the regions are consistently 
allocated to the same components of the relative risk over time.  

 

Discussion 

This paper has focused on a development of a classification model that provides a more 
accurate classification of regions into classes of the relative risk of crime based on the 
specific regional relative risk over time. The analysis was based on secondary data set of the 
statistics on the cases of burglary and murder from the 13 regions of Namibian complemented 
with statistics on the regional population projections from the National planning commission.  
 One of the important contributions in this paper is the introduction of the standardized 
crime ratio (SCR) in section 3, from which the proposed classification model and maps of the 
regional relative risk are based. This ratio enable direct comparison of the relative risk of 
crimes from regions with varying population sizes an effect refers to as the population 
heterogeneity in the paper. In the field of Criminology, this effect has been largely 
overlooked in the analysis of crime and risk assessments, which usually leads to high 
inflation or overestimation in the point estimates of the relative risk of crimes. Hence the 
SCR was introduced to absorb this effect by standardizing the crime statistics to the 
population at risk. 
 A mixture likelihood approach under model based clustering was proposed as a 
classification model. In particular the non - parametric form of the space - time mixture 
model was found to give a good account of the relative risk of the two crimes over time. This 
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model was further extended to allow for the possible effect of population density on the 
regional classification referred to as the covariate adjusted space - time mixture model. 
 Both the space-time mixture and covariate adjusted space-time mixture model 
indicates a 3 risk classification of the space-time regional relative risk of the two crimes 
namely high, medium and low risk classes. Furthermore, the regional allocation to the 
components of the relative risk shows an increasing north-south gradient in the case of 
murder while a north-east-south gradient in the case of burglary is fairly justifiable. It is 
further observed that when the population density is negated, the risk of burglary in the 
regions allocated to the high risk class doubled as compared to that of the space-time mixture, 
while in the case of murder it largely remain constant between the two models. In addition, 
population density was not found to be significantly affecting the regional classification as 
the high risk classes in both cases constitute regions with varying population densities.  
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Appendix A 

 

  A.1: Parameter estimates for the space – time mixture model 

 

Components 

k  

Burglary Murder 

jp          jλ  jp          jλ  

 

4 

 

 

Merging equal estimates 

0.30      0.275 

0.13      0.275 

0.43      0.956 

0.14      3.060 

   -              - 

0.43      0.275 

0.43      0.956 

0.14      3.060 

0.36      0.500 

0.29      1.008 

0.27      1.572 

0.08      2.010    

 

3 

0.43      0.275 

0.43      0.956 

0.14     3.060 

0.37      0.504 

0.34      1.065 

0.29      1.767 

2 0.80      0.464 

0.20      2.810 

0.47      0.560 

0.53      1.515 

 

 

 

 

 

 

 



International Journal of Criminology and Sociological Theory, Vol. 3, No. 2, June 2010, 477-495 

 493

 

A.2: Parameter estimates for the covariate adjusted space – time mixture model 

 

Components 

k  

Burglary Murder 

jp          jλ  jp          jλ  

 

4 

 

 

Merging equal estimates 

0.72      0.387 

0.07      1.314 

0.06      1.311 

0.15      3.851 

   -              - 

0.72      0.387 

0.13      1.313 

0.15      3.851 

0.35     0.529 

0.15     0.761 

0.39      1.369 

0.11      1.927    

 

3 

0.72      0.387 

0.13      1.309 

0.15     3.854 

0.45      0.567 

0.40      1.282 

0.15      1.877 

2 0.78      0.445 

0.22      3.003 

0.50      0.599 

0.50      1.571 

FREM 

3k =  

0.57      0.359 

0.24      0.795 

0.19      2.907 

0.45      0.566 

0.36      1.249 

0.19      1.845 
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